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The acceleration of charged particles by a light field is considered. The latter has a field 
intensity E, the time-averaged gradient of the square or cube of which is nonzero. The 
functional dependence of the applied energy dK/dz as a function of the particle energy 
K ( ~ 9 r n c ~ )  and the power density P of the laser beams assumes the form 
dK/dz=A (P/Po) (rnc2/iY) for an accelerating force F a vE2 and dK/dz= A (P/P,) 3'2(mc2/~)2 
for an accelerating force F cc vE3. For wavelengths A z 1 pm the light field is characterized 
by Po=: 1.4 - 1018 w/cm2, for which the quiver velocity of a nonrelativistic electron 
would be of order c and the coefficient would satisfy Az0.5  . 10" eV/cm. The possibility is 
discussed of using either an ordinary Gaussian or a conical (Bessel) beam in the form 
of short packets accompanying ultrarelativistic particle bunches at an arbitrary angle between 
the photons and the beam axis. Estimates are given for bounds on the resulting energy 
of the accelerated particles associated with bremsstrahlung. It  is noted that the irradiation of 
the electron beam by the accompanying light packet permits an effective source of hard 
bremsstrahlung photons to be achieved. 

1. INTRODUCTION 

The acceleration of elementary particles by means of 
high-intensity laser beams has been studied by many au- 
thors (see, e.g., Refs. 1-5). Many designs for such devices 
have been proposed. Acceleration, i.e., the transfer of en- 
ergy from the field to the particles, occurs when the latter 
is acted on by a periodic external force with a fixed phase. 
When the phase takes a different value the opposite process 
occurs: components of the light field are amplified due to 
transfer of energy from the particle, giving rise to one form 
or another of free-electron laser. At first glance the most 
natural way to produce acceleration would appear to be 
inverse Cherenkov emission. However, the conservation of 
energy and momentum when a photon with energy Am and 
momentum m( is absorbed, 

requires that the particle velocity aK/ap be greater than 
the velocity of light in the medium, ( v I E 1 aK/ap 1 > c/n. 
Here n is the index of refraction, K ( p )  is the particle ki- 
netic energy as a function of momentum, and p, is the 
initial electron momentum. The rate of acceleration which 
characterizes the increase in particle energy per unit length 
is of order 

where 8= arccos( l/n) is the Cherenkov angle, 
s(erg/cm2 - s) =cn ( E 1 2/87r is the Poynting vector of the 
light wave, and e = 1 e 1 is the absolute value of the particle 
charge. However, in this case the material must be located 
in a strong field, which for intensities -10'~ w/cm2 in- 

evitably leads to ionization (and possibly breakdown) of 
the medium. As a result, the medium changes into plasma, 
for which n < 1 generally holds and the Cherenkov condi- 
tion v >  c/n cannot be satisfied. (The restrictions on the 
inverse Cherenkov effect are discussed in greater detail be- 
low in Sec. 2. ) For very disperse media n - 141 the factor 
sin 8 in Eq. (2) reduces the value of the right-hand side 
still further. 

Another acceleration technique involves waves propa- 
gating in vacuum. This is the induced Compton effect or 
the Kapitsa-Dirac e f f e ~ t , ~  i.e., acceleration by means of the 
gradient of the radiation (ponderomotive) force.' The syn- 
chronization condition follows from the energy and mo- 
mentum conservation laws in an elementary induced- 
scattering event, i.e., the absorption of a photon Am, and 
the induced emission of a photon k 2 :  

For ultrarelativistic particles, condition ( 3 )  takes the form 

where n, = k,/kl and n2= k2/k2 are the directions in which 
the light beams propagate. If one of the light beams prop- 
agates in the same direction as the particle beam (nl =e,, 
v =  ue, where e, is the unit vector in the z direction), and 
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the second beam proceeds in the opposite direction 
(n2= -e,), then we obtain good overlap between the beam 
waist of the laser radiation and the particle trajectories. 
However, in the ultrarelativistic case K 
= mc2/ z mc2/ %. mc2, the syn- 
chronization condition (4) requires beams with a very 
large frequency ratio: 

Consequently, in the present work we do not treat accel- 
eration by comoving or oppositely directed waves. 

If we use so-called Bessel beams, i.e., conically con- 
verging beams (see, e.g., Ref. 4 and Sec. 3 of the present 
work), then I vn I /c < 1 and the frequency ratio wl/w2 is 
much greater than unity. Acceleration of relativistic parti- 
cles by a pair of waves propagating at finite angles 8, and 
O2 with respect to the velocity vector v is treated in Sec. 4. 

