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The activated escape of a Brownian particle from a deep potential well is considered. The 
problem is characterized by two small parameters, one reflecting the weakness of 
dissipation, y(w ( y  is the viscosity coefficient and w a typical intrawell oscillation frequency), 
and the other corresponding to a large barrier height, Uo) T ( Uo is the barrier height 
and T the temperature). A previous approach to the decay rate calculation relies on the 
derivation of an integral equation and enables one to calculate the preexponential 
factor in the Arrhenius law by summing an infinite series in powers of the ratio yUo/To- 1. 
The present paper shows that this result can be improved by corrections in the small 
parameter T/Uo. The leading correction is due to the particle motion slowing down at the 
top of the barrier and is of order (T/Uo)ln(Uo/T). To calculate it, a correction to 
the kernel of the aforementioned integral equation is required. In the next order of 
approximation, two factors giving corrections of order T/Uo- y/w must be taken into account. 
First, thermal noise causes a partial return of the particles which cross the barrier with 
energies in the narrow interval - yT/o; this can be accounted for straightforwardly in the 
general calculation scheme. Second, perturbations of the intrawell motion of the 
Brownian particle must be taken into account, which are caused by particle energy changes, 
on a scale of T g  Uo, due to damping and thermal noise effects; this requires a more 
accurate calculation of the kernel of the integral equation. The suggested systematic approach 
to the small parameter expansion involved makes it possible to investigate quantitatively 
the transition from the low damping to the strong damping regime. Finite barrier corrections 
for the intermediate moderate-to-strong damping regime are also evaluated. 

1. INTRODUCTION 

The activated decay of metastable states is widespread 
in physical and chemical systems with phase space divided 
into one or more regions by high potential barriers. Tran- 
sitions between individual potential minima are caused by 
thermal fluctuations and are exponentially rare if the bar- 
rier height Uo is large compared to the temperature T. In 
this limit the rate of decay (or the inverse lifetime) of the 
metastable state is given by the Arrhenius law 

where R is the frequency of small oscillations at the bottom 
of the potential well. All other details concerning the in- 
ternal structure of the system and its interaction with the 
environment are incorporated into the preexponential fac- 
tor A. The condition for metastability, TQ> 1, requires the 
inequality Uo$ T, but the exponential dependence of T on 
the barrier height ensures a large lifetime even for moder- 
ate ratios U d T  > 5. As the ratio is increased further, acti- 
vated decay events become too rare to be observable. This 
implies that the ratio U d T  should be considered large 
when it enters the argument of the exponential. At the 
same time, corrections in the inverse parameter T/U, may 
still be important in calculating the preexponential factor 
A. In what follows, this general statement is illustrated by 
using the example of a Brownian particle escaping from a 
one-dimensional potential well. This model was originally 

suggested by Kramers for describing the thermal dissocia- 
tion of a molecule interacting with a light particle gas.' 
Many decades later, the resistively shunted Josephson 
junction2 has proved to be virtually the only experimental 
system embodying all the details of the Kramers theoreti- 
cal model. A comprehensive review of results relating to 
the Kramers problem is contained in Ref. 3. The problem 
of a weakly dissipated Brownian particle has called for a 
more sophisticated approach.4 Since the physical aspects of 
the problem have already been discussed in the cited pa- 
pers, the following analysis is mainly concerned with its 
mathematical details. 

The starting point is the Fokker-Planck equation 

for the distribution function f (p,x) of a Brownian particle 
of mass m with position x and momentum p moving in the 
potential U(x) with a damping coefficient y. The function 
f (p,x) is assumed to be normalized to one particle in the 
potential well, 

f (p,x ) dpdx = 1. (3) 

Near the bottom of the well, the distribution function 
is close to its equilibrium form, 

exp (4) 
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where Uo is the height of the barrier. For the sake of def- 
initeness, the top of the barrier is located at x=O and is 
described asymptotically by 

Outside the well there are no particles except for those 
escaping the well, so the boundary condition is 

The rate of decay is the flux of particles across the barrier 
top, 

From this, substituting the Boltzmann distribution and in- 
tegrating over the positive momenta we obtain ( 1) with the 
preexponential factor A = 1. In the bulk of this paper, a 
weakly damped particle will be considered. In this case, for 
energies close to the barrier top the distribution function is 
depleted because of the particles escaping across the bar- 
rier, the thermal-noise particle excitation being too weak to 
restore the equilibrium distribution function. Under these 
conditions the preexponential factor A is less than unity 
and depends on the noise intensity, temperature, and other 
factors. 

