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In this paper we analyze the consequences of introducing terms that are first order in the 
spatial gradient (Lifshits invariants) into the Ginzburg-Landau functional for super- 
conductors. Invariants of this kind can be considered both for superconductors without a 
center of inversion, where the Lifshits invariant is introduced in the standard way, 
and for superconductors with a center of inversion, where the Lifshits invariant is constructed 
out of two different irreducible representations of the crystal symmetry group that differ 
in their spatial parities. When terms that are linear in the gradient are included in the 
Ginzburg-Landau functional helical ~;~erconductin~ phases appear. We investigate the 
thermodynamic and magnetic properties of these phases, and also the extent to which they can 
address the problem of splitting of the superconducting phase transition in UPt3. 

1. INTRODUCTION 

Experimental discoveries in recent years in the area of 
new superconducting materials, such as, e.g., the "heavy- 
fermion" superconductors (see the review by ~or 'kov '  ), 
have stimulated the theoretical investigation of models 
with multicomponent order parameters and superconduct- 
ing phases with complex structures. 

A prominent role in this theory is played by the sym- 
metry approach,2 which is based on the properties of the 
full symmetry group G= Gox R x U( 1 ) of the supercon- 
ductor where Go is the point group of macroscopic sym- 
metries of the crystal, R is the operation of time reversal, 
and U( 1) is the group of gauge transformations. 

Each superconducting phase has an order parameter 
that transforms according to one of the irreducible repre- 
sentations of the group Go, i.e., that can be written in the 
form of a linear combination of functions that form a basis 
for the corresponding irreducible representation. The spe- 
cific form of the coefficients in this linear combination is 
found by minimizing the Ginzburg-Landau functional for 
the free energy, which is an invariant with respect to trans- 
formations of the group G. The set of symmetry operations 
that leave invariant the state (order parameter) of a given 
superconducting phase form a group H (or superconduct- 
ing class) which is a subgroup of the group G. Any one of 
the groups H is isomorphic to one of the subgroups Ho of 
the group Go of macroscopic crystal symmetries, and con- 
sists of transformations Ho combined with various gauge 
transformations from U( 1 ) (multiplication by a phase fac- 
tor) and the operation of time reversal. 

Thus, the original symmetry of the crystal is lowered 
as a result of a phase transition to the superconducting 
state. The transition to an ordinary superconducting state, 
whose order parameter transforms according to the unit 
representation of the group Go, is accompanied only by 
breaking of gauge invariance, i.e., G= Go X R X U( 1 ), 
H=GoXR. Phases whose appearance breaks the direc- 
tional symmetry of the crystal or the symmetry under time 

reversal R (magnetic superconductors) are customarily 
called unusual superconducting phases. 

As for the operation of spatial parity, all the currently 
known "heavy fermion" compounds that seem to exhibit 
unusual syerconductivite possess a center of inversion, 
i.e., Go=GoXCi, where Go is the group of macroscopic 
rotation symmetries and Ci is the operation of spatial in- 
version. This property is apparently preserved in the su- 
perconducting state as well, i.e., the superconducting order 
parameters possess a definite spatial parity. In other words, 
Cooper pairing takes place only in a spatially even state 
(spin singlet) or in a spatially odd state (spin triplet). The 
classification of unusual superconducting phases given by 
Volovik and ~ o r ' k o v ~  presumes the presence of a center of 
inversion. This prevents both the appearance of terms of 
first order in the gradient (Lifshits invariants) in the 
Ginzburg-Landau functional and the existence of nonuni- 
form (helical) superconducting phases, as well as the ap- 
pearance of superconducting phases that do not possess a 
definite parity. 

However, recent experimental data suggests that the 
crystal structure of UPt, is more complicated than previ- 
ously assumed. Data on electron Bragg scattering3 show 
the presence of several density waves that are incommen- 
surate with the hexagonal lattice. The interaction of these 
structural modulations with the orthorhombic deformation 
tensor and the polarization of the crystal lead, after aver- 
aging over a volume with dimensions much larger than the 
superstructure period, to the appearance of nonzero defor- 
mations and polarizations. This, in turn, changes the mac- 
roscopic directional symmetries of the original crystal (i.e., 
the crystal class), which has the following consequences, as 
shown by ~ i n e e v : ~  first of all, the symmetry is lowered 
from hexagonal to orthorhombic, which from the point of 
view of superconductivity is equivalent to including an ex- 
ternal field with symmetry D2,, that splits the supercon- 
ducting transition; and secondly, the crystal loses its in- 
variance with respect to spatial inversion, which can lead 
to the appearance of helical phases. 