In Sec. 5 we discuss the possibility of acceleration due 
to the action of three waves, in which two photons are 
absorbed and a third is emitted (or vice versa) in a single 
event: 

For this the field in the rest frame of the particle must have 
a nonvanishing average cube; see Ref. 8. 

In Sec. 6 we give estimates of the energy attained by 
the accelerated particles, which is limited by bremsstrah- 
lung. As will be seen from the results of Secs. 4 and 5, 
acceleration of relativistic particles by a force F a  vE3 is 
less than that produced by a force FccvE2 by a factor 
( m c 2 / ~ )  (eE/mwc) . Nevertheless, acceleration by a force 
F a  vE3 has a unique property: it can be achieved using 
beams of a single frequency, i.e., pulses from a single laser 
when the angles between the photons and the electron 
beam axis are appropriately chosen. 

A relativistic electron traverses the interaction length 
L =  10 cm in a time of order T =  L/c=3. lo-'' s. From 
energy considerations, it is essentially impossible to main- 
tain this extraordinarily high laser radiation power density 
over such a long time. An ultrashort light pulse (a  "flash") 
of length ro(L/c (e.g., To= 10-l3 S) can stay with a bunch 
of ultrarelativistic electrons over the entire distance L 
when they are comoving. However, for acceleration 
schemes involving forces F a  vE2 and F a  vE3 the electron 
beam must propagate at an angle with respect to the pho- 
tons. The question is then whether a light "flash" of ob- 
liquely incident photons TO= 10-l3 s long can stay with a 
relativistic electron bunch. The answer turns out to be af- 
firmative, and the corresponding treatment, which is pre- 
sented in Sec. 3, yields a favorable estimate for the total 
energy required for the pulse. 

2. ABSENCE OF ACCELERATION TO FIRST ORDER IN THE 
VACUUM FIELD 

The direct Cherenkov effect consists of energy transfer 
from a particle to the field under the assumption that the 
resonance w=kv holds between the particle velocity and 

the corresponding projection of the wave phase velocity. 
When phase resonance occurs, either stimulated Cheren- 
kov emission or the inverse Cherenkov effect can occur, 
depending on the phase of the field along the particle tra- 
jectory. Since this phase is constant on the particle trajec- 
tory, energy is transferred even to first order in the field 
amplitude. 

The failure of the resonance condition w=kv is obvi- 
ous in vacuum for a plane monochromatic wave E a exp( 
-iwt+ikr). For a light pulse with complicated spatial 
structure it is less obvious. In some treatments published 
on the subject of laser acceleration of particles, compli- 
cated light-field configurations and pulses are proposed, for 
the description of which recourse to approximate expres- 
sions is unavoidable. Although the approximate expres- 
sions themselves contribute little relative error, using them 
can lead to erroneous results regarding energy exchange 
between the field and particle. 

Since in the present work we will be discussing irradi- 
ating beams with fairly complicated space-time depen- 
dence, it is important for us to demonstrate that no energy 
exchange takes place to first order in the field for arbitrary 
light beams. 

The energy SK transferred from the field to a particle 
with charge e moving on the trajectory r = r ( t )  is equal to 

since the magnetic field performs no work. (Here EXa1 is 
the instantaneous real intensity of the field of the light 
wave.) Assume that the unperturbed motion of the particle 
is given: 

Then to first order we find an expression for SK: 

We present an example of an approximate prescription for 
the field which yields a clearly incorrect result for the en- 
ergy transfer to first order. Specifically, let us consider the 
usual Gaussian approximation for a focused laser beam: 

where k=w/c=2?r/A; here c is the velocity of light in 
vacuum, a is the beam half-width at the beam waist, mea- 
sured at the point where the intensity is a factor e-' lower 
than the maximum value;') A x  = Ay = a, and it is assumed 
that the angular divergence SO= l/ka in the far field is 
much less than one radian. We find SK for the trajectory 

i.e., for a particle passing through the focal beam waist 
perpendicular to the central direction of the beam. Substi- 
tuting (8) and (10) in (9)  we find 
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We estimate vo=0.97c, so that the initial kinetic energy of 
the particle is 

From Eq. (12) we see that the Gaussian beam ( 10) con- 
tains elementary plane waves with k, = w/vo = 1.03 ( w/c) , 
which satisfy the Cherenkov condition w =kvo. Assume 
that the angular divergence Sf3 of the beam is of order 
6 0 ~ 0 . 3  r a d z  IT, a very reasonable value. Then (12) 
yields 

In the present section we show that to first order in the 
field, the energy SK vanishes identically. This can be 
proved most simply using the Fourier expansion of the 
field in vacuum: 

E(k)exp(ikr-icJ kI t)cZk+c.c. (13) 

Substituting (8)  and ( 13) in (7) ,  we find 

Since ( vo ( < c for the particle, the argument of the S func- 
tion vanishes nowhere, and hence SK(') =O. The vanishing 
of the argument of S(x) in Eq. (14) corresponds to the 
Cherenkov condition, which must hold in a medium with 
index of refraction n > c/uo (o = c I k ( /n < kvo), but not in 
vacuum. 