It should be noted that for weak damping, when 

the total energy of the particle 

is almost conserved over one cycle of the particle's in- 
trawell motion. This enables one to work out a perturba- 
tion theory such that its zeroth approximation is the par- 
ticle trajectory for a given energy E in the absence of 
damping and noise. Then, formally, the preexponential fac- 
tor A can be treated as a function of two dimensionless 
parameters, y/o and T/Uo. To leading order, the expan- 
sion of A in terms of the small parameter y/o has the 
following form (Ref. 5): 

This series has a finite radius of convergence. However, as 
an analytic function the series is meaningful for all values 
of the argument 

where 6-yUdw is the energy loss over one cycle of mo- 
tion at the barrier top. For the function Ao(A) it has been 
found5 that 

Asymptotically, this implies that 

where c(x)  is the Riemann zeta function, and 

It might be assumed that corrections to this result should 
be expandable in powers of the small parameters T/Uo and 
y/w. It will be shown, however, that because the particle is 
slowed down at the top of the barrier, the perturbation 
expansion for the function A is 

where S is the action per cycle of the motion of the escap- 
ing particle (an explicit expression for S is given below); 
the dependence on the ratio yU&T is given by the 
positive-valued functions A,(A) and Bl(A) of the argu- 
ment 

and the ratio wS/Uo is a numerical factor dependent on the 
potential shape Uo(x). 

The paper is arranged as follows. In Sec. 2 we solve the 
energy diffusion equation and discuss the general structure 
of the expansion of A( y/w,T/Uo) in the limit of small A, 
when y/w(T/Uo. In Sec. 3, the opposite limit of 
l)y/o)T/Uo is considered. In this limit, the flow of es- 
caping particles will be of the Boltzmann type, except for 
the narrow energy region E - yT/w< T where damping and 
noise give rise to a fine structure in the distribution func- 
tion. This leads to a relative suppression of the decay rate, 
by an amount related to the small parameter y/wgl. In 
Sec. 4 we present the general integral equation approach 
and derive an explicit expression, Eq. ( 12), for Ao(A). In 
Sec. 5, the kernel of the integral equation is evaluated to 
leading order in ( T/Uo)ln ( UJT), where the dominant 
contribution comes from the slowing down of the particle 
near the barrier top. In Sec. 6, the integral equation with 
the revised kernel is solved, and an expression for the func- 
tion A1(A) is derived. In Sec. 7, the contribution to the 
function Bl (A) from noise-induced reflection and recross- 
ing processes is calculated. In Sec. 8 we calculate the kernel 
of the integral equation beyond the leading logarithmic 
approximation, and in Sec. 9 we find the full expression for 
Bl (A). Section 10 gives preliminary numerical estimates, 
and in Sec. 11 linear corrections in the parameter T/Uo are 
discussed in the moderate-to-strong damping crossover re- 
gime. 

2. ENERGY DIFFUSION 

In order to consider the y-0 limit, Eq. (2)  must be 
transformed to the energy variable 
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where 

is the absolute value of the momentum for a particle of 
energy E at point x, and the signs * indicate the direction 
of particle motion. Averaging ( 17) over x at fixed energy 
leads to the energy diffusion equation1 

where the diffusion coefficient S(E) is given by 

The points x1,,(&) are the turning points: 

and the function S(E)  is the action per cycle of the motion. 
The solution to (19) with the boundary condition 

is given by 

The correction arising from the energy dependence of R at 
the bottom of the well is left out because our primary 
concern is with the leading correction to A due to the S(E) 
dependence. The relation 

which can be derived from (2) and (22) (see also Ref. 1 ), 
gives 

The function S(E) can be expanded into an asymptotic 
series in E. For our purposes, we must consider the first- 
order correction 

where 

S is the action per cycle of the motion at energy E=O, 

and C, is a number that depends on the shape of the 
potential U(x), 

Physically, S is the energy loss per cycle of the motion 
calculated to linear order in y, 

where dx(t)/dt is the solution of Newton's equation in the 
potential U(x) for total energy E=O. Substitution of (26) 
into (25) and expansion in terms of the small parameter 
y/w then yield, 

where C=0.5772 is Euler's constant. Comparing this with 
the definition ( 15) yields the asymptotic forms 

Ao(A) zA, A 9  1, (32) 

Bl(A) ~ A ( C , + 2 + l n  2-C), A g l ,  (34) 

At this stage all the parameters of the problem have been 
introduced. Let us now compute them for two typical po- 
tentials. For the cubic potential 

we obtain 

Ca=3 In 6 ~ 5 . 3 7 5 .  