It is unlikely that the weak change in spatial parity of 
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TABLE I. 
7 I 

L I I I 

Remark: e = exp(2m/3) 

UPt3 (whose confirmation requires further experimental 
investigation) has quantitative consequences for the super- 
conductivity in this compound. However, with a view to 
potential applications in the future, in this paper we carry 
out a detailed investigation of the behavior of the helical 
phases discovered in Ref. 4 in a magnetic field for a hex- 
agonal crystal without a center of inversion. 

According to one currently popular viewpoint, the su- 
perconducting state in UPt3 consists of a mixture of two 
superconducting states with nearby transition tempera- 
tures, belonging to different irreducible representations of 
the group of point symmetries of the crystal. This makes it 
possible to explain the observed splitting of the supercon- 
ducting phase transition in this compound.5 The represen- 
tation pairs (AlkElg), (AZkEZg), etc. investigated by Joynt 
et ale6 all have the same spatial parity-a result of the tacit 
assumption that inversion symmetry is preserved during 
the phase transition to the superconducting state. Relax- 
ation of this requirement, i.e., introduction of a new type of 
unusual superconductivity that breaks the symmetry under 
spatial inversion of the normal state, can lead to the pos- 
sibility of helical superconducting phases. In this case, the 
Lifshits invariants are constructed out of two representa- 
tions of the group Go with opposite parities. A similar 
method was used by Levanyuk et ale7 in their study of the 
problem of phase transitions in certain ferroelectrics.' 

This paper is structured in the following way. In Sec. 2 
we consider helical phases in superconductors that possess 
a center of inversion, and discuss the applicability of our 
results to the problem of the splitting of the phase transi- 
tion in UPt3. In Sec. 2.1 we classify pairs of representations 

out of which Lifshits invariants can be constructed, and 
discuss the thermodynamics of the helical phases for the 
example of a mixture of one-dimensional representations 
Al, and A2, of the group D6h. In Sec. 2.2 we compute the 
upper critical fields for this system for orientations along 
the hexagonal axis and in the basal plane. In Sec. 3 we 
consider helical phases in superconductors without a cen- 
ter of inversion, for the example of the two-dimensional 
order parameter in UPt3. Section 3.1 contains an investi- 
gation of thermodynamic properties, while in Secs. 3.2 and 
3.3 we compute the upper critical fields for helical phases 
in various field directions relative to the hexagonal axis. 
Finally, in Sec. 3.4 we investigate the combined effect of 
the absence of a center of inversion and an orthorhombic 
deformation. 

2. HELICAL PHASES IN SUPERCONDUCTORS WITH A 
CENTER OF INVERSION 

2.1. Ginzburg-Landau functional and helical phases 

Let us discuss our general scheme by using a simple 
example. Assume that the crystal belongs to the hexagonal 
class. The group D6h has eight one-dimensional 
(A1 ,A2 ,B1, B2) and four two-dimensional (E, ,E2) repre- 
sentations with different parities (i.e., with the signs g,u).8 
Assume that the order parameter tC, transforms according 
to the representation Al, (spin singlet), i.e., 
A(k,r) = tC,(r)[aLk,+b(jZkx+9k,)], where x̂ ,~?,,i are unit 
axial vectors, while the order parameter x transforms ac- 
cording to the representation A2, (spin triplet), i.e., 
A(k,r) =X(r)[(k2-3k,kg) (k:- 3kyk:)]. Then along with 
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the usual second- and fourth-order invariants in $ and x 
we can have a cross-term invariant that is linear in the 
gradient: $*(d/dz)~+c.c. (here z is along the sixfold 
axis). The Ginzburg-Landau functional (without a mag- 

, netic field) has the following form: 

where al,2=al,2(T-Tl,2) and Klt2>0, alS2>O. In general 
we should also add terms with the gradient in the basal 
plane. The magnetic field should be introduced in the usual 
way, i.e., by replacing the gradient with the covariant de- 
rivative (see Sec. 2.2 below). 

