
Wave functions of charged particles simultaneously in Coulomb and laser fields 
L. P. Rapoport 

Voronezh State University, 394693 Voronezh, Russia 
(Submitted 30 September 1993) 
Zh. Eksp. Teor. Fiz. 105, 534-544 (March 1994) 

An approximate solution is derived for the time-dependent Schrodinger equation for an 
electron which is simultaneously in a Coulomb field and the field of an intense electromagnetic 
wave. The wave functions of the discrete and continuous spectra are found in an analytic 
form convenient for calculations on multiphonon processes without the use of time-dependent 
perturbation theory. Expressions are derived for the scattering cross sections of slow 
electrons and positrons by a Coulomb potential in the field of a light wave. 

1. INTRODUCTION 

The interaction of an intense electromagnetic field with 
atoms has been the subject of theoretical and experimental 
research for a fairly long time The experimentalists 
have been using progressively more intense laser fields in 
recent years, while the theoreticians usually base their cal- 
culations on perturbation theory in the external field, 
which is capable in practice of dealing with multiphoton 
processes involving no more than ten photons. An excep- 
tional case is that of a particle with a small binding energy 
(in a 6-function potential) in a circularly polarized field, 
for which calculations can be carried out at an arbitrary 
field intensity.4 

In this paper we construct approximate wave functions 
for an electron (or positron) simultaneously in a Coulomb 
field and a laser field, for the discrete and continuous spec- 
tra, in a form suitable for use in calculations on various 
multiphoton processes (multiphoton ionization, scattering, 
and nonlinear susceptibilities), without the use of time- 
dependent perturbation theory. We restrict the discussion 
to electromagnetic fields whose wavelengths satisfy the 
condition for the applicability of the dipole approximation: 
,%>a,. The amplitude of the electron oscillations in the 
electromagnetic wave, a 0 = e ~ / ( p w 2 )  ( F  and w are the 
intensity and frequency of the field; e and p are the charge 
and mass of the particle), must satisfy the condition 
a. < a ~ ,  where a, is the Bohr radius of the atom. 

In Sec. 2 we carry out unitary transformations of the 
Schrodinger equation for an electron in Coulomb and laser 
fields for the case in which the laser field is circularly po- 
larized. 

In Sec. 3 we derive equations for the spectrum (the 
Stark shift of the levels) and the wave functions of the 
discrete states of a hydrogen-like atom. In Sec. 4 we derive 
wave functions for electrons and positrons in the contin- 
uum. In Sec. 5 we calculate the amplitudes and the elastic 
scattering cross section for slow particles in a Coulomb 
potential in a laser field. In Sec. 6 we discuss a linearly 
polarized optical field. 

2. UNITARY TRANSFORMATIONS FOR THE SCHRODINGER 
EQUATION IN A CIRCULARLY POLARIZED OPTICAL 
FIELD 

Let us examine the time-dependent Schrodinger equa- 
tion for an electron in a Coulomb field and a circularly 
polarized optical field, the latter being described by a vec- 
tor potential A(t)  which depends only on the time (this is 
the dipole approximation) : 

We seek a solution of ( 1 ) in the form 

We introduce 

I' a0 
a ( t )  =- A(t')dtf =- (ex sin o r +  ye,, cos a t ) ,  

PC 2 

a0 
a(8,p,t) =- 2 sin 8 sin(p+ yot),  (3) 

where ex and e, are unit vectors along the corresponding 
axes, a o = e ~ / ( p w 2 )  is the amplitude of the classical oscil- 
lations of the electron in the optical field, and y= + 1 spec- 
ifies whether the wave has a right-hand or left-hand polar- 
ization. Substituting (2)  into ( I ) ,  we find an equation for 
@(r,t): 

We seek a solution of Eq. (4) in the form 

iywt A 

@(r,t) =exp I -- fi (L,--firn) 
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where the operator L, represents the projection of the an- 
gular momentum. Substituting (5)  into (4), we find the 
following steady-state equation for f ( r ) :  

We expand the potential in Eq. (6) in Legendre polyno- 
mials: 

1 
-- " J< 

- 1 J ~ T  P,(sin 13 sin q,) 
lr-aol r=o > 

2 4r sin 8 sin p ao -+ +..., r < y ,  
a; 