For the fourth-order parameter 

we have 

The above results, obtained to linear order in y/w, reveal a 
rather complex structure of the asymptotic expansion of A 
in terms of the small parameter T/Uo. Taking account of 
the higher terms, this expansion takes the form 

where Pn(x)  is a polynomial in x. A number of workers 
suggest a somewhat different expression for A (Refs. 6,7). 
In fact, this expression uses Eq. (12) with A multiplied by 
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a certain function of y/w (Refs. 8 and 9). Naturally, in the 
limit y/w-0, only the first term of (41 ) is reproduced. 

3. NOISE-INDUCED RECROSSING FLOW 

If energy losses are large enough, 6% T, there is enough 
time for the particles to get thermalized in their motion in 
the well, and the flow of escaping particles turns out to be 
of very nearly Boltzmann type in the vicinity of the barrier 
top. In this case the approximate equation 

adequate at the top of the barrier, has a solution, in the 
limit y/w( 1, of the form1 

p- m o x  

x J exP(-&)du. 

The flow of escaping particles determines the decay rate, 

1 m P  sz 
- f(p,O)dp=- 1-- exp ;=I-, m 2%- ( L) (-:)- 

(44) 

Comparison with Eq. ( 1 ) gives 

Y 1 T Uo A-1-- El----A, A U T .  (45) 
2w 2 Uo w s  

In turn, comparison with ( 15) yields the following asymp- 
totic~: 

In the next section we will find explicit expressions for the 
functions A,( A), A, (A), and Bl (A) that can be used with 
arbitrary A and that have as their asymptotic forms the 
expressions (32)-(34) for A(l and (46)-(48) for A%1. 

4. INTEGRAL EQUATION FORMALISM 

In order to extend the above results to finite values of 
A E ~ / T ,  it is necessary to find the solution of the Fokker- 
Planck equation (17) from perturbation theory. This sec- 
tion gives a brief summary of the earlier approach to the 
calculation of Ao(A). Some of the quantities and concepts 
we introduce in this way will be used in our subsequent 
generalization of the method. 

Typical energies of the escaping particles are small 
compared to the typical potential energy, i.e., E -  T(Uo. 
Neglecting corrections of order T/Uo( 1, the differential 
equation (17) is equivalent to the integral equation 

f ( ~ , x )  = ~(E,E~;x ,x '  )f(&',xf )del. (49) 

The Green's function ~ ( E , E '  ,X,X ' ) obeys the equation 

The initial condition at x = x f  has the form 

where SD(z) is the Dirac delta function. Obviously, the 
solution of Eq. (50) is a certain Gaussian function of the 
argument E-E'. For our purposes, we need only the 
Green's function for the base trajectory which starts at the 
barrier top x=O, reaches the turning point x = x l  and goes 
back, 

The parameter 6 equals the energy loss per cycle and is 
given by (27). The Green's function thus obtained gives 
the probability of a particle, having performed one oscilla- 
tion in the well, to return to the barrier with energy E under 
the condition that it was reflected from the barrier at en- 
ergy &'. The energy distribution function near the barrier 
top, f (E), is formed by the particles which failed in their 
previous attempt to overcome the barrier because of their 
energies E' being negative. This permits to write down the 
integral equation1' 

0 

f ( ~ )  = ~ o ( E - - E ' ) ~ ( E '  ME'. (53 

Equation (53) is to be solved for the boundary condition 
that deep in the well, f ( E )  is a Boltzmann distribution 
function, 

The decay rate is then given by the expression 

in which we have explicitly ignored the contribution from 
the recrossing particles. On order to solve the integral 
equation by the Wiener-Hopf method, let us introduce the 
one-sided Fourier transform, 

The integral equation takes the form 

where 

and 

A=S/T. 

