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The nonlinear dynamics that arises when an ensemble of two-level atoms in a high Q 
Fabry-Perot cavity interacts with one mode of the self-consistent field and with an external 
amplitude-modulated resonance field is considered. It is shown that when the atoms 
are in exact resonance with the field and only the ground state of the atoms is populated 
initially, the Hamiltonian chaos that arises in the system is always transient. The differences in 
the chaotic dynamics for the cases in which the cavity geometries are of the Fabry-Perot 
and ring types are considered, and the conditions for experimental observation of transient 
Hamiltonian chaos are discussed. 

I. INTRODUCTION 

The Tavis-Cummings model,' which describes in the 
rotating-wave approximation2 the interaction of an ensem- 
ble of two-level atoms with one mode of the electromag- 
netic field, is one of the principal models for quantum and 
nonlinear optics. The principal dynamical effects predicted 
for this model have recently become accessible to experi- 
mental verification (see Refs. 3 and 4 and the literature 
cited therein). 

In the work of Belobrov et it was shown that in 
the framework of a semiclassical description (a classical 
field), rejection of the rotating-wave approximation leads 
to chaos (see also Refs. 6). However, for typical transitions 
in the optical and radiofrequency bands, violation of the 
conditions for applicability of the rotating-wave approxi- 
mation requires extremely high atom densities, at which a 
description in the framework of a gas of noninteracting 
two-level atoms also becomes inadequate. 

Recently, other very simple generalizations of the 
Tavis-Cummings model that admit Hamiltonian chaos in 
the framework of the rotating-wave approximation have 
appeared.7-'3 These models describe the interaction of 
three-level atoms with two cavity and of two- 
level atoms with one mode of the self-consistent field in the 
cavity and with an external field that is injected into the 
cavity and has a constant1) (Refs. 9-11) or modulated12 
amplitude. For the latter two cases, the interaction with 
the external field was taken into account in the standard 
"spatial mean field" approximation (mean-field model). l5  

A common feature of all the work mentioned above is 
the consideration of samples with characteristic dimen- 
sions shorter than a wavelength or of a ring cavity with a 
wave traveling in only one direction. For a Fabry-Perot 
cavity, allowance for the spatial variation of the field as a 
consequence of the interference of waves traveling in op- 
posite directions can have an important influence on the 
nonlinear characteristics of the interaction of the atoms 
with the field. For example, the important role of spatial 
effects has long been known in the theory of optical bista- 

bility (see Refs. 16 and 17 and the literature cited therein). 
In this paper, in the framework of a semiclassical de- 

scription, we consider the influence of standing-wave ef- 
fects on the transition to Hamiltonian chaos in the inter- 
action of an electromagnetic field with two-level systems. 
We use the model of Ref. 12, but instead of the ring-cavity 
geometry we consider the case of a Fabry-Perot cavity. 

It is shown that in the very simple case in which the 
two-level atoms are in exact resonance with the field and 
only their ground state is initially populated, the coupled 
system of Maxwell-Bloch equations reduces to a Hamil- 
tonian system with 1.5 degrees of freedom-a periodically 
excited "Bessel pendulum." The conditions for the transi- 
tion to chaos are found numerically. The chaos that arises 
in the system is transient: the chaotic oscillations of the 
polarization and of the difference of the populations are 
replaced after a certain time by regular oscillations. Unlike 
the other, previously known models (of physical systems) 
that admit transient Hamiltonian chaos (see, e.g., Refs. 
18-23), in our case the effective potential of the Hamil- 
tonian system with 1.5 degrees of freedom is a many-well 
potential. This causes the dynamics of the system to have a 
highly complicated character. In particular, the time dur- 
ing which chaos is possible in the system depends in a 
complicated way on the parameters of the system. For 
trajectories with a sufficiently long chaotic part, the char- 
acter of the steady-state regular oscillations of the field in 
the cavity was observed to be sensitive to small changes of 
the initial conditions and of the parameters of the system. 