We can provide an explanation for the erroneous result 
( 12). The Gaussian expression (10) corresponds to the 
parabolic approximation to the exact wave equation, in 
which the exact value k y t  of the wave vector is replaced 
by the parabolic approximation k y b :  

In Fig. 1 we show that the Cherenkov condition w= kvo 
cannot be satisfied in the exact wave equations. But if we 
carelessly use the parabolic approximation, then in a 
Gaussian beam the individual components with a plane 
wave front will be found to satisfy this condition. We have 
derived the expression ( 14) for arbitrary particle velocity 
vo with 1 vo\ < c, arbitrary beam focusing, and arbitrary 
momentum profile. The only restriction is that Maxwell's 
equations hold throughout all space. 

If the medium is spatially nonuniform and (or) re- 
fracting, the result SK(') = O  is no longer correct. However, 

FIG. 1 .  Angular distribution of wave vectors corresponding to the exact 
wave equation and the parabolic approximation. The difference between 
the two distributions can give rise to substantial errors when the motion 
of a particle perpendicular to a Gaussian beam is treated. 

it is impossible to obtain large values of SK'" using only 
remote lenses and low power densities applied to them. It 
is necessary either to direct intense light beams into the 
media (with all the problems that stem therefrom, involv- 
ing breakdown of the medium) or to use schemes in which 
energy transfer begins to second or third order in the field 
amplitudes (see below). Another possibility is to use static 
external fields (which in the electron rest frame will obvi- 
ously no longer be static; see, e.g., Ref. 5).  

The main conclusion of the present section is that to 
transfer energy to first order from the electromagnetic field 
to a free elementary particle, it is necessary to modify the 
field by means of some medium (uniform or nonuniform). 
Other schemes which purport that energy &K(') is trans- 
ferred to the particles to first order in E in vacuum are 
fundamentally incorrect. 

3. FOCUSING OF A "FLASH" MOVING WITH THE SPEED OF 
LIGHT 

In a number of acceleration schemes considered below 
it is necessary to use a high-density wave over a relatively 
long distance ) 10 cm. We will be concerned with acceler- 
ating very short ultrarelativistic particle bunches with 
7,- 10-"-10-'~ s. A wave comoving with the particles 
can be represented by an equally short light pulse and can 
stay with the particles over the whole interaction length L. 
Then the specified power density would be required only 
over a very short time 70, and the total energy of the pulse 
would be modest. But if the photons propagate at an angle 
to the particle beam or in the opposite direction, then it 
appears at first glance that the light pulse must have dura- 
tion rapt 0: L/2c, which exceeds the length of the acceler- 
ated particle bunch by several orders of magnitude. In the 
present section we give a solution of the Maxwell equations 
in vacuum describing a wave packet with very special 
properties. Specifically, the optical field at each time is 
focused only in a region of length Az= u ~ ,  parallel to the z 
axis, which gives rise to considerable economy in the total 
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FIG. 2. Setup for a two-dimensional "flash" accompanying a relativistic 
beam of accelerated particles. The flash propagates in the z direction 
along with the particles. 

power of the optical pulse. Hence the "flash" moves along 
the z axis with constant speed dz/dt= u, moving together 
with the particle bunch. 

Two important facts should be noted. First, the speed 
u with which the flash moves can be arbitrary: it can be less 
than, greater than, or equal to the velocity of light c. Sec- 
ond, the photons can move at an arbitrary angle 80 to the 
z axis (see Fig. 2). The parameters of the light packet are 
determined by its frequency-angle spectrum. 

The d'Alembert equation describing the evolution of 
each Cartesian component of the field in vacuum takes the 
form 

We begin by directing our attention to the two-dimensional 
problem E=E(x,z,t). It can easily be verified that the fol- 
lowing expression for the field is an exact solution of 
Eq. (16): 

(18) 

where F ( R )  is an arbitrary function and 

w 0 w 0 
koz=- cos O0, kOx=- sin e0. 