Let us rewrite the equation in the form 

and represent the function 
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+G(A)=l -go(A) (61 

as a product of two factors that are analytic in the upper 
and lower complex A half-planes, respectively: 

where the Green's function ~ ( E , E ' )  is the solution of the 
revised equation 

where 

along the base trajectory. Introduce a new function 

In the very weak damping limit we have 

G,(A)= ~ i ~ " ~ ( A * i / 2 ) ,  A41. (64) 

Equation (60) can now be rewritten as 
which obeys the equation 

The left-hand and right-hand sides of this equation are 
analytic in, respectively, the upper and lower complex A 
half-planes and have a common analyticity strip. This 
means that they are equal to a certain simple function of A, 
which has to be found from the boundary condition. In the 
present case this condition is given by the expression (54), 
which under the Fourier transform (56) becomes 

with the initial condition 

g(A,E1,z) = 1. 

The solution of Eq. (65) for the boundary condition (66) 
has the form5 

Here we have introduced a coordinate 2, to be used as a 
cutoff parameter below. The substitution 

yields a simple equation 

The function f + ( A )  is analytic over the entire complex A 
plane because f (E), in accordance with (53), decreases 
faster than any exponential as E-. a: 

f(&)ccexp(-c2/4~6), & ) p ( ~ S ) l ' ~ .  (69) 

On the contrary, f - ( A )  is analytic for Im A< - 1/2. The 
preexponential factor is obtained from 

Ao(A) =f+(i/2), (70) 

giving ( 12). 

where S(x) is the energy dissipated by the particle in its 
motion along the base trajectory from point Z to point x. 
To calculate gl(A,&), we integrate the right-hand side of 
(78) from Zto the left turning point x l  and then back. This 
integral diverges logarithmically, 

5. LEADING LOGARITHMIC APPROXIMATION Within the leading logarithmic approximation we are not 
interested in the numerical factor under the logarithm, and 
should therefore write the result in the form 
( 1/2)ln( UdT) .  In the S(x) term, only the final portion of 
the trajectory contributes to the logarithmic divergence, 
with S(x) being replaced by 6= TA. The result is 

To find the function Al(A), one needs to solve the 
equation 

to leading order in T/Uo In( UdT) .  Now let us turn to the 
integral equation 

The inverse Fourier transform then yields 
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( 8 1 )  

6. SOLUTION OF THE REVISED INTEGRAL EQUATION 

In its Fourier representation, the revised integral equa- 
tion 

is equivalent to 

In the correction term we must replace f - ( A )  by ( 6 8 ) .  
Then using the factorization of the function G ( A ) ,  the 
equation can be divided into terms analytic in the upper 
and lower A  half-planes, after which one should apply the 
relation 

A ( A ) =  f + ( i / 2 ) .  ( 8 4 )  

For the function Al ( A )  defined by ( 15) we obtain 

where the notation {...)+ ( i / 2 )  indicates that the expres- 
sion inside the braces should be integrated as in the Cauchy 
relation Eq. ( 6 3 )  for A  = i / 2 ,  

The A term in brackets in Eq. ( 8 5 )  is odd in A  and hence 
vanishes. The product G+ ( A )  G- ( A  ) should be replaced 
by 1 -go(A) ,  and the derivative of In G- ( A )  can be written 
in the form 

a In G- ( A )  dA' d  In G ( A 1 )  1 
=- J - a~ 2 ~ i  aA1 A ' - ~ + i o  

dA' g o ( A f )  2 M '  
2 ~ i  I - g o ( n l )  A'-A+CI ( 8 7 )  

The expression for A l ( A )  then simplifies to 
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The symmetrization with respect to A,A1 is equivalent to 
replacing the last factor by A, which leads to the final 
result 

where the function A o ( A )  is given by ( 1 2 ) ,  and 

Asymptotically we obtain 

1 A  
A  z ( )  e x - ) ,  A ,  I. 

Taking into account the asymptotic behavior of A o ( A ) ,  we 
find 

7. CONTRIBUTION FROM RECROSSING PARTICLES 

As discussed in Sec. 3, in the narrow phase space re- 
gion 

the distribution function acquires fine structure under the 
influence of the damping and noise effects. Outside this 
region, the solution of the Fokker-Planck equation is sat- 
isfactorily approximated by the solution of the integral 
equation obtained in Sec. 4.  Matching these two solutions 
over the range T , E )  y T / w  where they are both applica- 
ble, we obtain for the distribution function the following 
expression: 

where f is the limiting value off  ( E )  at low energy, 

The function ( 9 6 )  yields the correct boundary condition 
for the distribution functions of right- and left-going par- 
ticles at the turning points (p=O)  for E < 0 .  On the other 
hand, for E > 0  (or more accurately for E > y T / w )  and 
p  < 0 ,  this function goes to zero, showing that there are no 
particles entering the potential well from the outside. 