The paper is organized as follows. In Sec. 2 we intro- 
duce the model describing the dynamics of a system con- 
sisting of two-level atoms plus field. Here too we shall 
consider an ansatz which, in the case of exact resonance 
and certain initial populations of the atoms, reduces the 
coupled Maxwell-Bloch system to one equation for a pe- 
riodically excited "Bessel pendulum." In Sec. 3, after a 
brief survey of the literature on transient Hamiltonian 
chaos during escape from potential wells, we describe the 
nonlinear dynamics of our system. In Sec. 4 we compare 
distinctive features of the dynamics of the interaction of 
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the atoms with the field in the geometries of Fabry-Perot 
and ring cavities, and also discuss the possibility of exper- 
imental observation of transient chaos. 

We not turn to a detailed study of the problem. 

2. THE MODEL 

Our system consists of N identical two-level atoms 
with transition frequency wo and dipole matrix element d, 
interacting with one mode of a radiation field with fre- 
quency w zwo .  The sample, of length L and volume V, 
completely fills a high-Q Fabry-Perot cavity ( - L<z<O). 
An external amplitude-modulated field E,,, is injected into 
the cavity at the plane z=0. This field has the form 

Eext = E g ( t )  cos wt, (1 

where F ( t )  is a periodic function of time ( I F ( t )  1 = I ) ,  
slowly varying in comparison with the carrier frequency w. 
In this paper we shall assume the very simple modulation 
law F ( t )  =sin ( a t ) ,  but we may expect that the principal 
results will also be applicable to a modulation F ( t )  con- 
taining many harmonics. Following the classic work of 
Spencer and ~ a m b , ~ ~  we shall regard the external field as a 
weak perturbation that preserves the spatial structure of 
the self-consistent field 

in the cavity; here, k=nrrL-' is the wave number of the 
selected nth mode of the cavity. The dynamics of the atoms 
is described by the Bloch equation2 

where the pseudospin variables Si ( i= 1,2,3) are related as 
follows to the probability amplitudes a j  and bj of popula- 
tion of the upper and lower levels, respectively, of the j th 
atom:9"2'25 

In ( 5 ) ,  AV= (Az)rr? is the small volume over which the 
averaging is performed, z is the coordinate at the center of 
a layer of thickness &(A (A is the wavelength of the 
radiation), r is the characteristic radius of the sample with 
the gas of atoms, and Ns is the number of atoms in the 
volume A V ( Ns> 1 ) . 

The behavior of the field inside the cavity is deter- 
mined by the Maxwell equation that takes the influence of 
the external field into account:24 

where P(z,t) is the polarization of the two-level medium, 
and is related to the pseudospin variable Sl (z,t): 

The self-consistent Bloch-Maxwell system (3) ,  (6), 
(7)  completely describes the dynamics of the system over 
a time interval shorter than all the characteristic relaxation 
times of both the field and the atoms. These equations can 
be simplified substantially by separating the fast and slow 
motions. For this we transform to a rotating coordinate 
frame: 

and introduce the envelope of the self-consistent field: 

Next, we shall assume that the envelopes are varying 
slowly in comparison with the carrier frequency w: 

Then, substituting ( l ) ,  (8) ,  and (9) into (3) ,  (6),  (7)  and 
using the rotating-wave approximation and the approxima- 
tion of slowly varying amplitudes,2 we obtain 

f = 41 So dzu (z,t) sin (kz) . 
L - L  

In ( 11 ), A =w - wo is the offset from optical resonance, 
G=c&dL, &,=dEj/fi(j=O,1,2), and wc=(2rr~d2w,,/fi 
V) 'I2 is the so-called cooperative frequency26 that charac- 
terizes the vibrational exchange of energy between the at- 
oms and the field in the absence of the external field 
(Eo=O) .2) The system of Maxwell-Bloch equations admits 
conservation of the pseudospin length: 
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Substituting (8) into (7), we obtain an expression for the 
polarization in terms of the slow variables u and v: 

The conditions (10) for applicability of the rotating- 
wave and slowly-varying-amplitude approximations can be 
written in the form 

For typical optical systems, as a rule, this condition is 
fulfilled. 