1 a. sin 8 sin q, ao (7)  
;+y 12 +..., r >  7 

The series in (7)  converge for arbitrary ad2 .  
Equation ( 6 )  with potential (7) is exact. A solution of 

this equation would give us the spectrum of an atom for the 
case in which there are shifts of the levels in the optical 
field and a broadening of the levels, for an arbitrary 
strength of the field. In practice, however, it is essentially 
impossible to find such a solution, because potential (7)  is 
not a central potential. If we restrict expansion (7 )  to the 
first centrally symmetric term, we can deal correctly with 
only the asymptotic forms of the potential at r 4 a d 2  and 
r)ad2.  If a d 2  < a,, then we would be justified in restrict- 
ing expansion (7) to the first term at both r & a d 2  and 
r)aB. An interpolation of the potential between these re- 
gions would not be accurate. The condition a o g a B  con- 
strains the optical field strength F .  If we assume 
a, <O.la,, for example, then for a ruby laser with 
/2=6.9 . lop5 cm the corresponding value of F would be 
less than or equal to 4 .  of the atomic field strength, 
while for a KrCl laser with A=2. cm the value of F 
would be at most 5 - of the atomic field strength. Note 
that a d 2 < a B  is only a suficient condition for the validity 
of the theory. A less stringent necessary condition is diffi- 
cult to formulate explicitly, but in each concrete applica- 
tion of the theory it would be a simple matter to find a 
numerical estimate of the limitation. For example, data 
from numerical calculations of the Stark shift of various 
levels in a potential [see Eq. (47) below] 
show that reasonable results can be found even for 
aoS20aB (Ref. 5) .  

To single out the centrally symmetric part of the po- 
tential from (7), we take an average of 

m 1 
r <  

V(r,a,,) = 1 7+7 P,(sin 8 sin p )  
1-0 r >  

(8) 

over solid angle and find an approximate "dressed-atom" 
potential: 

At this point we transform to an atomic system of 
units: 

e=f i=p=l ,  
ti2 

a B = - 7 ,  p=r/aB. 
P*.e 

We seek a solution of Eq. (6)  with potential (9)  in the 
form 

where Y;" is a spherical harmonic. The equation for f l ( r )  
becomes 

=Ef,(p) ,  

where E = E ' - m m ,  m=0,1,2 ,... . 

3. DISCRETE SPECTRUM 

It is a simple matter to solve Eq. ( 1 1 ) numerically and 
to find a system of levels for the discrete spectrum for a 
given field intensity F and a given field frequency a: 

(the levels are numbered in order of increasing energy). To 
find the wave function corresponding to the spectrum in 
analytic form we replace potential (9) by a Fuss pseudo- 
potential: 

where the projection operator p, projects onto the subspace 
of spherical harmonics with the given I, and the B, are 
parameters. The potential V, was first used by simons6 for 
calculations of one-photon processes in atoms and by the 
present authorls2 for calculations on multiphoton processes 
in atoms by perturbation theory. This potential has been 
used to model the potential of an electron in a complex 
atom; in that case the parameters B1 were chosen by fitting 
the experimental spectrum of the atom. The potential in 
(13) has an obvious advantage over potential (9): it is 
described by a smooth function of p, which allows an an- 
alytic solution of Eq. ( 11 ). In the limit p -+ w this poten- 
tial has the same asymptotic behavior as a Coulomb po- 
tential. A disadvantage of this potential is that it is not 
local, since Br depends on the energy. 

