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We study in this paper anomalies in the excitation of nuclei during atomic transitions 
(dynamical effect of the nuclear volume) which are similar to the anomalies in the internal 
electron conversion of y rays. We obtain numerical estimates for the relative 
contributions of the anomalies to the magnitude of the probability for the excitation of nuclei 
in atomic transitions for a number of nuclei with I-forbidden M1 transitions, and for E l  
transitions forbidden in the asymptotic quantum number of the Nilsson model. 

1. INTRODUCTION 

Since the mid-1950's, we have known of dynamical 
effects connected with the penetration of the electron cur- 
rent into the nucleus during the electron internal conver- 
sion of yrays,' and at the present time there is great in- 
terest in them for studies in nuclear physics. This problem, 
which is called anomalous conversion, has been the subject 
of a considerable number of theoretical and experimental 
papers both at home and abroad. The most general features 
of the process were explained in the first publications by 
Church and weneser,ls2 ~ r e c h u k h i n , ~ ' ~  Green and ~ o s e , ~  
Voikhanskii and ~ i s t e n ~ a r t e n , ~  Kramer and ~ i l s s o n , ~  and 
a number of other authors using different nuclear models 
and for various nuclear transitions. The present status of 
anomalous conversion and the most complete lists of ref- 
erences can be found in the book by Band et aL8 and the 
review by ~ i s t e n ~ a r t e n . ~  We note merely that even now the 
measurement of anomalies in the electron internal conver- 
sion coefficient (ICC) is essentially the only means for 
obtaining unique information about, for instance, the mag- 
nitude of nuclear penetration matrix elements, the contri- 
bution of toroidal moments to the probability of electric 
nuclear transitions, and certain other important nuclear 
characteristics (for details see Refs. 8 and 9).  

Meanwhile, there is yet another process in which it is 
possible to measure the same nuclear characteristics as in 
anomalous conversion. This is the nuclear excitation pro- 
cess during atomic transitions, otherwise known as NEAT 
(a  term suggested by M. A. Listengarten); in the English 
literature on this mechanism starting in the seventies, it 
was referred to as Nuclear Excitation by Electron Transi- 
tions, or NEET." A list of the most important publications 
and the theory of the process are given in Refs. 11 and 12. 
The crux of NEET is the possibility of exciting a nucleus 
close to resonance or even at resonance via the transfer of 
a vacancy from the lowest atomic shell upwards, when the 
energy and multipolarity of the nuclear transition and one 
of the atomic transitions are the same. This is a fairly rare 
process, but its probability is entirely measurable by con- 
temporary methods (see the review of experimental work 
in Refs. 1 1 and 12). 

In most theoretical models of NEET known at present, 

the region of the nucleus is taken into account in the sim- 
plest way: it is treated as a point. Somewhat better is the 
calculation in Refs. 11 and 12. We chose a nucleus with 
radius Ro= 1.24'" fm ( A  is the atomic number) and uni- 
form charge distribution. The self- consistent field of the 
atom and the electron wave functions (WF) were calcu- 
lated in the nuclear potential 

We used the y-emission nuclear matrix elements (NME). 
In this way we took into account the static effect of the 
finite size of the nucleus, but nothing more. The use of the 
y-emission NME, which is completely valid for intraband 
M1 transitions, as for instance in the lg90s nucleus (which 
is the most popular object for studying the NEET pro- 
cess), is not totally correct13 for calculating the probability 
of NEET in the 1 9 7 ~ ~  and nuclei, with I-forbidden 
M1 transitions, or for " ' ~ a  and possibly 2 3 7 ~ p ,  with E l  
transitions forbidden in the asymptotic quantum number 
of the Nilsson model. Indeed, the NEET process in 1 9 7 ~ ~  

and ' 9 3 ~ r  occurs for 3 s  -+ ISll2 electron transitions in 
their atomic shells, and ig8' Ta and 'j7bIp for transitions 
between the Sl12 and PI/, shells. The WF of the I SlI2) and 
I PI/') atomic states do not vanish in the vicinity of the 
nucleus. The electron current penetrates efficiently into the 
nucleus for transitions between the indicated shells. Thus, 
when the coordinates of the electron current j , ( r )  and the 
nuclear current J,,(R) satisfy the condition r < R (dynam- 
ical effect of the nuclear volume), the intranuclear process 
may also make a considerable contribution to the proba- 
bility of NEET in processes where there is an anomaly in 
the ICC. 

