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We use the Lippmann-Schwinger equation to study the asymptotic behavior of the wave 
function of a multielectron atom in which one electron is in the remote subbarrier region and 
the rest are in the fundamental region of motion. The proposed integral-equation 
approach automatically ensures the correct radial and angular asymptotic dependence, and 
makes it possible to derive the asymptotic coefficients, expanded in terms of the ionic 
states and the spherical harmonics of the individual electron, all to the same accuracy as 
provided by a quantum-chemical calculation of the atomic and ionic wave functions. 

1. INTRODUCTION 

An understanding of wave function behavior in multi- 
particle systems (atoms, molecules, clusters, etc.) is re- 
quired for the solution of a broad range of problems asso- 
ciated with electron tunneling and the interaction of widely 
separated atomic particles. Such problems include charge 
exchange, spin exchange, electron and heavy-particle tun- 
neling in condensed media and chemical reactions, electron 
tunneling in scanning electron microscopes, Josephson 
junctions, and so on. 

Actual calculations of asymptotic wave functions for 
atoms and simple molecules (mathematical studies can be 
found in Refs. 1-6) have until recently been based upon 
matching the electron wave function at the boundary be- 
tween two rather different regions of electron motion3": the 
asymptotic (remote subbarrier) region, and the region of 
fundamental motion (see the relevant discussion in Ref. 
7). We use the one-electron approximation in the asymp- 
totic region, where the effective potential depends on the 
Coulomb interaction with the ionic core. In the region of 
fundamental motion, the problem is manifestly a multielec- 
tron one, and we make use of conventional quantum- 
chemical numerical methods (HartreeFock and other 
variational approaches). The two solutions are obliged to 
match up at electron coordinate values where neither type 
of solution is entirely valid. Here the matching can only be 
carried out effectively in the one-dimensional case, so in 
finding the asymptotic behavior of atomic wave functions, 
those functions corresponding to a fixed orbital angular 
momentum are the ones to be matched. 

This idea presupposes that the asymptotic wave func- 
tion of an orbital electron takes the form1 , 

method, we believe that nothing further can be said about 
the accuracy of the asymptotic coefficients C,/ that it pro- 
duces. 

Ivanov and ~ozhushner' '~ proposed a way to find the 
asymptotic behavior of one-electron wave functions for 
molecules and molecular centers using the Lippmann- 
Schwinger equation, and their approach was extended to 
arbitrary multielectron systems in Ref. 10. In the present 
paper, we use this integral equation method to formulate a 
general algorithm for constructing asymptotic wave func- 
tions of atoms and ions. Actual calculations have been 
carried out for He, Be, C, and Sc (the latter being the 
simplest atom with an outer s shell and an unfilled d shell). 

2. INTEGRAL EQUATION METHOD 

We apply the integral equation method here to multi- 
electron systems. We write the Hamiltonian of an 
N-electron atom in the form 

+ V(r l , { r~-~) )  =Ho+ V(rl,{r~-l}). (2) 

Here r l  is the position of an individual electron whose 
asymptotic behavior we wish to investigate in the remote 
subbarrier region, {rN-l} is the set of coordinates of the 
other N- 1 electrons, Ak is the Laplacian with respect to 
the coordinates of the kth electron, U({I~-~}) is the po- 
tential energy of the N- l electrons, 

N m 

where a = (21) 'I2 is related to the electron's ionization po- = x 2 Qn(rl,rk) 
k=2 n=O 

(3) 
tential I ,  and n, I, and m are the quantum numbers of the 
individual electron orbital being matched. An atomic wave is the residual interaction potential between the selected 
function can then be constructed out of valence-electron (first) electron and the ion after subtraction of the long- 
orbitals ( 1) in the genealogical approximation of Ref. 3. In range Coulomb potential, Z is the charge on the atomic 
view of the aforementioned peculiarities of the matching nucleus, the terms Qn in (3) are given by 
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where YnL(ri/ri) is a spherical harmonic expressed in 
terms of the angular coordinates of the ith electron, and 

For a system with the Hamiltonian (2), the 
Lippmann-Schwinger equation takes the form 

Here G is the Green's function for the Hamiltonian Ho 
in a system with total energy E. The different notation for 
the wave function VI of the entire system on the left- and 
right-hand sides of (5) stems from the fact that we wish to 
derive the asymptotic behavior of Y as a function of r l  . For 
simplicity we omit spin variables, which are normally 
summed over. 