C C 
(19) 

The frequency of the light packets ( 17)-( 19) depends on 
angle. The parameter 8, characterizes the average angle at 
which photons intersect the z axis (see Fig. 2). 

Let us consider the most interesting case, when the 
length ro of the intensity envelope of the pulse on the z axis 
is substantially greater than the light period, wOro> 1. Then 
from the uncertainty relation, the spectral density 

IF(f l)  l 2  is significantly different from zero only for 
I R 1 (rO-'<wO, SO the lower limit in the integral of Eq. 
(18) can be replaced by - CO. As always, the simplest 
formulas result for Gaussian packets: 

For these, due to the large value of the parameter u0r0, the 
envelope f (tl,z) can be calculated by the method of sta- 
tionary phase: 

1 - (c/u)cos oo u 
- wo u 2 d  sin3 e0 y=tg /?= , xo=- 

sin 80 c c [ l - (u /c)cos80]2~ 
(22) 

From this expression we see that the spatial variation of 
the intensity at a specified point (x,z) also is Gaussian, but 
the duration increases as 

In particular, for u = c and = 90", the magnitude of xo is 
related to the size Az=cro of the flash on the axis by 

Just this kind of relation holds between the length of the 
beam waist (in this case, xo) and its radius (Az) when a 
Gaussian beam of photons propagating in the x direction is 
focused. We emphasize that for u = c and rOuO) 1, we will 
have Az$ c/wo, since xo $ Az. This implies a moderate con- 
vergence (or divergence) angle A8 for the focused photons 
relative to one another. 

The spatial distribution of the intensity (E(x,z,t) l 2  at 
a given time t consists of a region inclined with respect to 
the z axis by the angle -/?, where Y = tan /? is defined by 
Eq. (22). The width Az of this region is smallest on the z 
axis, and away from it increases as 

If we assume that the packet is unbounded in time, - co 

< t < + CO, then the high-intensity region moves in the z 
direction with velocity u. A bounded packet, 0 < t < T, 
where T= L/u)r0, has a beginning and an end; they both 
naturally move with velocity 

A curious circumstance should be noted. For the most 
interesting case u=c, the angle /? of the orientation of the 
instantaneous optical energy distribution in space is equal 
to 
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In other words, the planes of constant amplitude x =  
-z tan (for t=const) differ from the planes of constant 
phase; the latter are perpendicular to the direction of the 
wave vector ( 19) and hence are characterized by the equa- 
tion x =  -z tan 80. But if they were the same, then the 
translational velocity of the beam in the z direction would 
be u = c/cos 80. 

In the three-dimensional case it is convenient to rep- 
resent the solution in the form of Bessel packets; for 
x = r  cos 9, y = r  sin e, we have 

As in the two-dimensional case, for re0> 1 and u-c the 
extent of the focal region hz=ur0 is much larger than a 
wavelength. Hence near the z axis itself the Bessel function 
can be taken outside the integrand: 

In order to be specific we have taken a Gaussian profile 
here for the time dependence of the envelope. 

We now determine how large the energy of the light 
packet must be in order that a field of amplitude Eo ac- 
company an ultrarelativistic particle bunch of length -TO 

over the interaction length L)crO. 
If the two are to propagate together we can use a laser 

pulse of the same length TO, since in the ultrarelativistic 
case the particle velocity vector is almost the same as the 
photon velocity vector. A doubly Gaussian packet (in 
space and time) has the form 

Eo exp [ - h o t +  i(oo/c)z] 
E(x,z,t) = 

J1+ iz/zl 

x2 (t-z/c12 
xexp [ - 2a:(l+iz/zl)Iexp[- 2 1,  
Eo exp [ -i%t + i(  wg/C)z] 

E(x,y,z,t) = 1 + iz/zl 

where the radius Ar of the focal constriction is written ao. 
If we require that the length hz of the focal constriction be 
the same as the interaction length L, then we obtain a 
condition on the radius a. of the constriction: 

Then in the two- and three-dimensional cases, respectively, 
the total energy Q[J] carried by the light pulse is equal to 

Here is the factor for converting from ergs to Joules 
and Eo and c are assumed to be given in CGSE units; for 
the two-dimensional problem Ay is the beam thickness in 
the second transverse coordinate; we assume Ay>ao. 