The system ( 11 ) now contains only slow variables. To 
solve it, it is necessary to specify the initial spatial distri- 
butions u (z,t =0) = uo(z) and v0(z) of the polarization 
components, the population difference w0(z), and the ini- 
tial values E ~ , ~ ( O )  of the field envelopes. It does not appear 
to be possible to find solutions of the system of equations 
(1 1 ) in the general case, and we shall consider only par- 
ticular solutions at exact resonance A =O and for specified 
initial conditions. 

It is possible to show that at exact resonance (A=O), 
if u(z,t=O) = E ~ ( ~ = O )  =O, u(z,t) = ~ ~ ( t )  =O as well at any 
time t.3) In this case, it follows from (12) that the polar- 
ization v(z,t) and population difference w(z,t) can be pa- 
rametrized by means of one angular variable q(z,t): 

We introduce the following ansatz: 

Then it follows from ( 15) that 

where Jn(x) is the Bessel function of the first kind of order 
n. In these variables, the system of equations ( 11 ) can be 
reduced to the one equation of a periodically excited 
"Bessel pendulum": 

Taking into account that for small x we have Jl (x) zx/2, 
we find that the frequency of the linear oscillations of this 
pendulum (with G=O) is precisely the cooperative fre- 
quency w,. 

The ansatz ( 16), (17), so far as we know, was first 
introduced in Ref. 27 in a study of the metastable states in 
a coupled atoms-plus-field system. In the same paper, the 
equation of a Bessel pendulum without external excitation 
(G=O) was also obtained. 

FIG. 1. Form of the potential for a Bessel pendulum: V ( x )  =-2Jo(x). 

We shall now discuss an important question that was 
not considered in Ref. 27-that of the limits of applicabil- 
ity of the above ansatz. The expansion ( 17) should be valid 
for arbitrary v(z,t) and w(z,t), including the initial distri- 
butions v,(z) and w0(z). This implies that there should 
exist a value 6 (0) = 6 0  such that the expansions 

are id en ti tie^.^) However, far from all vo(z) and wo(z) sat- 
isfy this condition. Amongst the initial distributions v0(z) 
and w0(z) for which (19) is valid, it is possible to identify 
at least two physically interesting cases: 1) the case of a 
periodic &function polarization distribution and a popula- 
tion difference corresponding to 60% 1 and 2) the case of a 
spatially uniform weak initial excitation of the two-level 
medium: wo(z) z - 1 and v0(z) z O .  Such an initial distri- 
bution corresponds to aOzO. We note that the ansatz ( 16), 
(17) is applicable to arbitrary initial field values ~ ( 0 ) .  

Below we shall confine ourselves to considering the 
physically most interesting case, in which all the atoms are 
initially in the ground sate [wo(z) = - 1 and v0(z) =0] and 
the self-consistent field of the cavity is zero [E(O) =0]. This 
implies that for the pendulum ( 18), the initial conditions 
are 6 (0) = -$ (0) = 0. 

3. HAMlLTONlAN DYNAMICS 

Equation ( 18) can be written in the Hamiltonian form 

d6 a H  dp aH 

p2 
H=-+ ~ ( 6 )  -a sin(&), V(6) = -W0(6), 2 

- 
(20) 

2 where P=E/W,, r=w,t, G= G/w,, and fi =8/wc. The 
form of the potential V(6) is depicted in Fig. 1. 