Since the interaction between the first electron and all 
the remaining ones does not appear in the Hamiltonian Ho, 
the spectral representation of the Green's function imme- 
diately yields 

= C 4;(CrN-Il)Gl(rl,r; ; E - ~ ~ ) 4 ~ ( { r k - l l ) ,  ( 6 )  
P 

where 4,, and E~ are the energy eigenfunctions and eigen- 
values of the N- 1-electron ion, p is the corresponding set 
of quantum numbers, E~ is reckoned from the ionic ground 
state, so that E= -I (i.e., E is the ionization potential of 
the atom), and G1 is the one-electron Green's function, 
which corresponds to motion of the first electron in a Cou- 
lomb potential. 

On the right-hand side of (5), Y and 4p are assumed to 
have been symmetrized as necessary, since they are eigen- 
functions of the atomic and ionic Hamiltonians, which are 
symmetric under electron exchange. On the other hand, 
because the first electron has been singled out, the Hamil- 
tonian Ho is not symmetric under exchange of the first and 
other electrons, and Y ( r l  - W , { T ~ - ~ ) )  has not been sym- 
metrized under the exchange r,t+rk(k>2), although it is 
an eigenfunction of H. The appropriate procedure should 
be carried out as well. 

The basic idea underlying our approach is that Eq. (5) 
can be considered essentially an expression with which one 
can determine the asymptotic value (as r l+  W )  of the 

function on the left-hand side of (5)  in terms of an integral 
over atomic and ionic wave functions, which are deter- 
mined within the fundamental region of motion using 
quantum-chemical methods of some sort. This requires 
that the integration on the right-hand side of (5) be carried 
out over exactly that region, which for the (N- 1) elec- 
trons remaining in the ion occurs automatically by virtue 
of the exponential falloff of the atomic and ionic wave 
functions. We can show that this requirement is also sat- 
isfied when one integrates over the coordinates of the first 
electron. 

Starting with G1 expressed in spherical harmonics, 

we can use the well-known expression for the radial Cou- 
lomb Green's function with r s r '  and r> l /  1 E 1 ,  yielding 

where K = ( - 2 ~ )  'I2, and P(a,  y,Z) is the degenerate hy- 
pergeometric function. 

Substituting (6)-(9) into ( 5 ) ,  we obtain 

Consistent with the fact that the electron moves in a pure 
Coulomb potential far from the core, it follows from ( 11 ) 
that the asymptotic atomic wave function is a superposi- 
tion of asymptotic Coulomb wave functions ( 1) for various 
ionic states. 

For r' $ 1 / ~ ~ ,  F in ( 10) goes asymptotically as 

and thus, according to ( lo), 

We see that in accordance with ( 1 ) and ( 1 1 ), the 
integrand in ( 12) goes as (r;) - 2 ~ ( r ;  ,{rk-l)). After inte- 
grating over the coordinates of all electrons except the first, 
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the potential V falls off at least as fast as (r;) -2, since there 
is no Coulomb interaction V(r; ,{rip 1)) between the first 
electron and the ion. The potential does include interac- 
tions like charge-dipole, charge-quadrupole, etc. [see Eqs. 
(4a) and (4b)l. The integral over r; in (12) therefore 
converges as a power of r; (at least as fast as dr;/ri2). We 
can thus assume that the integral in (12) is dominated by 
the inner region of the atom, where the quantum- 
chemically calculated wave functions of the atoms and ions 
are accurately known. The asymptotic coefficients obtained 
from (12) should therefore be at least as accurate. 

Note that atomic wave functions calculated variation- 

ally normally fall off faster than e-"';, which means that 
the integral over r; converges not just as a power of r; , but 
exponentially. 