More complicated cases can be treated analogously. In 
Table I we list the pairs of representations for the groups 
Oh, D6,,, and D4h (i.e., the most interesting groups from 
the point of view of applications to "heavy fermion" su- 
perconductors) out of which it is possible to construct 
similar invariants. The forms of these invariants are also 
listed. [It is understood that in each pair the representa- 
tions are of opposite parity, i.e., for example, (E2,B1) im- 
plies (EZu,B1,) or (E2pBl,)]. These pairs satisfy the con- 
ditions for the existence of a vector representation in the 
expansion of their inner product. 

Let us now calculate the thermodynamic properties of 
systems with "Lifshits" invariants. We will use the follow- 
ing modified definitions of the order parameters: $+$= 
&+, x+Z= gzX (the tilde will be omitted in what 
follows). In order to return to the original units from ( 1 ), 
we must make the following replacements in all the expres- 
sions below: al,2+al,2/Kl,2, Y+Y/ m, ~1 ,2+~1 ,2 /~1 ,2~ ,  
and fi3,4+P3,4/K1K2. We then write the following 
Ginzburg-Landau equations obtained from ( 1 ) (assuming 
that AT=T1--T2>0): 

The temperature for a phase transition to the super- 
conducting state is determined by the vanishing of the de- 
terminant of the linearized system (2). In addition to the 
trivial solution *=x = 0, which describes the normal state, 
system (2) has uniform and nonuniform solutions of sev- 
eral types, which correspond to various superconducting 
phases. For example, the solution $,;y a exp(iqz) corre- 
sponds to the helical phase (the I phase). The following 
equation derived from (2) gives the temperature for a tran- 
sition to this phase: 

The critical temperature T, is determined by the max- 
imum value of the function T(q) defined above with re- 
spect to q. Omitting some rather lengthy operations, we 
present the results for T, and q: 

q2=f [?-at(T,-Tl) -a2(Tc-T2)1, ( 3 )  

where d l =  1 + (al-a2)hT/?. 
A phase transition to the helical superconducting 

phase I takes place for d l  > 0 and q2 > 0. Analysis shows 
that when 

both these conditions are satisfied, since 
- - 

(when  AT=?/^^ we have Tcl=T1 and q=O). For 
AT > (AT) the helical phase I cannot arise, and a tran- 
sition takes place from the normal state to a uniform su- 
perconducting state with $ = pho = , /al(T1- T)/2P1, 
~ = 0  (the I1 phase) at the temperature T1. Let us now 
investigate the stability of this uniform phase I1 against a 
helical deformation += gO+cl cos qz, x =c2 sin qz (phase 
111). Substituting into the Ginzburg-Landau equation (2) 
and then linearizing leads to the following equation for the 
instability temperature (for simplicity we set B2=P4=O): 

The critical temperature Tc2 and wave vector q are 
once more determined by maximizing T(q). The results 
are as follows: For 

the helical deformation does not appear; at a temperature 
T =  T2 a phase transition takes place from phase I1 to 
another uniform phase $=q50, x = xo 
- - &r2 ( T2 - T)/2P2 (phase IV) . However, if 
(AT)cl<AT<(AT)c2 holds (which can happen only 
when 2al <a2) ,  a transition occurs at the temperature Tc2 
from phase I1 to the nonuniform phase 111, where 

(for AT = ?/2a we have Tc2 = T2 and q = 0). 

403 JETP 78 (3), March 1994 V. P. Mineev and K. V. Samokhin 403 



(Ia) JI= c, cos qz, x = c2 sin qz, 
(Ib) $=cl exp(iqz), x=ic2 exp(iqz1. ( 6 )  

FIG. 1. General form of the phase diagram of a system described by the 
functional ( 1 ) .  N is the region of the normal state, I-IV are regions of 
existence of the superconducting phases (for explanation see the text). 

Let us now assume that the transition temperatures T1 
and T2 depend on a parameter (e.g., the pressure P),  such 
that their difference decreases as P increases. Then the 
phase diagram has the form shown in Fig. 1. The first- 
order phase transition curves, at which we have 
AT(Pl) =(AT),,, AT(P2) =(AT),, are shown schemat- 
ically by wavy lines. 