Let us now estimate the energy required for obliquely 
propagating waves moving with particles with velocity 
u=c over a distance L. In the two-dimensional problem 
this is done most easily by evaluating the x component of 
the Poynting vector in the x=O cross section and integrat- 
ing it over time. Specifically, all the photons involved in the 
process of accelerating particles intersect the z axis at the 
same time t at some point (x=O,z). As a result we have 

~ 1 ~ 0 1 '  Q ( ~ ~ ) = L O - '  roLAy sin 8. 

We see that in the planar (2D) case, oblique copropaga- 
tion requires substantially higher (by a factor m) light 
energy. It  is noteworthy that in the case of Bessel focusing 
of a three-dimensional (3D) beam, the energy required for 
copropagation in the oblique case 00#0 turns out to be 
essentially the same as for parallel copropagation. For this 
calculation we use the asymptotic representation of the 
Bessel functions: 

Then we must take the integral at some r=ro over the 
surface 2aroL of the cylinder, and over time of that part of 
the radial component of the Poynting vector which corre- 
sponds only to the convergent part of the wave (or equiv- 
alently, only the divergent part). The result naturally is 
independent of the formally introduced parameter ro (for 
ro)milo/2.n sin 8,) and takes the form 

It is interesting to note that the required energy turns out 
to be independent of the angle 80; this result, however, was 
obtained neglecting the vector nature of the electromag- 
netic wave (the polarization factors). 
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FIG. 3. Use of a diffraction grating to produce a light flash moving with 
the speed of light c. The period of the lines in the diffraction grating and 
the angle q, of the cone are chosen so that after reflection the photons 
propagate perpendicular to the z axis, while the angle P with which the 
distribution slopes in space is equal to 45". 

In the present work it is not our purpose to construct, 
much less to optimize, the system of prisms, lenses, diffrac- 
tion gratings, etc., required to shape such packets from 
ordinary ultrashort pulses. In order to illustrate the possi- 
bilities in principle we present only one specific example of 
a design of this sort (Fig. 3). This design solves the prob- 
lem of shaping a photon packet propagating perpendicular 
to the z axis so that the irradiated region moves in the -z 
direction with the velocity of light c. 

We assumed that the original ultrashort pulse consists 
of a spatial bunch (a relatively flat disk of thickness cro) 
moving in the z direction. The wavefront surfaces in this 
bunch are perpendicular to the z axis, and naturally the 
displacement velocity of the bunch is equal to v=eg. If we 
neglect transverse diffraction, the bunch moves as a whole 
with this velocity, the amplitude-phase profile remaining 
unchanged. 

Now assume that this bunch is reflected from a conical 
diffraction grating with axis in the z direction and vertex 
angle q,=arctan 2 ~ 6 3 " .  We assumed that the lines of the 
diffraction grating have a period which is a multiple of A = 
A. fi, where A. is the central wavelength of the radiation. 
Under these conditions, the diffraction grating directs pho- 
tons precisely toward the z axis. It  can easily be verified 
that the irradiated region will then propagate on the axis 
(for x=y= 0) according to z= const---ct, as required. It is 
clear that a small deviation from these values either of the 
period A or the angle q, or both simultaneously enables us 
to obtain any desired velocity u=;c for the flash. 

The angle q, of the conical diffraction grating is also 
easily found for the general case, in which it is necessary to 
produce convergence of the photons at an angle O0 to the z 
axis (in the previous example we took 00=90"), with the 
spot velocity on the axis equal to v,= - u. For this we must 
satisfy the relation 

sin O0 
tg P= (I+:) I - (c/u)cos Oo 

FIG. 4. Scheme for accelerating ultrarelativistic particles using a pair of 
waves of different frequencies through the ponderomotive force F a  V E ~ .  

Without going into detail regarding the explicit expression 
for the period A in the general case, we note that the 
grating should be constructed with grazing angle for effi- 
cient conversion of the beam energy into the required dif- 
fraction order. 

Let us summarize the results obtained in the present 
section. First, there are Bessel packets in which the power 
is focused on the z axis in the form of an illuminated spot 
(a  flash) moving with arbitrary velocity v,= u, including in 
particular u =c, and for which the photons propagate at an 
arbitrary angle O0 to the axis. Second, there exist designs 
consisting of conical diffraction gratings (and possibly a 
number of other elements), which enable us to obtain such 
packets from ordinary planar packets. Third, the light en- 
ergy needed to accompany a relativistic particle bunch of 
length ro over a distance L in the case of Bessel packets 
propagating obliquely is found to be given by essentially 
the same expression (39) as for focused beams propagating 
parallel to the bunch. Here, however, the oblique propaga- 
tion of the photons relative to the axis gives rise to a huge 
( - ( 1 - v2/c2) - 'I2) blue Doppler shift of the light fre- 
quency when we transform to the rest frame of the ultrarel- 
ativistic particles. 