3. CALCULATION OF ANGULAR DEPENDENCES AND 
ASYMPTOTIC COEFFICIENTS 

The LS coupling scheme holds for atoms in the first 
half of the periodic table, where S is the total spin quantum 
number, and L is the total orbital angular momentum. In 
this approximation, the total atomic or ionic wave function 
in a state with given total angular momentum j and pro- 
jection M j  can be written 

where the [Ls bL Lj are Clebsch-Gordan coefficients, 

and y represents the nonangular quantum numbers of the 
system. 

We can calculate the asymptotic coefficients Bp for the 
functions 1 ySMsLML); their magnitudes depend mainly 
on the quantum numbers of the atom (SL)  and ion 
(SpLp), since it is these that determine the appropriate sets 
of Slater determinants-and thus the wave functions-that 
enter into the integral in ( 12). Moreover, Bp depends on 
the spin projections of the atom and ion. This dependence 
can be established in general form. As in the genealogical 
coefficient scheme, the atomic wave function can be written 
in the form 

Here x,,,, is the spin function of the first electron, and the 
1,'" -1 - coefficient of the product rl p e "~'14~ is in fact the as- 

ymptotic coefficient B . The dependence of B, on M L ,  
M,, Ms, and Ms (4 is independent of all of these) is 
given explicitly by the two Clebsch-Gordan coefficients 
spelled out in Eq. ( 14). The calculation can therefore be 
carried out for a particular set of determinants correspond- 
ing to fixed quantum numbers M L  , Mp, MS, and Msp, and 
(14) can then be used to proceed to the general case. 

The functions \Y({rN),E) and q5({rN-,)) in Eq. ( 12) 
can be represented by a superposition of Slater determi- 
nants constructed out of various sets of atomic (or ionic) 
spin orbitals: 

where superscripts a and i denote atomic and ionic orbitals, 
p and v denote the set of quantum numbers nlm, 
~et,,,{q:,:(r~ ,uk) is the determinant constructed from the 
g,t set of p, v orbitals of the atom or ion, and the coeffi- 
cients A: and A; can be determined in the usual way, start- 
ing with specific values of p, v and L,S. 

Having substituted ( 14) into ( 12), we find that a typ- 
ical term in the sum in ( 12) is proportional to 

which can be interpreted as the probability amplitude of 
detecting the first electron in a subbarrier state with quan- 
tum numbers nlllml, having made a transition from the 
atomic Gllli%l state by virtue of its interaction witkthe ~ t h  
electron, whose orbital quantum numbers are EkIkmk (in 
the atom) and nklkmk (in the ion). We see, then, that all 
nonvanishing superpositions of angular integrals contrib- 
ute to the asymptotic wave function with given angular 
momentum Il. 

Note that in general, the radial parts of the atomic and 
ionic orbitals in (15) are not orthogonal to one another, 
although there have been calculations indicating that this 
lack of orthogonality can be neglected without seriously 
affecting accuracy. 

Since the interaction V=X;=, 2,"=, Qn in ( 1 5 )  is in- 
variant under rotation of the coordinate system, the sys- 
tem's total orbital angular momentum L is conserved (as is 
the total spin S ) .  Given atomic and ionic quantum num- 
bers L and Lp, we then have 

The desired asymptotic wave function is then given by a 
superposition of spherical harmonics YIlml (rl/rl  ) with co- 
efficients given by ( 15). 

Excited ionic states often have a low excitation energy 
~ ~ 4 1  (especially among the transition elements). The ac- 
tual asymptotic behavior at r1 5 J I / E ~ ,  according to ( 1 I ) ,  
will then be determined by a complete set of ionic states- 
both the ground state and excited states-which can result 
in a large variety of angular dependences B(O1 ,ql  ), and 
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can alter the magnitude of the coefficient B itself, which is 
used to determine the electron density far from the core. 
This should be taken into account in problems requiring 
that one find the electron density at large radii-for exam- 
ple, in elastic (for an atom) peripheral electron scattering. 