To solve Eq. ( 11) with potential ( 13) we introduce 
Y = z ( - ~ / ~ E ) ' / ~  (for E<O), x = 2p&%, and 

Equation ( 1 1 ) now becomes 

We can express the solution of Eq. (15) in terms of the 
confluent hypergeometric function F(a,b,x): 
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The condition 

leads to 

where p=O, 1,2, ... . Introducing vP,/=p+Al+ 1, we find the 
energy levels in potential ( 13): 

Replacing Ep,/ by the levels Ev,l(ao) found above [from 
(12)], we find V ~ , ~ ( U ~ ) .  From (17) and (14) we find the 
corresponding Bl(ao) and Al(ao). We can then write the 
solution of Eq. ( 1 1 ) in the form (for simplicity, we will 
write simply v instead of vP,/) 

where c , /  is a normalization factor, given by 

The factor c , /  differs from the ordinary normalization of 
the Coulomb function by the replacement 1-4;  the coef- 
ficient b arises because of the nonlocal nature of potential 
( 13). To go back to our original function (2), we substi- 
tute (18) into ( lo) ,  substitute the result into (5), and 
finally substitute into (2). Applying the shift operator ex- 
p (iafi), we find the function we need (aside from an incon- 
sequential phase factor) : 

where 

XY;" ( 8-- at) ,?), 

a0 
ar( t)  =- 2 sin 8 sin(?+ yot),  

a0 
ae(t) =- 2 cos 8 sin(?+ ywt) (21 

are the projections of the vector a( t)  in the spherical co- 
ordinate system onto the unit vectors ro and OO. In this case 
we have 

Wave function (20) can be used for calculations on 
transitions between discrete levels of the atom, with allow- 
ance for reradiation of the intense laser field. 

4. CONTINUOUS SPECTRUM 

In the continuous spectrum we have E > 0. To derive 
expressions suitable for describing both attraction and re- 
pulsion, we introduce (= *Z,Z2/k, where k = FE. Us- 
ing analytic continuation in v, we find the following radial 
wave function for the continuum, in place of ( 18): 

fk,/(r) =cl(2kr)*1exp(ikr)F(1 +Al+i(,2A1+2,-2ikr), 

(22) 
where 

For 1 ( 1 ) 1 (slow particles: v 4 v,,) we have 

2(2?r() 1'2e-3, 6 > 0 (repulsion), 
2(21r() 6 < 0 (attraction). (24) 

Going back to the time-dependent function Y,,,(r,B,p,t), 
we find the following wave function for the continuum: 

The wave function in (25) can be applied to the scattering 
of charged particles (electrons and positrons) in a Cou- 
lomb field and to problems of multiphoton ionization. In 
the case of positrons (protons), we need to make the re- 
placements ar- -ar, ae+ -ae. 

5. POTENTIAL SCATTERING OF SLOW PARTICLES 

The problem of potential scattering in the presence of 
an intense electromagnetic wave arises in studies of stimu- 
lated multiphoton bremsstrahlung, the heating of the elec- 
trons of a weakly ionized plasma through absorption of 
laser light, and other cases. 

The case of most interest is the scattering of slow 
charged particles, with I 61 > 1. For fast particles, with 

1 ( 1  (1, one can use the Born approximation. This problem 
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was solved in the first Born approximation in Ref. 7; it was 
solved in the second Born approximation and also the ei- 
konal approximation in Ref. 8. The asymptotic behavior of 
the function in (22) as r - +  co is found from the asymptotic 
form of the function F(a,b,x) (Ref. 9). 

We have 

Here ul=arg r (  I+ 1 + ic) is the ordinary Coulomb scat- 
tering phase shift, and Sl(ao) is the phase shift of the scat- 
tering by the part of potential (13) associated with the 
presence of the electromagnetic field: 

For I ( 1  ) 1, making use of the asymptotic behavior of the r 
function, 

, for attractive forces, 
O for repulsive forces. (28) 

The method of calculating the phase shift S1 as a func- 
tion of Al from Eq. (27) is related to the method involving 
a calculation from the discrete spectrum of the atom in a 
field, extrapolated to positive energies, E > 0, in the same 
way as the quantum defect pl calculated from the discrete 
spectrum of an atom and extrapolated to positive energies 
is related to the phase shift for the scattering by that atom, 
S1. (The quantum defect incorporates the deviation of the 
atomic potential from a Coulomb potential and is not a 
consequence of the external field, but this point is unim- 
portant to the derivation.) seatonlo has shown that in the 
latter case this relationship is 

The equation Sl(k2) =apl(k2) at the threshold k2+0 cor- 
responds exactly (modulo n )  to SIza(l-Al) [Eq. (29)], 
since we have 21=nl-pI- 1, where nl is the principal 
quantum number of the lowest state with the given I. Cal- 
culations for atoms near the thre~hold' .~ k2 -0 have shown 
that the phase shifts calculated from (28) in terms of Al 
differ only insignificantly from those calculated from (29) 
in terms of pl(k2). The method of the quantum defect and 
the method of the Fuss potential (13) are thus closely 
related. In the former, the integer radial quantum number 
n, is replaced by a noninteger; in the latter, the integer 
orbital number tends toward a noninteger number, 1-2,. 