4. ACCELERATION BY THE PONDEROMOTIVE FORCE 
F C C V ~ ?  

Let us discuss the design in which two laser beams of 
the same polarization propagate at angles O1 and O2 to the 
z axis, along which the accelerating particles move (Fig. 
4). We start with the case of two plane waves. Since the 
resulting force is proportional to E l q ,  the transition to 
two Bessel packets is achieved by integrating over all the 
components of the packets. Consequently, the transverse 
component of the force averages to zero and the longitu- 
dinal component will be determined for the individual 
components with a planar wave front by replacing El and 
E, in the formulas with the corresponding field strengths 
on the beam axis. Here we assume that both packets move 
together with an ultrarelativistic particle over the entire 
interaction length L. 
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To accelerate particles in the longitudinal direction, it 
is necessary that one of the beams be preferentially oppo- 
sitely directed ( a ,  = 180"- O1 < 90") and the other prefer- 
entially comoving (02 < 90"). In order to be specific we 
concentrate on the case w2=2w1, i.e., a laser beam and its 
second harmonic are present. Then the angles O2 and a,  are 
related by Eq. (4),  so that we have 

which in the ultrarelativistic limit yields 

cos al +2 cos 02= 1. (42) 

Condition (4) together with (41) implies that in the 
particle rest frame the frequencies w; = (wl - klv) ( 1 
- u2/c2) - and w; = (a2 - k2v) ( 1 - u2/c2) - of the 
two waves are identical, w; = w; = w', i.e., the interference 
pattern is stationary in this system. Then the quadratic 
ponderomotive force7 in the rest frame is equal to 

e" u --- eff - {EIE: exp[i(k; - 4mwlw2 

F' =- e2 (w2-01) 1 Ell?,: I sin 8. 
2mv wlw2 

(44) 

This force depends on the phase 8 = -(w2 
- wl )zdu + q1 - q2 and the interference pattern 
for the point toward which the particle is moving. Without 
going into details about the phase interactions, we take the 
maximum possible value for this force, corresponding to 
sin @= I. 

Over a time dt' in the proper coordinate system, the 
particle momentum changes from zero to a value dp: 
= Fidt', and the energy K' to first order in dt' remains 
unchanged. Then in the laboratory coordinate system, the 
energy K increases by 

Expression (45) has been written in the most general 
case of arbitrary frequencies wl, w2 and angles 81, 13, sat- 
isfying the condition (41) for arbitrary values of the pa- 
rameter u/c. In the ultrarelativistic case ( u z c )  we have 

Let us find an approximate value for the case w2 = 2w , ,  
A1 =2.rrc/ol = 1 pm, 10-~c 1 El,, 1 2/8.rrz 1018 w/cm2. At 
this intensity the field strength is equal to E z 0 . 9 .  lo8 

CGSE=2.65 . 10'' cm and the quiver velocity of a nonrel- 
ativistic electron is I unonr 1 z c ,  so that even for an electron 
at rest the iteration in powers of I uno,Jc 1 used to derive 
expression (43) for the force is valid. For electrons with 
u z c  we finally obtain 

(47) 

where Po= 1.4. 10'' w/cm2, A - mc2/il -0.5 . 10'' V/cm. 
If we take the length of the light packets on the axis 

equal to T A " ~ ' =  10-l3 S, then out of the whole electron 
bunch only a group of this length will be accelerated. The 
energy of both Bessel packets required to move with the 
beam over a distance L = 10 cm with a local power density 
Po= 1018 w/cm2 is equal to 

Thus, using Bessel packets enables us to use the pon- 
deromotive force F cc V E ~  to achieve acceleration for rela- 
tively modest energies of the light pulses. It is significant 
that on account of the oblique incidence of the light on the 
beam axis, the phase condition can easily be satisfied owing 
to the oblique wave propagation. In addition, for an ul- 
trarelativistic beam, the phase condition can be satisfied 
with moderate (e.g., w2/w1 =:2) ratios of the frequencies ol 
and w2. Bessel beams are thus a substantial improvement 
over waves focused parallel to the particle trajectories: in 
the latter case it would be necessary to take 
w1/w2- (mc2/K12. 

