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A thin layer of a normal metal on the surface of a dielectric separating two superconductors 
gives rise to a hysteresis in the volt-ampere characteristic in the above-threshold region 
eV> A, +A2. One feature of this hysteresis mechanism is a relatively wide voltage range over 
which the differential resistance is negative. 

1. INTRODUCTION 

The volt-ampere characteristic of a tunneling junction 
is usually studied by the tunneling Hamiltonian method.' 
When the junction voltage is the sum of the gaps of the 
single-particle excitation spectra of the two superconduct- 
ors, a jump in the volt-ampere characteristic The 
magnitude of the jump depends on the temperature but 
remains finite up to the superconducting transition temper- 
ature. The jump is due to the square root singularity in the 
density of states as predicted in the BCS model. 

In real superconductors, there are always factors act- 
ing to smooth the square root singularity and thus to wash 
out the jump. One such factor is due to paramagnetic im- 
purities. The jump smearing region in this case is of order 
A(T,A)-~/~, where .rs is the electron spin-flip lifetime. The 
differential resistance in this case is always nonnegative. A 
more interesting situation occurs when the surface of a 
dielectric separating two superconductors has a thin layer 
(or droplets) of a normal metal. It is obvious that in this 
case the jump in the volt-ampere characteristic will also be 
washed out. However, unlike superconductors with para- 
magnetic impurities, the volt-ampere characteristic of such 
a junction is not monotonic, and a rather wide voltage 
range exists over which the differential resistance is 
negative.4 

and the boundary conditions on the superconductor- 
normal metal interface6 

where v=rnpd2? is the density of states at the Fermi 
surface, and D=v1,/3 is the diffusion coefficient. 

Note that for the system ( 1 ) to be fully applicable, it is 
also necessary that I&d in the normal metal layer. This 
restriction is not crucial, however. 

In the presence of a thin normal-metal layer, the 
volt-ampere characteristic of the tunneling junction can 
vary significantly only in the threshold region 
I eV- A, - A2 I g A,,,. To calculate the one-particle tunnel- 
ing current in this voltage range, we will need the Green's 
function a for energies E close to A. In this energy range, 
the Green's functions a and f l  are large 

and the system ( 1 ) can be reduced to a single equation 

Below we will find the volt-ampere characteristic for a 
junction having a thin normal-metal interlayer on the di- (4)  
electric layer separating two superconductors, in the im- 
portant voltage range ( eV- A, -A2 I For the plane geometry considered, Eq. (4) can be 

solved exactly, and its solution has the form 

2. DENSITY OF STATES IN A SUPERCONDUCTOR WITH A c'/~(E/D,,,)'/~z ; O<z<d 
THIN NORMAL-METAL INTERLAYER ON THE 
SURFACE A 'I2 Y(z)+l  

I 
(2(&- 8)) (y(z) - 1) ' d <z, 

Consider a bulk superconductor having a normal- 
metal layer of thickness d deposited on its plane surface. 

Assume that in both the superconductor and the nor- where the function Y(z) is given by 
ma1 metal, the mean free path of the electron, I, is much 
less than the correlation length. The retarded Green's func- 
tions a and p in this case satisfy the equations5 
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1 where 

Ds 
Z+ZO) . (6) += (;)4'3(y-9/2); 

In Eqs. (5) and ( 6 ) ,  the constants of integration c and zo A 

can be found from the boundary conditions (2). Substitut- 2 2 2 

ing expressions (5) for the Green's function p into the exp(h)=[( 2 y ) 3 / 2 1 + [ ( (  2 y ) 3 / 2 1 )  
conditions (2), we find 1 -T 1-3- 

A 'I2 Y(d)+l  

( ~ ( E - A ) )  (Y(d) - 1) (14) 

- - 1 J  

. c1l2 ( e /  DN) lI2d Expression ( 13) is convenient for use in the region 

1 /2 
1/2 - -2vsDs (EA) ( ~ A ( & - A ] ) " ~  ( Y(d) + I)  'ld) In the range 9/2<y, the expression for c should be rewrit- 

(Y(d)- l )  ten in the form 

For convenience, we introduce two dimensionless param- 
eters, 

1/2 v s ~ ; I 2  2i x=(A/DN)lI2d, y=2 -2. (8 +exp -- 
VNDN 

In the case considered, the parameter x is small and 

( 1:)(l+g-1)3/2 

the parameter y is generally of order unity. We will check 2i 1/2 1/3 2 

below that if the parameter y is not too large, so that 
+ 1 + - 1 3 2 2 1 )  1 1 . (16) %2/3 1/3 Y 41, (9) 

I c I 'I2x will also be small. This enables one to eliminate 
Y(d) from (7), and thus to reduce the latter to a single 
third-degree equation for c1l2. After a little manipulation 
we find an equation for c1l2, 

The threshold value E in the one-particle excitation 
spectrum is determined from the condition 

From Eqs. ( 10) and ( 1 1 ), we find 

Equation ( 12) leads to the aforementioned restriction (9) 
on the domain of applicability of Eq. ( 10). Equation ( 10) 
can be solved in a standard manner giving 

We also reproduce the expression for c valid in the range of 
small (large) values of the argument y: 

3 0 ~ 4 1  

2 exp ( - ir/4 ) 

(2(y-9/2))ln[l- (y-9/2)3/4 1; 
(17) 

Equations ( 14) and ( 16) determine the Green's func- 
tion P(z= 0) = c in the energy range 

making it possible to obtain the volt-ampere characteristic 
of the tunneling junction over the entire hysteresis region. 