Comparing the theoretical phase diagram in Fig. 1 
with the experimental data on the behavior of the split 
superconducting transition of UPt3 as the pressure 
increases5 leads us to conclude that the model ( 1 ) with two 
one-dimensional order parameters having differing spatial 
parities mixed via a Lifshits invariant can provide at least 
a qualitative explanation for the experimental picture if the 
condition AT(P=O) ) (AT),' holds, and if the region 
where phase I11 exists disappears (i.e., 2al > a2 and the 
quantity (AT)c1 is unobservably small; see Fig. 2). How- 
ever, we must point out that the first-order phase transition 
curve shown in Fig. 2 is not observed experimentally; in its 
place an additional second-order phase transition curve is 
observed, which must necessarily arise under the assump- 
tions of previous theoretical 

Let us now assume that the condition AT<(AT),' is 
satisfied, so that a transition occurs to the helical phase I as 
the temperature decreases. There are two possibilities: 

FIG. 2. Phase diagram for special values of the parameters of the problem 
(see text). The uniaxial pressure P is plotted along the horizontal axis. 

The first solution corresponds to a "superconducting cho- 
lesteric" phase. 

For both phases, the superconducting current j= 
-SF/SA equals zero. For the real solution this is imme- 
diately obvious, while for the complex solution the absence 
of a current follows from gauge invariance and the condi- 
tion that the critical temperature be a maximum (i.e., a 
minimum of the free energy) as a function of q, i.e., S F /  
SA = S F / &  = 0. 

In order to choose between phases Ia and Ib, it is 
necessary to include cubic terms in (2). The corresponding 
conditions have the following form: for B2 < Fl, state Ia is 
realized, while for p2 > state Ib is realized (we must add 
to this the condition of positive definiteness of the fourth- 
order terms in ( I ) ,  i.e., & > 0, B2 > -&), where 

As the temperature decreases, the nonlinear terms in 
the functional distort the cholesteric spiral Ia, and its 
structure acquires the features of a domain structure: the 
order parameter is almost uniform over a large portion of 
each period of the state, and then changes rapidly with a 
large gradient (a domain wall). At a temperature Tlock, a 
phase transition occurs to a uniform state. Obtaining quan- 
titative information about the nonlinear helical state for 
TI,, < T < T, is complicated by the fact that the constant- 
amplitude approximation that is usually used in the theory 
of incommensurate phases cannot be used here.'' 

2.2. Magnetic properties of helical phases 

Let us consider the behavior of the system described in 
the previous section in a magnetic field H; that is, let us 
calculate the upper critical fields for the various supercon- 
ducting phases. For this, we introduce the following gra- 
dient terms in x,y into ( 1 ) : K3 I DJI 1 + K4 1 DX 1 2, where 
Di= -idi-Ai (we are using units in which fi=2e=c= 1 
and h= (2?rfi2/ao)~, where a, is a flux quantum). 

Let the field be directed along the sixfold axis. The 
temperature Tcl(h) of the phase transition from the nor- 
mal state to the uniform phase I1 can be found in the 
standard way, i.e., it is not necessary to take the Lifshits 
invariant into account. In this case, the Ginzburg-Landau 
equations decouple and determine the behavior of the two 
order parameters $ and ,y in the magnetic field indepen- 
dently. 

Now let us find Tcl(h), i.e., the temperature for a 
transition from the normal state to the helical phases Ia 
and Ib. Choosing the gauge A= (O,hx,O), we write the 
linearized Ginzburg-Landau equations as follows: 
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After the substitution 

$=exp(iqz)exp( - (h/2)x2)8,aJYn( $x), 
~=exp(iqz)exp( - (h/2)x2)2,bJYn( fix), 

where H,(x) is a Hermite polynomial, we obtain an alge- 
braic system for a, and b, : 

The superconducting transition temperature in a mag- 
netic field is given by the largest zero in n and q of the 
determinant of this system. We can show that the maxi- 
mum is reached for n=O. The corresponding equation for 
Tc has the form: 

It is easy to see that finding the transition temperature 
in a magnetic field reduces to Eq. ( 3 ) ,  in which tl and T2 
are replaced by 

It is evident that the discussions applying to the pre- 
vious point remain in force if we consider not the pressure 
P but the magnetic field h as the parameter on which TI 
and T2 depend. The phase transition to the helicoidal su- 
perconducting phase I in a magnetic field takes place at 
$ > 0, which is the case for 

Thus, if at h =0, 

then q=O, and at the temperature 

K3 
TI (h) = T1 --h 

a 1 

a transition takes place from the normal state to the super- 
conducting phase 11. The corresponding upper critical field 
is, in dimensional units, 