5. ACCELERATION PRODUCED BY A FORCE F cc~ t?  

One shortcoming of the scheme based on acceleration 
by the ponderomotive force F ~ ~ v E ~  is the need to use 
beams with a large frequency ratio. Let us consider the 
situation in which there is a high-quality laser producing 
ultrashort (7-10-l3 S) pulses of very high energy, but 
where for some reason it is difficult to convert them into 
comparably energetic beams at different frequencies. Then 
acceleration by the ponderomotive force F cc vE2 is impos- 
sible, since the condition wl ( -n,v/c) =w2 ( 1 -n2v/c) can- 
not be satisfied for w1 = w2 in any geometry or for any value 
of V/C. 

We would like to direct our attention toward the pos- 
sibility of achieving particle acceleration for the case in 
which waves with the same central frequency wo take part. 
This possibility is based on the existence of a force propor- 
tional to vE3, predicted and calculated by Baranova and 
~el'dovich.' Although Ref. 8 alludes to the possibility of 
using this force to accelerate elementary particles, no spe- 
cific treatment of the acceleration problem (geometry, fre- 
quencies, estimates, etc.) is given. The present section is 
devoted to this task. 

The synchronization condition for three-wave action 
on a moving electron takes the form 
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each of which can be expressed in terms of the field am- 
plitude E,= Eaea in the laboratory coordinate frame: 

FIG. 5. Scheme for accelerating relativistic particles with three mono- 
chromatic waves using the force F cr VE'. 

In the case w1 =w2=w3 this condition assumes the form of 
an equation for the three angles 81, 02, and e3 between the 
wave vectors and the direction of the velocity v=ue,: 

Hence it follows immediately that the electron velocity 
cannot be less than u=c/3, i.e., the kinetic energy must 
satisfy T = K- mc2>0.06mc2 =: 33 KeV. An expression for 
the effective third-order potential u ( ~ )  was obtained in Ref. 
8 using the gauge A(R,t) fO, p(R,t) E 0. Here we employ 
this gauge in the electron rest frame, so that in the labora- 
tory coordinate system the fields will be described by vec- 
tor and scalar potentials A and q. 

We start by considering the general case of three plane 
waves with vector amplitudes E, exp(ik,r - iwt), where 

Below, in order to be specific, we consider a particular 
beam geometry. Let the waves El and E2 be elementary 
components of the same Bessel packet with angle 
8, = 6'2 =arccos (c/2u). We also assume that the wave E3 
has angle 83 =90", i.e., in the laboratory coordinate frame it 
is incident perpendicularly on the axis (see Fig. 5).  (Here, 
by the way, the electron kinetic energy must be at least 
0.15 mc2= 85 keV. ) In this geometry, the force F' acting in 
the electron rest frame vanishes when averaged over time 
both in first and second order in the field amplitude E. 
Hence the third-order term is the first nonvanishing con- 
tribution: 

The vector potential A' in (54) consists of three compo- 
nents: 

(56) 

We are interested in the relativistic case u/c=:l, 
81=arccos(c/3u) ~ 6 0 " .  The leading terms in the small pa- 
rameter mc2/K =: 1 / J m  in Ff=dK/dz take the 
form 

where Ak' is the wave vector of the grating formed by the 
cube of the field: 

and we have introduced the unit polarization vectors or- 
thogonal to the electron velocity: 

To order of magnitude, dK/dz given by (57) differs 
from the first-order force F=eE3 by two dimensionless 
factors. The first of these, (mc2 /~12 ,  falls off rapidly as a 
function of particle energy. The second is equal to 
(e2E1~,/mw2)/mc2, i.e., the ratio of the quiver energy 

in the field to the rest energy mc2, evaluated for a 
nonrelativistic electron with the given frequency w. Note 
that the Lorentz transformation for the frequencies and 
fields in the transition to the electron rest frame does not 
change the ratio Ef/w', so that 

For perturbation theory to be applicable, the parameter 
((u~, , /c)~)  must be less than unity. 

Consider a Bessel packet consisting of plane wave com- 
ponents which form a cone with the axis having angle 
8= 60". By virtue of the transversality condition, the vari- 
ous azimuthal components of the beam do not have the 
same three-dimensional vector for the polarization of the 
field E. We select an azimuthal dependence of the polar- 
ization vectors for the fields E l ,  E2 which is optimum for 
the acceleration force F cc VE~:  

-ex cos 8 + e, sin 8 cos pa 
ea = 

,/cos2 8+ sin2 8 cos2 qa 
' (61) 

Then after averaging over azimuth we find 

The right-hand side of Eq. (57) must have an additional 
factor of 0.47, and El and E2 in (57) are taken to be the 
amplitudes which would result for conical focusing of a 
scalar Bessel wave of the same energy. 
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6. BREMSSTRAHLUNG 

Apart from all the disadvantages associated with 
breakdown of a medium subject to powerful laser radia- 
tion, particle acceleration by means of the inverse Cheren- 
kov effect has one important advantage. In the frame at- 
tached to the moving particle, the laser field is static by 
virtue of the Cherenkov condition a' = (w 
- kv)/ ,/- = 0 itself. Consequently, there are no os- 
cillations and thus no waves reradiated by the electron. 