3. VOLT-AMPERE CHARACTERISTIC 

To second order in the barrier transparency, the zero- 
temperature one-particle current j across the barrier, for a 
nonhomogeneous superconductor, can be written in the 
form7 
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where s is the junction area and RN is the resistivity of the 
junction in the normal state. For a junction with no normal 
metal layers, the current is equal to 

The coefficient of the second (linear in e V -  A, - A2) term 
in (20) depends weakly on the presence of a thin layer of 
normal metal. Therefore the expression ( 19) for the cur- 
rent thro~gh a junction with normal-metal layers can be 
written in the form 

where 

The Green's functions are determined by expressions 
( 13) and ( 16). In these we have omitted small corrections 
leading to a slow linear growth of the current with the 
voltage. Equations (13), (16), (21), and (22) are also 
valid for nonuniform deposition of a normal-metal layer on 
either or both sides of the dielectric, provided the corre- 
sponding areas are large enough (i.e., much greater than 
the square of the correlation length). An explicit expres- 
sion for the function F depends on the relative position of 
the normal metal layers. We present expressions for F for 
bilateral and unilateral deposition which actually covers 
the general case. 

For a bilateral deposition (deposit thicknesses dl,,) 

where B( - 1/4,1/2) is the Euler beta function, 

FIG. 1. Function F (volt-ampere characteristic) for a tunneling junction 
made of two identical superconductors, for bilateral (curve I )  and uni- 
lateral (curve 2) coating of the dielectric by a normal metal layer of 
thickness d. Dash-dot horizontal line is the asymptote ( l r / 2 )  of the func- 
tion F for Z -  m .  

An expression for F for zl,,) 1 has been obtained in Ref. 4. 
For a dielectric coated only on the side facing the first 

(second) superconductor, Eqs. (12) and (22) yield 

Figure 1 presents the values of the function F for a 
tunneling junction made of two identical superconductors, 
for a bilateral (curve 1 )  and unilateral (curve 2) coating 
on the dielectric by a normal-metal layer of thickness d. 

Now suppose that on the side toward the first super- 
conductor, the normal metal area is sl ; on the side toward 
the second, it is s2; on both sides, s12. Then the expression 
for the junction current j can be written in the form 

where the functions F1,  F2 ,  and F12 are given by (22), 
(23), and (25). 

The boundaries of the negative differential resistance 
region are found from the condition 

For a symmetrical junction (both sides of the dielectric 
coated with a normal-metal layer), from Fig. 1 and Eqs. 
(21) and (25) we find the region of negative differential 
resistance to be 

352 JETP 78 (3). March 1994 Yu. N. Ovchinnikov and A. Yu. Ovchinnikov 352 



From ( 2 8 )  it follows that the negative differential resis- 
tance region is quite wide, and [owing to the large param- 
eter ( y / x )  16/21] is larger than the region of smearing of the 
step in the volt-ampere character is ti^.^ 

4. CONCLUSION 

We have studied a model of a superconducting tunnel- 
ing junction in which the surface of the dielectric interface 
is coated, partially or completely, by a thin film of normal 
metal. In experimental samples, such a film may result 
from the particular technique used in tunneling junction 
preparation.2 The film need not necessarily be made of a 
normal metal: it is enough if the superconducting transi- 
tion temperature of the film material is considerably lower 
than that of the electrode material. 

Within the model employed, the square-root singular- 
ity in the density of states is washed out and there always 
exists a voltage range in which the differential resistance is 
negative. In the present model this region turns out to be 
quite wide and-because of the large parameter ( { / d )  16/21, 
where ( is the correlation length-it is larger than the 
smearing region of the jump in the volt-ampere character- 
istic. 

In real samples, there always exist other mechanisms 

which also lead to the washing out of the density of states 
singularity, such as paramagnetic impurities, inelastic scat- 
tering of electrons, etc. Some of these mechanisms-for 
example, paramagnetic impurities-lead to a monotonic 
volt-ampere characteristic. As a result of the competition 
among the various mechanisms involved, the volt-ampere 
characteristic may or may not possess a region with nega- 
tive differential resistance. 

Also note that in the present work we have restricted 
our discussion to the low-temperature case T g A .  This last 
circumstance is not in fact a critical one, and a finite- 
temperature analysis does not lead to any new physical 
phenomena. 
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