We shall go over to an extended phase spacez8 and 
introduce a pair of new canonically conjugate variables 
($ , I )  by the formulas 
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FIG. 2. Dependence of the self-consistent ffeld p=f/w, on time for reg- FIG. 3. A weakly un_stable chaetic orbit of length 7=200, localized in the 
ular motion inside the first potential well: G=0.8, a= 1.3. first potential well: G=0.271, n=0.8. 

The new Hamiltonian I? is an integral of the motion in the 
extended phase space (6g,$,Z). Equations (21 ) were used 
to monitor the errors in the numerical calculations. 

Despite the rather simple form of Eq. ( 18), the dy- 
namics of this Hamiltonian system with 1.5 degrees of free- 
dom can be rather complicated. This is due to the fact that 
the potential V(6) is not periodic and is a decreasing func- 
tion of 6 as 16 1 -* oc, . Under the action of a periodic per- 
turbation both regular and chaotic motion are possible. 
Since V(6) -0 as 6 + * W ,  asymptotically the behavior of 
the system is regular. Therefore, if Hamiltonian chaos is 
possible in the system, it is transient chaos. 

In recent years great attention has been paid to the 
study of transient Hamiltonian chaos (see, e.g., the review 
articles Refs. 18 and 19 and the literature cited therein). A 
large part of the work has been devoted to the study of the 
scattering of particles by two-dimensional or multi- 
dimensional p0tentia1s.l~"~ Comparatively recently it has 
been r e a l i ~ e d ~ ' - ~ ~  that the stochastic ionization of atoms 
and molecules, or, generally speaking, any escape of a cha- 
otic trajectory from a potential well, is also an example of 
transient Hamiltonian chaos. Transient chaos in "stochas- 
tic ionization" has not only been much less well studied, 
but is also organized in a much more complicated way than 
chaos in potential scattering.22 This is due to the fact that 
the phase space of typical Hamiltonian systems has a non- 
uniform structure: besides the stochastic seas there are nu- 
merous islands of stability, near which a chaotic trajectory 
can linger for a long time. 

In Ref. 21, stochastic ionization of a Morse oscillator 
under the action of a periodic sequence of &function pulses 
was considered. It was shown that the time t,,, of chaotic 
escape from the well can be sensitive to small changes in 
the parameters of the system. The boundaries between re- 
gions with different times t,, are fractals in the space of the 
parameters of the amplitude and period of the external 
perturbation. 

In Ref. 23 the escape of chaotic trajectories from a 
two-dimensional potential was investigated. It was shown 

that for strong chaos, the direction and time of the escape 
from the potential can depend strongly on a small change 
in the initial conditions. The region in the space of initial 
conditions for which trajectories leave the potential well 
after a specified number of iterations is a fractal. 

In the papers listed, chaotic escape from a two- 
dimensional potential (two degrees of freedom) or from a 
one-dimensional and one-well potential (1.5 degrees of 
freedom) was considered. The distinctive feature of our 
system with 1.5 degrees of freedom is the fact that the 
effective potential contains many wells (see Fig. 1 ). 

We shall illustrate the principal types of nonlinear dy- 
namics of the system. First, if the conditions for chaos are 
not fulfilled, the trajectory is always localize din the first 
well ( - 3 . 8 3 ~ 6 ~ 3 . 8 3 ) .  The corresponding form of the 
field [the momentum in the effective system (20)] for reg- 
ular motion is shown in Fig. 2. In the transition to chaos, 
more-varied behavior is possible: 

(a)  weakly unstable chaotic trajectories spending a 
long time inside the first well (Figs. 3 and 4). Such trajec- 
tories exist principally for parameter values lying near the 
boundary of the transition to chaos; 

(b) for stronger local instability (a larger value of the 
Lyapunov exponent), the trajectory can rapidly leave the 
first well and then visit several more wells in a random 
manner; finally, asymptotically regular behavior is estab- 
lished (Fig. 5). Here, the signs of the coordinate 6 and 
momentum p that are established as t- w are random. A 
small change in the initial conditions leads to an entirely 