In contrast, irradiation of an ultrarelativistic electron 
with light in vacuum generally yields wl>w; this will hap- 
pen, at least when the angle 8 between the photon wave 
vector and the electron velocity is not too small. As a 
result, in the rest frame the electron is subjected to a strong 
high-frequency field. Its radiation in this system can be 
treated as Thomson scattering. The order of magnitude of 
the intensity of this radiation is 

In the rest frame of the particle, the dipole radiation has 
the usual directionality and frequency o'. When we go 
back to the laboratory coordinate system we have for the 
frequency wrad(nl) and the direction nrad(nl) of the emit- 
ted photons as a function of the direction n' of emission in 
the proper coordinate system 

i.e., orad- ( K / ~ c ~ ) ~ w .  This law is well established. The 
particle energy losses in its rest frame correspond to the 
momentum losses in the laboratory system, i.e., brems- 
strahlung due to Thomson scattering: 

The above comments are included for the sake of complete- 
ness. To within factors - 1 they are equivalent to the treat- 
ment in Sec. 76 of Landau and ~ i f s h i t z , ~  which is devoted 
to bremsstrahlung in the relativistic case, where for 
K% mc2 an expression is given for the component of force 
Fz : 

This formula from Ref. 9 is written assuming v = ve,, and 
the fields are taken in the laboratory coordinate system. 
For the comoving wave with eO=O the relation E x z H y ,  
Ey= -Hx holds, and the decelerating force is small. This is 
equivalent to a strong red Doppler shift in the transition to 
the particle rest frame. In contrast, for all other angles 
OO#O, we have (Ex-Hy(-Ex, (Ey+Hx(-Ey,  and we 
arrive at the estimate (66). Note, however, that the non- 

relativistic expression for the force associated with Thom- 
son scattering (see Sec. 78 of Landau and ~ i f s h i t z ~ )  in our 
case is inapplicable precisely because we are considering 
the limit ( 1 - v2/c2) - '> 1. Let us find the threshold value 
KO of the energy for which the decelerating force balances 
the accelerating force F a  vE2 or Fa VE~.  For F oc vE2 we 
have 

where A is the effective wavelength of the laser transition 
and r,,=e2/mc2 is the classical particle radius, with 
rcl z 3 . 10-l3 cm for an electron. It is evident that when the 
wavelength is A =: 1 pm, the maximum achievable energy is 
rather severely limited by the force of radiative decelera- 
tion to K-200 MeV for electrons. 

In the case of acceleration by a force Fa vE3 a similar 
limit holds: 

This restriction is quite discouraging for ponderomotive 
acceleration. On the other hand, these estimates imply that 
the conversion of strongly focused laser packets into y ra- 
diation by means of spontaneous Thomson scattering on 
ultrarelativistic electron beams is very promising. Collec- 
tive scattering by multiple electrons should be treated spe- 
cifically. 

7. CONCLUSION 

In the present work we have derived estimates for the 
acceleration of charged particles (primarily electrons) by 
ponderomotive forces that vary as F a vE2 and F a vE3 in 
the field of powerful laser pulses. 

We have shown that the momentum carried off by 
scattered waves restricts the achievable energy to a level 
K- mc2(/2/rc1) 'I3 - 200 MeV when the acceleration is 
caused by a force Fa vE2. In the case Fa vE3 a similar 
restriction yields K-50 MeV. This restriction is about 
2000 times less severe for protons, i.e., for them the achiev- 
able energy is 2000 times higher. 

We propose to use Bessel wave packets which accom- 
pany a particle beam over a large distance L with their 
high-intensity focal "flash," moving with arbitrary velocity 
v (aside from the ultrarelativistic case 1 - v2/c2< 1 ) . 

After we had finished this work the JETP referee di- 
rected our attention to a closely related paper by Stein- 
hauer and Kimura.lo 

 he quantities Ax, 60, Az, etc., that appear here and in what follows are 
determined according to the same criterion. 
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