According to the weak noise assumption, the recross- 
ing particles occupy only a small region in phase space. To 
take them into account, the small parameter y/w# 1 should 
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be used. To leading order, the function f (p,O) is given by 
f ,8(p). The correction to the decay rate is then given by 
the integral [see also Eq. (44)] 

The difference between the right- and left-going particles 
2 1/2 becomes patently clear for x < 0, I x 1 ) ( yT/mw ) , 

where the distribution of the reflected particles can be ap- 
proximated by the function 

As in to Sec. 4, the function f (E) is obtained from the 
one-sided convolution of the above function with the ker- 
nel go(&-&), giving a closed integral equation for f (E). 
Expanding the distribution function in terms of the param- 
eter y/w, we obtain for the first-order correction f ( ' ) ( ~ )  
the inhomogeneous integral equation 

The correction to the decay rate is then 

where the first term corresponds to noise-induced recross- 
ing events, and the second term to the outgoing flux of 
originally reflected particles. 

Before we solve Eq. (100), it is useful to find an ex- 
plicit form for the quantity f B  defined by (97). An inverse 
Fourier transform gives 

This should be considered a symbolic expression, since the 
functions f + (A) and f - (A) actually result from two dif- 
ferent Laplace transforms. For this reason the A integra- 
tion of these two functions must be performed along two 
different contours passing respectively above and below 
their singular points. The function f + (A) is analytic in the 
upper complex A half-plane. Consequently, the real A axis 
may be used as the contour of integration in ( 102). On the 
other hand, the function f -(A) has a pole at A =  -i/2, 
and the contour of integration must go above this point. In 
order to push the above contour onto the real A axis, the 
residue at the singular point A =  -i/2 must be taken into 
account. Finally, 

Xexp ( --+- iF ;TI;]. 

Using (67) and (68) for f +(A) and f-(A), the sum of 
these can be expressed in terms of G- (A). To calculate f 
it suffices to set E = O  in ( 103), giving 

where 

In the very weak damping limit we obtain 

For large A we have the asymptotic form 

I(A) =: (TA) exp( -h/4). (107) 

To solve Eq. ( 100) we again employ the one-sided Fourier 
transform ( 56), giving 

This equation can be solved by the Wiener-Hopf method: 

The integral in Eq. ( 101) is proportional to f (:'(i/2). 
Using the relations G+ ( A )  G- (A) = 1 -go(A) and 
G+ (i/2) =A:l2(h) and the representation ( 105), the re- 
sult is expressible in terms of the function I (A) ,  

The correction to the preexponential factor A(y/w,T/Uo) 
has the form 

Comparison with (15) shows that this correction contrib- 
utes to the function B1 (A). We denote this contribution by 
B\')(A) to emphasize that it is due to particle reflection 
and recrossing processes. Thus, 

8. CORRECTIONS TO THE GREEN'S FUNCTION BEYOND 
THE LEADING LOGARITHMIC APPROXIMATION 

In Sec. 5, we found the leading logarithmic correction 
g f L ( ~ , ~ ' )  to the kernel of the integral equation, and eval- 
uated the function Al (A). To calculate B1 (A), it is neces- 
sary to obtain the kernel gl(&,&') more accurately. Intro- 
ducing the coordinate 2 and using the inequalities 
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it proves possible to decompose the problem into the fol- 
lowing two subproblems. In the main part of the potential 
well, for x1 < x  <X, the function g, (E,E') can be calculated 
by expansion in terms of the small ratio I &/U(x) I . We 
denote this result by gfSL(~,e',%), having in mind that this 
correction is beyond the logarithmic approximation which 
gives gfL(&,&'). Near the top of the barrier, i.e., between X 
and the turning points X(E) and x(E'), a parabolic approx- 
imation for U(x) can be used and, noting that these re- 
gions are relatively narrow, the Fokker-Planck equation 
can be solved iteratively. As a reminder of the origin of this 
contribution, we denote it by g r B ( ~ , ~ ' , X ) ) .  The final result 
for that part of g1(&,&') that contributes to the function 
Bl(A) is of the form 

Once the two contributions have been added, the depen- 
dence on %disappears, thus justifying the introduction of % 
as an auxiliary parameter. The functions gfL and g rB  are 
evaluated separately in the subsections that follow. 