If we consider electronic transitions (e.g., charge ex- 
change) in which the ion's final state pf is fixed, the tran- 
sition probability will then be governed solely by the as- 
ymptotic function corresponding to that fixed state, with 
an asymptotic coefficient Bpf. 

As usual, we can choose the radial parts of the atomic 
and ionic orbitals to be of the form 

so all of the integrals in ( 1 5 ) can be calculated analytically 
and represented in terms of hypergeometric functions ,FI. 

It has been assumed in (12) that we sum over the 
(N- 1) electrons that interact with the selected electron 
(which penetrates the subbarrier region), and this auto- 
matically allows for all possible orbital states nl that enter 
into the atomic and ionic wave functions [see (IS)]. Obvi- 
ously, however, not all orbitals contribute equally to the 
coefficient B, in question. 

The matrix element ( 15) takes the form of a transition 
amplitude induced by the interaction (4) from a state with 
an atomic wave function to a state more aptly described as 
an ion plus an electron. Orbitals in inner and outer atomic 
shells make significantly different contributions, by virtue 
of where they are localized. 

Three basic combinations are possible when there is 
more than one electron in the outer shell: 

1) the quantum numbers p1  = (nl l lml)  of the ejected 
electron and Kth electron interacting with it (pk  and vk) 
refer to the outer shell of the atom and ion; 

2) p1 is from the outer shell, p k  and vk from an inner 
shell; 

3) pl is from an inner shell, pk and vk from the outer. 
The first of these combinations is normally the main 

contributor, due to conditions being more conducive to 
overlap of the wave functions. In the second case, the in- 
tegration region is determined by the way in which the 
inner-electron wave function dies out, and in the third, the 
matrix element corresponds to a transition of the Kth elec- 
tron from the outer shell to an inner shell. In general, then, 
the second and third combinations should contribute less 
than the first. Calculations show that in practice, it is usu- 
ally sufficient to include only the contribution of the outer 
shell and the filled (or unfilled) shell nearest in energy. 
This greatly simplifies calculations for multielectron atoms. 

4. CALCULATIONS FOR SPECIFIC ATOMS 

Helium 

We have used a variety of wave function approxima- 
tions, each providing different accuracy in the calculated 
atomic ionization potential. 

For the first calculation, we used 

which yields the ionization potential to 7% accuracy. We 
obtained B=2.52 for the ion's ground state. 

A calculation using the more accurate Hylleraas three- 
parameter wave function" for the He atom, which allows 
for interelectron correlation and yields the potential to 
0.1% accuracy, gives B=2.45. 

Clearly, the accuracy of the coefficient B roughly cor- 
responds to the integrated accuracy of the wave function, 
which is dictated by the energy of the system. Note that the 
value of B obtained by matching wave functions is 
~ = 2 . 8 7 . ~  

Beryllium 

In the beryllium atom, two electrons occupy the inner 
1s shell, and two occupy the outer 2s shell. The orbitals 
contributing to the Slater determinant are 

and the corresponding atomic and ionic parameters are 

Substituting into ( 12) the atomic and ionic wave functions 
obtained in the one-determinant approximation with the 
orbitals ( 18), we obtain (here, according to ( 16), the as- 
ymptotic wave function contains only an s wave) 

-qys(ri)q;s(r;)qis(r;)l. (19) 

In (19), the terms in curly brackets from the various shells 
have been assigned according to the foregoing classification 
scheme. By chance (because of interference), the contri- 
bution of the first term turns out to be anomalously small. 
The resulting contributions to B= B1 + B2+ B3 are 
B1 = -0.015, B2= -0.720, and B3= -0.157, yielding 
B= -0.890. Allowance only for the contribution of the 
outer electrons to the asymptotic behavior of Be yields a 
manifestly incorrect result (two orders of magnitude too 
small). Note that our value of B differs appreciably from 
B= 1.62, the value obtained by matching wave  function^.^ 