It follows from (26) that the wave function fk ( r ) ,  
expanded in I, has the asymptotic form 

where the constant b1 must be chosen such that fk ( r )  as 
r-t w simultaneously describes a plane wave distorted by 

the Coulomb field and an outgoing spherical wave. Using 
the asymptotic expansion of the wave function for a purely 
Coulomb field, we find" 

where 

is the Coulomb scattering amplitude, and 

is the scattering amplitude associated with the effect of the 
optical field on the charged particle. It follows from (28) 
that we have fF(ao) =0  for the scattering of positively 
charged particles. For the scattering of electrons we need 
retain only the phase shift So, since at I>O we have illzI.  
The meaning of the the equality Sl=O for positrons can 
also be seen easily from Eq. (24), since the probability of 
positrons penetrating the region r < a, is exponentially 
small under the condition 16) B 1: -4(2ag)exp( -2at) .  
Substituting the function f k ( r )  from (31) into (2) ,  and 
taking the limit r+  CQ, we find 

where ar( t)  is defined in (21 ). Using the expansion 

m 

exp[iz cos o t ]  = C in Jn(z)exp(inot) 
n= - m 

from the theory of Bessel functions, and using the Neu- 
mann summation f ~ r m u l a , ~  

we find 

(we have omitted some inconsequential phase factors). 
The corresponding cross section du  for electrons is 

287 JETP 78 (3), March 1994 L. P. Rapoport 287 



[sin B(cos p*sin p ) ]  

The distinction from the Born approximation here is that 
the expression for the cross section contains, in addition to 
the exact amplitude for Coulomb scattering without a field, 
the amplitude fF(ao) and a term representing the interfer- 
ence of these two amplitudes. For the scattering of posi- 
trons we must set fF(ao) =0  in (35). It follows from this 
analysis that for slow positrons the region r < a o  can im- 
mediately be eliminated from consideration. The variables 
in the time-independent Schrodinger equation ( 10) with 
ao=O then separate in parabolic coordinates. Reverting to 
r, we can then find the wave function in the momentum 
representation:I2 

Going over to the time-dependent function in (2),  we find 

Any polarization of the wave can chosen in (37), and the 
latter function can also be used for slow electrons with a 
large impact parameter (with the substitution a+-a). 

6. LINEARLY POLARIZED FIELD 

Let us examine the approximations which must be 
made in order to study a linearly polarized field. We will 
see below that these approximations also apply to a circu- 
larly polarized field, so the method developed here can be 
generalized to elliptical polarization. In Eq. (3) we set 

a(?) =aL(?) =aoex sin wt 

for a linear polarization, 

a0 
a(?) =a,(?) =- (ex sin wt+e,,cos wt) 

2 

for a circular polarization. We transform to oscillating 
coordinate system (2) ,  using a different transformation for 
the Coulomb potential.13 We use a Fourier representation 
for the Coulomb field: 

or, in the oscillating coordinate system, 

We expand exp[iz sin wt] and exp[iz cos wt] in Fourier se- 
ries in Bessel functions, and we use an integral representa- 
tion of the Bessel function: 

J,(z) =i" 7~ I: exp(iz cos a)cos nada. (40) 

(For a circularly polarized field, we would also have to use 
the Neumann summation theorem for J, here.) We then 
find 

* i-" n cos nada 
Vn( lr-a(t) I ) = 1 - ein"' 

n = - *  IT I Ir-%cosal  ' 

where 

The time-dependent potential in (4 1 ) describes the inter- 
action of an electron with an oscillating Coulomb poten- 
tial. For a circularly polarized field, a second unitary trans- 
formation of (5)  rendered the potential time-independent. 
In the approximation of a centrally symmetric potential 
(9),  we found an atom "dressed in a field." This was the 
model used in the subsequent calculations. We will show 
that potential (41), averaged over the field oscillation pe- 
riod, with only the centrally symmetric part of the expan- 
sion of this average potential retained, leads to a dressed 
atom which is very nearly the same as potential (9) .  The 
interaction which is found is suitable for both circularly 
and linearly polarized light. 