The difference AT(h) decreases with increase in the 
field (this takes place at K3/al > K4/a2) and at the point 
AT(h) = (ATcl = $/a2, the phase transition from the nor- 
mal state to the superconducting phase I1 alternates with 

FIG. 3. Phase diagram in a magnetic field. The field H is directed both 
along the hexagonal axis and in the basal plane. 11', IV' are the ordinary 
Abrikosov vortex phases obtained from the uniform phases 11, IV, in a 
magnetic field; I' is the hexagonal phase I deformed by the magnetic field. 

the phase transition of the helicoidal superconducting 
phase I. The temperature of this transition [see (4)] is 

At a temperature below Tl(h), against the back- 
ground of the already formed mixed state in the supercon- 
ducting phase 11, a phase transition to the superconducting 
phase IV takes place. The temperature of this transition is 
determined by the least eigenvalue of the corresponding 
Ginzburg-Landau equation in a doubly periodic potential 
that is linear in X. This potential is given by the spatial 
distribution of the magnetic field and the order parameter 
$ of phase 11. It is not possible to find analytically the 
dependence T2(h) and to carry out an investigation of 
phase I1 on the helicoidal instability (phase 111) in a mag- 
netic field. However, there is no doubt of the presence 
itself of the phase transition from phase I1 to phase IV in a 
magnetic field parallel to the axis of sixth order. Therefore, 
within the framework of the considered model, the phase 
diagram of the superconducting phase in a magnetic field 
along the hexagonal axis, shown in Fig. 3, is possible. 
Thus, for a mixture of superconducting states, referred to 
representations of different parity in the field along the 
hexagonal axis, up to the intersections of the lines Tl(h) 
and T2 (h ) , the helicoidal superconducting phase should 
appear. 

If the field is directed into the basis plane or at an 
arbitrary angle to the axis E, then the spatial modulation of 
the superconducting nucleus due to the magnetic field and 
the Lifshits invariant are no longer independent (as was 
the case for the field parallel to the c axis). The equations 
for tC, and x at h#O are not uncoupled. The phase transi- 
tion from the normal state takes place into the supercon- 
ducting state, representing its own mixture of the order 
parameters $ and X. Upon further decrease in the temper- 
ature, another phase transition takes place into the super- 
conducting phase, which differs from the initial spatial dis- 
tribution functions I) and X. If the lines of these transitions, 
as functions of the magnetic field, intersect, then the phase 
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diagram will coincide qualitatively with the phase diagram 
of the superconducting phase, constructed from the mix- 
ture of representations of the same parity.6 

Thus, there are important differences of the supercon- 
ducting states constructed from the mixture of representa- 
tions with different spatial parity. In this case, for suffi- 
ciently small difference of the critical temperatures AT(P) 
or AT(HI1 c), the superconducting state has a helicoidal 
structure, the region of existence of which differs from the 
usual superconducting phases by the lines of phase transi- 
tion of first order. The given complication makes problem- 
atic the explanation of the experimentally established 
phase diagram of the superconducting phases in UPt 
within the framework of the considered model. 

3. HELICAL PHASES IN SUPERCONDUCTORS WITHOUT A 
CENTER OF INVERSION 

3.1. Helical phases in zero field 

As we noted in the Introduction, there are reasons to 
believe that there is a real violation of spatial parity in 
UPt3, and that the rotational symmetry is lowered from 
hexagonal to orthorhombic. 

We write the Ginzburg-Landau functional for the two- 
component order parameter that transforms according to 
the representation El (or E2) of the group D6 (the order 
parameter has the form A(k,r) = ~ ~ ( r ) + ~ ( k )  
+q2(r)+2(k), where are basis functions for the cor- 
responding taking into account the Lif- 
shits invariant, but neglecting the orthorhombic distortion 
(the spin state as usual is unimportant): 

where i,j=x,y, D,=V,-i(2e/iic)Aj (from here on we 
will use units in which fi=2e=c= 1 ). We note that the 
form of the Lifshits invariant (the term in y)  is the only 
one possible (i.e., there are no terms that are linear in the 
gradient with respect to x,y) . In order to distinguish effects 
connected with helical instability, we add to (1) the con- 
ditions for magnetic stability formulated in Ref. 11: 

Let us begin by investigating the thermodynamic prop- 
erties of our system in zero magnetic field. Setting H=O in 
(8), and assuming the order parameter does not depend on 
x,y, we obtain the following expression for the free energy 
density: 

+P2 I ( ~ 1 7 )  1 2. (10) 

The linearized Ginzburg-Landau equations have the 
form 

In addition to the trivial solution q1=q2=0, which de- 
scribes the normal state, the system ( 1 1 ) has nonzero so- 
lutions of two types. 