Carbon 

In considering carbon, we took account of the four 
outer 2 ~ ~ 2 ~ ~  electrons. The atomic ground state is 3 ~ ,  and 
the ionic is 2 ~ .  The atomic and ionic wave functions can be 
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expressed as a sum of Slater determinants constructed out 
of the orbitals in the simplest two-exponential 
approximation. l3  

For the sake of definiteness, we assume that M, the 
projection of the orbital angular momentum, is either 
Ma= 1 (atom) or M,=O (ion), so the orbitals contributing 
to Y, are qyl and qyo, while +p contributes to +io. Substi- 
tuting Y and +p into (12), we find that the asymptotic 
wave function comprises four terms P,,i= 1,2,3,4, where 
each Pi is associated with the asymptotic behavior in a 
specific way [see the explanation following Eq. (15)]: 

1 ) P1 corresponds to p1  = nlllm, = (2,1, l) ,pk 
= (2,o,o),vk= (2,0,0), 

2) P2 corresponds to p1  = (2,0,0),pkZ (2,1,1),vk 
= (2,0,0), 

3) P3 corresponds to pl= (2,1,0),pk= (2,1,l),vk 
= ( 2,0,0), 

4) P, corresponds to p l  = (2,1,1),pk= (2,1,0),vk 
= (2,1,0). 

At first glance, according to (16), s, p, and d asymp- 
totic terms should be possible, in principle. But due to the 
structure of the integrals over angle, the s and d waves 
vanish identically, and only the P wave remains in the 
asymptotic wave function. The atomic state with M =  1 
and the ionic state with M=O then correspond to the as- 
ymptotic atomic wave function 

with p= 1.26 in contrast to @=0.92, the value obtained 
by matching wave  function^.^ 

Scandium 

The scandium atom is the first of the transition metals 
with an unfilled d shell. The ground state is '0: one elec- 
tron is in the 3d shell, and there are two electrons in the 
outer unfilled 4s shell. In our calculations, we took the Sc 
atom to be a three-electron system, and the ion was a 
two-electron system with two ionic states-the 3~ ground 
state, and a low-lying 'D excited state (excitation energy 
~ ~ = 4 9 0 0  cm-I). 

Due to the differing spins of the ground and excited 
states of the ion, the ionic wave functions can be described 
by various combinations of Slater orbitals. As a result, we 
obtain the asymptotic coefficients 

where we have used the simple analytic approximations to 
the 4s and 3d atomic and ionic orbitals suggested in Ref. 12 
for q," ,qf ,q: ,qh. 

We have found that the only combinations that are 
important for Bo are 

Other combinations are spin-forbidden. The contribution 
to B1, on the other hand, comes from a large number of 
combinations 

PI = (4,0,0), pk= (3,2,ma), vk= (3,2,m;). 

Obviously, according to ( 16), both Bo and B1 involve s, d,  
and g components, and those naturally depend on the pro- 
jections Ma and Mi of the atom's angular momentum: 

The coefficients of Y4* turn out to be very small, and are 
not given here. For comparison, we point out7 that the 
asymptotic wave function for the Sc atom contains only an 
s wave, and the corresponding coefficient obtained by 
boundary condition matching7 is Bo= 1.1 1 Y,. 

CONCLUSION 

We have proposed a new way to find the asymptotic 
coefficients for multielectron atomic and ionic wave func- 
tions to an accuracy consistent with that of quantum- 
chemical calculations of the wave functions of those sys- 
tems. This approach takes account of interelectron 
correlations and the contribution of different electron 
shells, automatically guaranteeing the correct Coulomb as- 
ymptotic radial and angular analytic dependence. Our cal- 
culations dealt specifically with light atoms and neglected 
fine structure, but relativistic corrections for heavy atoms 
can easily be incorporated. This would require substituting 
wave functions Y, and into ( 12) and ( 15) that included 
spin-orbit coupling, which would also be included in the 
interaction potential V [Eq. ( 3 )]. 

The asymptotic coefficients are universal characteris- 
tics of quantum systems, and are required for the solution 
of a variety of important physical problems. We plan to 
calculate these coefficients for other specific systems in the 
near future. 
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