8.1. The main part of the potential well 

In order to calculate the function gfL(e,~',X), it is 
necessary to calculate more accurately the integral of the 
right-hand side of (78). There are two different integrals to 
carry out. The first of these, by subtracting the term which 
has already been accounted for in the function gfL(&,&'), 
can be written in the form 

where the number CU is given by (29). The second integral 
can be expressed in terms of the same number, 

Y uo x [-2m~(x ' ) ] ' '~dx ' - -  A ln- 
w T 

where we have neglected a small term of order (%/xl ) 2< 1. 
The final result for the contribution from the main part of 
the potential well can be written in the form 

8.2. Top of the barrier 

To find the contributici; to gl(&,&') from the region 
[Z,X(E)], one can use the equation 

where on the right we have taken the function go(&-&') as 
a zeroth approximation. The integration over x should be 
performed from % to x(E), where 

The result is 

The term mX2 should be dropped as it has already been 
taken into account in deriving go(& - E' ) . Substituting for 
this function from (52), differentiating and separating out 
the common factor go(& - E' ), we obtain the contribution 
to g rB(~ ,~ ' ;X) ) .  An analogous contribution comes from the 
initial portion of the trajectory, %<x<x(E') ,  where we 
must use the equation 

Combining the two contributions yields 

where sgn x is the sign function. According to the defini- 
tion ( 114), this expression must be added to (1 17). Then 
the dependence on the auxiliary parameter X disappears, 
and the final result can be written in the form 
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B T Uo 
For conciseness, we introduce the Green's function of the 

gl (E,E') = -- - ( C  
Uo US integral equation, 

where (128) 

( I & /  E' I E ' ~ ) [ I  1 
X(E ,E ' )  =A -In -+- ln - -+-- 

T T T 8 4A ~ A ' T ~  ] In the Fourier representation we obtain 

+ sgn E + sgn E' 
The expression for 3 + ( i /2 ,~ ' )  needed to calculate 
f (:) (i/2) is given by the function 

I I 
Using these results we obtain 

From this expression, it follows that the function f (E) is 
singular at small E; in particular, at E=O it has a finite jump 
due to the term asgn E and diverges logarithmically. fy)( i /2)  =Ao(A) J E J K  277 

These singularities reflect a qualitative difference between 
the escaping ( E  > 0) and reflected (E < 0)  particles. For Y ( A , A ' )  
energies - yT/o these singularities will be smoothed out (A -i/2) G+ (A) (A1+i/2)G- (A') ' 
analogously to (96). 

The correction to the function B, ( A) coming from the (131) 

first term in ( 123) can be expressed in terms of the func- where 
tion A ,  (A), because this term differs from (8  1 ) only by a - - 

constant factor. Accordingly, Bl(A) can be expressed in 
the form Y (1.1') = -JJ ~ E ~ E ' ~ ~ ( E - E ' ) x ( E , E ' )  

B ~ ( A ) = ( A / ~ )  [ l - ~ ( h ) l ~ + ~ ~ ( A ) ( C ~ + l + l n  2) ~ A E  - ~A'E '  E - E' 
xexp( T 'F) .  (132) 

+ I; f ( l ) ( & ) d ~ ,  (125) 
To proceed further, let us introduce the notation 

where f ( l ) ( ~ )  corresponds to the correction to the distri- 
bution function f (E) arising from the last term in (123). A a I E I  a 

g O ( ~ - ~ ' ) X ( ~ , ~ ' )  =- - E ln - T -+ 1 
2 [aE T ( a& ) 