First, the ordinary uniform solutions: 

Secondly, the nonuniform solutions: 

q = (cl cos qz,c2 sin qz) , ( 1 3 4  

which describe helical superconducting phases, ( 13a) real 
(the "superconducting cholesteric") and (13b) complex. 

Again, as in Sec. 2.1, we can show that in the complex 
helical state the current equals zero due to exact cancella- 
tion of the contribution from the usual terms by the con- 
tribution from the Lifshits invariant. 

The choice between these phases is made by adding 
terms of fourth order to the free energy. For P2 > 0, the 
more favorable solution energetically is ( 13b), while for 
P2 < 0 it is (13a). The requirement that the fourth-order 
terms be positive definite also gives the well-known condi- 
tions p, > 0, P2 > -Dl. 

The temperature for the transition to the state (12) is 
To. Let us now find the temperature T, for a transition 
from the normal state to the helical phase ( 13), which is 
determined by setting the determinant of the linear system 
(1 1) to zero, which gives T,= To+?/4aK4; the wave 
vector of the structure so obtained is q= y/2K4. The jump 
in specific heat at this transition for cases ( 12a) and ( 13a) 
is 

while for cases ( 12b) and ( 13b) it is 

A C = ~ ~ T J ~ &  . 
As the temperature decreases further, nonlinear distor- 

tions in the helical structure toward the real solution ( 13a) 
begin to manifest themselves, due to terms of higher order 
that are omitted in (10). Terms of fourth order cannot fix 
the phase 8(z) of the cholesteric spiral qcc [cos 8(z),  
sin B(z)]. Therefore it is necessary to consider terms of 
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sixth order, one of which, the term ~ ( q $ ~ q ?  + qT3q: ), 
where q, = q l  * iq2 fixes the phase at 8=  r /6  for S > 0 and 
8=0 for S <O. 

Substituting the expression for q into the Ginzburg- 
Landau equation including the sixth-order invariant leads 
to an equation for 8(z): 

i.e., the sine-Gordon equation, as is usual in the theory of 
incommensurate phases. Repeating well-known arguments 
[see, e.g., (lo)], we have the following results. The com- 
ponents of the order parameter are periodic functions of z 
with period L (their z-dependence is described by the el- 
liptic sine and cosine; we do not need their exact forms 
here). With decreasing temperature, the structure acquires 
the features of a domain structure, i.e., for a large part of 
the period L the order parameter is almost uniform [a state 
of type (12a)l; then, over a length a-K4/y that coincides 
in order of magnitude with the period of the true helical 
structure for T close to T,, a rapid transition takes place 
(a domain wall) between, e.g., B=r/6 and 8=2r/6, etc. 
At a temperature Tlock < Tc a bblock-in" transition occurs 
to the uniform state ( 12a). 

We emphasize that all this refers only to the real heli- 
cal state ( 13a). For the state ( 13b), the phase is not fixed, 
and there is no "lock-in" transition. 

3.2 Helical phases in a field H I  c 

Let us consider the generation of superconducting 
helicoidal phases in a magnetic field. We limit ourselves to 
the case of a field directed along a sixth-order axis. After 
substitution ql,2 = exp (iqz) f 1,2 ( x ) ,  the Ginzburg-Landau 
equations take the form 

For solution of this set we use the method proposed in 
Ref. 1 1, namely, we introduce the operators 

and the functions 

The equations are then written down in the form Af=0, 
where 

and K=2K1+K2+K3, K,=KlltK2. We expand f, in 
eigenfunctions of the operator p^+p^-: 

Substituting these expressions in (20), we find that the 
space of solutions breaks up into a set of independent 
spaces: 1) (10)O) and 2) (a,ln+2), b,ln), n=O, 2 ,4  ... . 
(We consider only the states with even filling numbers n, 
since states with odd n cannot lay claim to a basic role). 

In the first case, we have 

whence 

We now consider the first case. Taking it into account 
that 

we obtain an algebraic system for a, and b,, from which we 
obtain 

where t= a ( T - To) + K4q2. We limit ourselves to the case 
n =O. Then we get the following equation from (16) for 
the determination of t(q,h ) : 

where 

The desired solution has the form 

where D = + 4y242, DO = ( 8 ~ :  + E2)h2. The 
transition temperature in the magnetic field T,(h) is de- 
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termined by the value of T(q,h) that is maximum in q. The 
calculations can be carried to completion only in the lim- 
iting cases of small and large fields. 