Taking an average of (41) over the oscillation period, 
we find 

Let us examine the last expression: 

- 
1 2r% cos a a: sin2 a 'I2 

- - 
7~ ( 1  a ?+a: ) da. 

(44) 

The integral in (44) can be reduced to an elliptic integral 
of the first kind. It contains both centrally symmetric and 
asymmetric interaction components. To find at least some 
sort of solution for the problem, we restrict it to the cen- 
trally symmetric part, as was done in (9);  i.e., we omit the 
term 2r% cos a / (?+ai ) .  We then have 

where K(m) is the complete elliptic integral of the first 
kind, and 
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is the parameter of this integral. For all r > 0 we can use a 
series expansion for K ( m )  or approximate it by polynomi- 
als. In the case of the series expansion, we have the follow- 
ing result for the potential in ( 4 5 ) :  

It is easy to see from ( 4 6 )  that this potential is approxi- 
mately the same as the potential in (9) .  Using the value of 
( 4 5 )  at r=O, we can make the approximation 

and use ( 4 7 )  for an arbitrary polarization with an appro- 
priate choice of a; from ( 4 2 ) .  Solving the Schrodinger 
equation with potential ( 4 5 )  numerically, we find a system 
of levels Ev,l(ao) different from ( 1 2 ) .  Constructing a 
pseudopotential ( 13) for this system, we find new values of 
A: and A: for linearly and circularly polarized waves. All 
the other equations remain the same as before, with the 
substitutions Al-il: and ill-A?. In addition, for the pro- 
jections of the vector a ( t )  for the linear polarization onto 
the unit vectors r,, and 80, the following expressions now 
hold instead of (2  1 ) : 

L a, ( t )  =ao sin f3 cos g, sin wt, 

L as ( t )  =ao cos 0 cos g, sin wt. 

7. CONCLUSION 

The wave functions constructed for the discrete and 
continuous spectra in this paper may also prove extremely 
useful for calculations of multiphoton processes under con- 
ditions consistent with the use of standard perturbation 
theory in the field, for the following reasons. First, the 
wave functions are in closed analytic form here, and they 
do not contain a multiple summation over the entire spec- 
trum as in perturbation theory, in which one can find only 
numerical solutions for the wave functions. Second-and 
this is a particularly important point-within the frame- 
work of perturbation theory it is essentially impossible to 
find a multiphoton wave function for an electron in the 

continuous spectrum of a Coulomb potential and the field 
of a light wave. This is the wave function required for 
problems involving scattering and above-threshold absorp- 
tion of photons in the course of multiphoton ionization. 
The analytic expression for this wave function [see ( 2 5 ) ]  
contains both limiting cases: with Z=0, the equation re- 
duces to the nonrelativistic Volkoff function for an electron 
in the field of a wave, and with F = O  it becomes the con- 
tinuum wave function in a Coulomb potential. The scat- 
tering amplitude found with the help of this function [see 
(34a)l  cannot be calculated by time-dependent perturba- 
tion theory, which implements only the Born approxima- 
tion of the scattering problem. We might add that the cal- 
culations of the shift of the atomic levels in the field could 
be refined without difficultly by incorporating the first non- 
centrally symmetric terms of series ( 7 )  or the correspond- 
ing terms of series ( 4 1 )  by perturbation theory, since the 
Green's function required here has been constructed for 
pseudopotential ( 13) in some of our previous papers. l v 2  As 
a result, we find a refinement of AI in Eq. ( 1 4 ) .  The ana- 
lytic form of the wave functions remains the same, of 
course. 

The methods developed in this study for constructing 
electron wave functions in a hydrogen atom in a laser field 
can also be used to model the wave functions of complex 
atoms. 

I wish to thank M. Ya. Agra and A. F. Klinskikh for 
a discussion of these results. 
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