9. SOLUTION OF THE REVISED INTEGRAL EQUATION 

The function f ( ' ) ( ~ )  obeys the integral equation 

o Xln Tz go(&-E'). (133) 
f ( l ) ( ~ ) -  ~ o ( E - E ' )  f ( l ) ( ~ ' ) d ~ '  l E ' I  a I 

Substituting this into ( 132) gives 
dA1 a 

= J g f - ( A ' )  Jpm ~O(E-E').X(E,E') Y ( A , A ' )  = - (A/2)J(A-A') (A-i/2) (A1+i/2) 

(126) 
x [go(A> +go(A1) I ,  (134) 

where the singular function J(A) is defined by the integral 
The integration over E' on the right extends to infinity, 

since the contribution from positive E' is identically zero in x lnIxlexp(iAx)dx. 
accordance with the analytic properties of the function 

(135) 

f - (A')  [see (68)l. Introducing the Fourier transform 
(56) in the usual fashion, we obtain This function has a singularity at A=O, and we must now 

consider the result of integrating this function with a func- 

(127) 
tion q(A) that is analytic near the real A axis. 

We start with the simple integral 
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where the contour of integration C1 (C2) passes above 
(below) the real A axis. Integrating over x, we obtain 

(137) 

where 

Integrating by parts on the right-hand side of ( 137), we 
find 

For the function J(A), a similar calculation gives 

Substitution of ( 134) and ( 140) into ( 13 1 ) leads to the 
result 

where 

d2 go(n)   go(^') 
X-- dAdA' G+ (A) G- (A' ) ' 

In the very weak damping limit A(1, it is possible to make 
the replacements Ao(A) =A, A,(A) z A, and go(A) z 1, 
and to use (64) for G ,  (A). Then for the function D( A) 
we obtain 

( 143 

This yields the asymptotic form 
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which when substituted into (125) reproduces (34). Fi- 
nally, for B1 (A) we have 

10. NUMERICAL ESTIMATES 

Equations ( 12), (89), and ( 145) are sufficient for the 
calculation of the revised preexponential factor using ( 15). 
Note that the above results are exact as far as the calcula- 
tion of A to order T/Uo is concerned. As in a previous 
paper,5 it is convenient to write down the following inter- 
polation expression for A, which is exact as long as terms of 
order ( y / ~ ) 2  can be neglected, and which reproduces the 
Kramers results to order y/w: 

It is worth noting that in the region A>l, the Bl(A) term 
reproduces correctly the linear decrease of A with y/2w, as 
seen from Eqs. (45) and (48). When combined with the 
first term of (146), where A o z  1, this yields the Kramers 
result 

Thus the expression ( 146) for the preexponential factor A 
describes the transition from the weak-damping to the 
moderately strong-damping regime, with allowance for 
corrections of order T/Uo. 

In the next section it is shown that in the moderately 
strong-damping regime, the corrections in the same small 
parameter, while remaining relatively small, are not small 
in comparison with the corrections found earlier. There- 
fore, Eq. (146) gives only a qualitative understanding of 
the behavior of the preexponential factor as it passes 
through a maximum. The final conclusion is that when 
damping is not too weak, the simplified interpolation given 
by the product of ( 12) and ( 147) [see (5)] is applicable 
even for relatively low barriers. For example, the ampli- 
tude and position of the maximum of A as a function of 
y/w are changed little by the introduction of the correc- 
tion. For T/Uo= 1.0, the position of the maximum of A 
shifts from y/w z 0.76 to y/w ~ 0 . 5 8 ,  whereas the ampli- 
tude of A is reduced by 10%. For T/Uo=0.5, the frac- 
tional shift in the maximum position is less than 3%. In the 
weak damping regime, the small numerical factor in Eq. 
(31), 

is compensated by the second numerical factor, 
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so that for a cubic potential, from ( 3 1 ) ,  ( 3 6 ) ,  and ( 3 7 ) ,  

In accordance with the general properties of the asymp- 
totic expansions, one would expect the expression in Ref. 5  
to be a good approximation for A for T / U n  < 1/5. Thus in 
the case of high barriers ( Uo > 5 T ) ,  one can employ it as a 
zeroth approximation and estimate finite barrier correc- 
tions by use of Eq. ( 146). For Uo < 5T,  the preexponential 
factor A starts to depend on both the height and shape of 
the barrier. Fortunately, for low barriers the rate of acti- 
vated processes can be effectively found by numerical 
 method^.^"^"^ 