As h-0 we have (with accuracy to second order in h) 

Comparing ( 15) and ( 18), we see that the slope of the line 
Tc(h) is proportional to -(Kl+K3) for K2>K3 and 
- (Kl+K2) for K1 < K 3 .  However, in the first case, for 
increase in the field the situation can become complicated. 
The introduction of the dependence of q on h for the so- 
lution of ( 18), with increase in the field there appear qua- 
dratic corrections to the linear dependence of the transition 
temperature on h.  Therefore, under certain conditions, a 
kink becomes possible in the line of the upper critical field, 
which is connected with the intersection of the curve 
T,(h) [(18)] and the straight line (15). 

In large fields, neglecting the Lifshits invariant, we 
turn to the results of Refs. 11 and 12 (the helicoidal phase 
disappears) : 

3.3 Helicoidal phase and orthorhombic deformations 

We now consider, along with the absence of a center of 
inversion, changes in the group Go of macroscopic rota- 
tional symmetry of the superconductor for which we intro- 
duce the tensor of orthorhombic deformations brought 
about either by interaction with the magnetic moments9 or 
by averaging of the noncommensurate density modula- 
tions: 

Here, the density of the Ginzburg-Landau functional takes 
the form 

We limit ourselves to the study of the thermodynamic 
properties in zero magnetic field. Setting Dxq =Dyq =O in 
the functional (20), and introducing the notation 

we obtain the following equation 

The substitution ql,, a exp(iqz) reduces the problem to 
finding the zero of the determinant of the corresponding 
linear system that is maximum in q: 

We immediately write down the final result 

where 

We note that, in contrast with the situation considered 
above (Sec. 3.1 ) , the helicoidal instability appears in the 
described case only at sufficiently high 
y:y> yc= (2BK4)'I2. If y < y,, then the transition to the 
helicoidal phase does not occur and at p2 > 0 of the super- 
conducting phase transition will be obser~ed.~ 

The set of equations (21) has solutions of two types 
[cf. with ( 13)]: a) q l  a cos qz, q2 a sin qz-real (choles- 
teric) and b ) q c exp ( iqz) --complex. 

Account of fourth order terms yields the result that at 
p > 0 solution b) prevails, and at g < 0, solution a) ,  where 

Quantitative description of the nonlinear distortions, 
which appear upon decrease in the temperature is difficult, 
since we cannot apply the approximation of constant am- 
plitude here [see the end of (3.1)]. Nevertheless, it is evi- 
dent that the picture is qualitatively preserved, i.e., the 
cholesteric structure becomes similar to a domain one and 
at some temperature T,,,, < T, a phase transition takes 
place to the homogeneous state. 

4. CONCLUSION 

A new type of superconducting state-the helicoidal 
phase-is of independent interest as a realization of viola- 
tion of spatial parity C1 [the latter possibility in the group 
G= Go x C1 X R x U( 1 ) has not been considered to date]. 
So far as possible applications to the superconductivity of a 
known compound, UPt3, with "heavy fermions" is con- 
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cerned, a compound in which several superconducting 
phases are observed, the results of the present investigation 
do not suggest optimism. 

Recent experimental data3 provide a basis for assum- 
ing that UPt3 does not possess macroscopic spatial parity, 
which allows us to consider the Lifshits invariant in the 
Ginzburg-Landau functional for the two-component order 
parameter in standard fashion. Then the splitting of the 
phase transition could be connected with two successive 
transitions-the first of second order from the normal to 
the helicoidal superconducting state and then a weak tran- 
sition of first order to a homogenous superconducting 
state. However, the given effect is evidently much too small 
to be observed. 

A second approach has a greater perspective. In this 
one, the helicoidal phases appear in a spatially even super- 
conductor as a result of a mixture of two order parameters 
of contrary parity, in this case, on the phase diagrams P-T 
and H-T (for HI( c, phase transition lines of first order 
appear in Figs. 2 and 3 that are not observed experimen- 
tally). Similar complications, as noted above, also appear 
in other  model^.^ Therefore, the question of the nature of 
the superconducting state in UPt3 remains open. 
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