FIG. 4. Dependence of the field on time. The parameters have the same 
values as in Fig. 3. 
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FIG. 5, Form of a trajectory of length 7=200 for transient chaos ( G  
=0.7, fl=0.6). 

different asymptotic state (compare Figs. 5 and 6). This 
leads to an interesting physical effect: a small fluctuation in 
the initial value of the field in the cavity induces a change 
of sign of the asymptotic state of the field (Fig. 7); 

(c)  an asymptotic regular state can be established after 
a long enough time. An example of such behavior is shown 
in Fig. 8. This trajectory leaves the first well comparatively 
rapidly (T~,,=: 10.8), then visits several neighboring wells, 
and again returns to the first well. The corresponding cha- 
otic oscillations of the field are shown in Fig. 9; 

(d) on the other hand, the emergence into regular 
behavior can be very rapid (Figs. 10, 1 1 ). 

Regions with regular and chaotic behavior in the space 
of the perturbation-amplitude parameter and modulation- 
frequency parameter are shown in Fig. 12. The boundary 
of chaos is denoted by asterisks, and the windows of reg- 
ularity that lie near the boundary of chaos are indicated by 
squares. The smallest value of the external field amplitude 
(GZ0.14) for which chaos is possible was observed at the 
frequency fi ~ 0 . 8 5 .  In the region lying above the boundary 
of chaos there exist trajectories with chaotic phases of dif- 
ferent lengths. For these trajectories, during the time in- 
terval of chaotic motion, the largest Lyapunov exponent is 
positive. Our preliminary numerical investigations have 
shown an extremely complicated dependence of the length 
of the chaotic phase on the parameters. However, it is 
possible to state with confidence that the trajectories with 
the longest chaotic phase (T,,,- lo2) are found mainly in a 
layer of width -0.1 near the boundary of chaos. 

FIG. 7. Change in the asymptotic state of the field under a small change 
of the initial conditions. The process marked by squares correspond to the 
initial condition p ( 0 )  =0, and that not marked by squares corresponds to 
the initial condition p ( 0 )  = The values of the parameters are the 
same as in Figs. 5 and 6. 

We also examined the sensitivity of the sign of the 
asymptotic state of the self-consistent field to a small 
change in the amplitude of the external field. The results 
are presented in Fig. 13. The dimensionless parameter G of 
the perturbation was varied over the interval [0.89,0.9] 
with step When regular oscillations with E > 0 were 
established the value + 1 was placed on the diagram, and 
in the opposite case, with E < 0, the value - 1 was placed 
on the diagram. It can be seen from the figure that over a 
certain range of values of the perturbation parameter c, 
the sign of the asymptotic state of the field is sensitive to 
small changes in c. Such behavior is characteristics of tra- 
jectories with a sufficiently long chaotic phase 
(7,,~40-100). 

To conclude this section, we shall consider the spatial 
structure of the polarization and population difference for 
regular and chaotic dynamics [see Eq. ( 17)]. A substantial 
contribution to the expansion (17) is made only by those 
spatial harmonics for which the corresponding Bessel func- 
tion have index smaller than their argument. In regular 
dynamics, the argument 9 of the Bessel functions is a 
smooth regular function of time. In this case, the spatial 
spectrum of u and w can contain many harmonics, but the 
pumping of energy between the different modes is regular. 
In contrast, in chaotic temporal dynamics 6 is a random 
function of time. As a consequence, spatial chaos appears 

FIG. 6. The same as in Fig. 5, but with a slightly altered initial condition 
for the field: p ( 0 )  = FIG. 8. A chaotic trajectory of length ~ = 2 0 0  for G=0.6 and 6=0.9.  
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FIG. 9. Chaotic oscillations of the field for parameter values as in Fig. 8. FIG. 11. Dependence of the field on time. The values of the parameters 
are the same as in Fig. 10. 

in the distribution of the population difference and polar- 
ization. 