11. RELATIVELY STRONG DAMPING REGIME 

In the strong damping regime, A s l ,  the parameter 
y / o  reaches values of order unity, which makes it essential 
to account for corrections in this parameter. As shown by 
Kramers, for y - o  the leading result can be obtained using 
a parabolic approximation to the top of the potential bar- 
rier. To correct this result, it is necessary to expand the 
potential up to the cubic and/or fourth-order term, 

It will be shown below that the linear contribution in u ( ~ )  
is zero, whereas the second-order contribution in this pa- 
rameter is of the same order of magnitude as the linear 
contribution in u ( ~ ) .  The expression for the preexponential 
factor may be assumed to have the form 

where the dependence on the shape of the potential enters 
through the numerical factors 

and the a n ( y / w )  are certain universal functions. For the 
cubic potential discussed above C3 =2/3 ,  whereas for the 
fourth-order potential C4= 3/2,  and for the cosine poten- 
tial C4=2. 

To calculate a n ( y / w ) ,  we substitute into Eq. ( 2 )  the 
function 

Following Kramers, we introduce instead of p a new vari- 
able 

where 

If we neglect the right-hand side of (154) ,  the solution is 
independent of x  and is given by the error integral 

To proceed further, we write q ( x , u )  in the form 

Now we substitute 

au xn-  1 

- + mw2x = u(")--- ax ( n -  I ) !  

on the right-hand side of (154)  and consider the cases 
n  = 3  and n  = 4  separately below. The particle flux is cal- 
culated at x=O. It is therefore convenient to scale the co- 
ordinate like 

and to calculate the expression for $(O,u), which does not 
depend on this scale. The final equation for $(x ,u)  is fairly 
compact, 

( i 6 1 )  
where 

The case n=4 is the simplest because the linear term al- 
ready yields a nonvanishing contribution. In order to cal- 
culate it, the function $ ( x , u )  should be expanded in pow- 
ers of x, 

3 

*(x ,u)  = -p', C pI(u)xl, 
l = O  

(163)  

where the Pl(u)  are polynomials in u. The system of equa- 
tions thus obtained, 

where SnSl is the Kronecker symbol, can be solved by de- 
scending iterations starting with P4=0. We obtain and rewrite the equation in the form 
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The function a, is given by the integral 

a6 a2u2 udu 

a 4-  -- 6 (:) exp(-T)po(u) ( ~ ~ ) 1 / 2  

In the weak damping limit y(w, for the potential (38) we 
have 

In the opposite limit 

From these expressions it follows that corrections in the 
parameter T/Uo enter with numerical factors less than 
unity, which makes them relatively small even when 
T/Uo- 1. For the cubic potential, the contribution to 
$(u) linear in p3  is even in u, so that the integral corre- 
sponding to ( 166) vanishes. To find the second-order cor- 
rection, we introduce the expansion 

2 4 

*(x,u) = -p3 c. pl(u)~~-pCL: C &l(u)xl. (169) 
I=O I=O 

For Pl(u) and Ql(u) we obtain the system of equations 

The function a3(y/w) is then given by the integral (see 
also Ref. 17) 

121 - . . udu 

A nearly ideal model system for the observation of 
activated decay events is the ~ o s e ~ h s o n  j~nction.".'~ In the 
last few years, superconducting quantum interference de- 
vices have become more popular for the study of the acti- 
vated decay, the reason being that they enable the activated 

processes to be investigated in a controlled manner in both 
one- and two-dimensional  potential^.'^"^ Typically, they 
are operated under moderately strong damping conditions. 
Both the experimental data and numerical simulation re- 
sults agree well with theoretical calculations. The results of 
our calculations enable one, in principle, to move further 
into the region of lower potential barriers, where finite 
barrier corrections are important. Particular applications 
of the expressions obtained requires, in our view, a deriva- 
tion on their basis of some interpolation formula applicable 
to arbitrary damping. This work must probably be corre- 
lated with the interpretation of numerical simulation re- 
sults. 

I am greatly indebted to Eli Pollack for hospitality at 
the Weizmann Institute, Israel, where part of this work 
was carried out. Thanks are also due to S. Meshkov for 
useful comments, and to H. Dekker for the correction of an 
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