4. DISCUSSION 

It is interesting to compare the nonlinear dynamics of 
the system consisting of two-level atoms plus self- 
consistent field plus external amplitude-modulated field for 
different cavity geometries. For a Fabry-Perot cavity, the 
corresponding Maxwell-Bloch system reduces to the peri- 
odically excited "Bessel pendulum" ( 18). The Hamil- 
tonian chaos in this system is transient. In contrast, in the 
case of a ring cavity, in the framework of the same approx- 
imations, the dynamics of the system is determined by the 
equation of a periodically excited physical pendulum:12 

sin 6 = ~ ~ ( t ) ,  

where 6 ( t )  is the Bloch angle. Since the corresponding 
potential V ( 6 )  = - wf cos 6 is a periodic function of 6,  
with a periodic F ( t )  the chaos is stationary. The onset of 
transient chaos is possible only for a special form of F ( t ) ,  
wherein F ( t )  contains the zeroth harmonic.12 The effective 
potential then loses translational invariance. 

Thus far, oscillatory exchange of energy between at- 
oms and a field mode has been observed both in the mi- 
crowave and in the optical range.4 We shall give some 
estimates. For an allowed transition with d -  1 Debye and 
a density of 1014 atoms ~ m - ~ ,  the value of the cooperative 
frequency w,- 10" s-' can substantially exceed the relax- 
ation constants of the atoms and cavity. We believe that 

rapid progress in this field is making possible the experi- 
mental observation of transient Hamiltonian chaos as well. 

We now summarize the results. We have considered 
the influence of the spatial structure of a field in the form 
of a standing wave on the chaotic dynamics in the interac- 
tion of two-level atoms with the field. We have shown that 
in this case, the Hamiltonian chaos is transient. For trajec- 
tories with a long chaotic phase, the asymptotic behavior of 
the field in the cavity is sensitive to a small change in the 
initial conditions or parameters. The temporal chaos man- 
ifests itself in the spatial behavior of the polarization and 
population difference. 

In conclusion, we note some problems for further re- 
search. First, the nonlinear dynamics of the periodically 
excited "Bessel pendulum" merits more-detailed and 
deeper study in the context of the general problem of tran- 
sient chaos. Second, the study of the influence of quantum 
effects on chaos in potential scattering is currently of great 
interest to researchers (see the review Ref. 29). However, 
the influence of quantum effects on other types of transient 
Hamiltonian chaos has essentially not been considered. In 
view of this, investigation of the influence of the quantiza- 
tion of the field in the cavity on transient chaos in the 
framework of the model discussed in this article is of in- 
terest. 

We are grateful to Professor V. S. Egorov for providing 
a reprint of Ref. 27. One of us (K. N. A.) also thanks 

---* * chaos 
.--- * 

------.-- * - - 

FIG. 10. Rapid escape from the fifst potential-well (~,,=14.8) and FIG. 12. Regions of regular and chaotic motion in the space of the 
establishment of regular motion for G=0.4 and n=0.9. amplitude parameter and frequency parameter. 
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FIG. 13. Effect of variation in the amplitude of the perturbation on th_e 
sign of the asymptotic state of the field (for explanation, see text); 
=0.4. 

Professors Hao Bai-Lin and Wei-Mou Zheng for their hos- 
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People's Republic of China, where a considerable part of 
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"we note that this model is also applicable to the description of the 
interaction of an impurity center in a crystal with light and phonons.'4 
In this case the cavity is absent. 

2 ) ~ n  the current literature the terms "collective Rabi frequency" and 
"vacuum-field Rabi frequency" are also used for this frequency. See the 
discussion of these terminological questions in Ref. 4. 

')or, if v(z,O) (0) =0, then v(z , t )  = c l ( t )  = O  for any t .  
4 ) ~ h i s  fact was drawn to our attention by Professor Wei-Mou Zheng. 
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