The aim of the present paper is to determine the role of 
the dynamical effect of the penetration of the electron cur- 
rent into the nucleus in the excitation of nuclei in atomic 
transitions. Taking into account the relationship between 
NEET and the electron internal conversion processes we 
shall, wherever possible, adhere to the notation normally 
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g,, is the metric tensor, and the shell electron is the source 
of the field. The expressions for the currents have the form 

where the y, are Dirac matrices, ?,, is tee operator of the 
nuclear electromagnetic current, Jv= ( I , J )  with I the unit 

FIG. 1. NEET process diagram. matrix, e is the proton electric charge, and we have de- 
noted the WF of the nucleus and the electron by Y (R)  and 
$(r),  respectively. We shall use the representation 

used when describing anomalous conversion. We use a sys- " 

tem of units with f i=c= 1. 

2. PROBABILITY OF NEET TAKING INTO ACCOUNT THE with the normalization condition d r  12 L$ ( r )  + f 2(r)] 
DYNAMICAL PENETRATION EFFECT = 1. Here g( r )  is the large, and f ( r )  the small, component 

It has been shown in Refs. 11 and 12 that the nuclear 
excitation process during electron transitions in an atomic 
shell can be described in the framework of the relativistic 
perturbation theory in quantum electrodynamics by a 
second-order Feynman diagram (Fig. 1). The use here in 
the electron wavefunctions of the real widths of the vacan- 
cies in the atomic shells between which the electron tran- 
sition takes place enables us also to take into account the 

of the radial WF, n = r/r, fljrm(n) are the spherical spinors 
from Ref. 14, and 1 and j are the orbital and total angular 
momenta of the electron states. 

Since the nuclear and atomic transitions have definite 
angular momenta and parity, one must expand the propa- 
gator (4)  in the expression for the interaction energy (3)in 
terms of multipoles. It is convenient to take for the latter 
the scalar, 

further decay of the electron hole into an upper atomic 
level without having to consider third- or higher-order A L ~  ( r ; ~ )  = j ~ ( w r )  Yt,(n), 

processes. 11 

The relative probability P of the NEET process in the L ~ ; )  E = { jL l (wr )YLL- I ;m(n)  
decay of a vacancy in one of the lower atomic shells can be 
evaluated using the formula1' 

in which ri, are the widths of the vacancies in the atomic 
levels in the initial and final states, 1 i) and If), of the 
electron, and WN and w, are the energies of the nuclear and 
atomic transitions of multipolarity L, respectively. We 
have denoted by E~~~~ in (2) the absolute square of the 
interaction energy Hint of the electron current j,(r) and 
the nuclear current J,(R) in the second order of perturba- 
tion theory, 

averaged over the initial and summed over the final states. 
In (3) the photon propagator is taken in the coordinate- 
frequency representation14 

electromagnetic potentials (electric components E, mag- 
netic components M in the Coulomb gauge, and longitu- 
dinal components Y) . l 5  The j (x) here are Bessel func- 
tions, the Yu;,(n)vector spherical harmonics, Yu;M(n) 
=B,,p(LmlplJM)YLm(n)(,, the (LmlpIJM) are 
Clebsch-Gordan coefficients, the YLm(n) are spherical 
functions, and the (?(p = =t 1,O) are the components of the 
photon spin vector in a cyclic base. 

The expansion of the convolution of the propagator 
with the currents in (3) is well known for the regions r < R 
and r > R and has the form2 
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The potentials BLM(r;w) and BiM(r;w) (a=E,M, Y )  are 
obtained from ALM(r;w) and AiM(r;w) by substituting the 
Hankel functions of the first kind hi1)  (wr) for the Bessel 
functions in Eqs. (6). The asterisk in (7) indicates com- 
plex conjugation of the spin and angular functions which 
occur in Eqs. (6). The notation J ( R )  .AiM(R;w) indi- 
cates a scalar product. We shall use this notation in those 
cases where it is necessary to make clear just which vectors 
are multiplied. 

Using the expansions (7) ,  we can write the interaction 
energy in the following form, explicitly distinguishing be- 
tween the regions r >  R and r < R; 

In (8) one integrates first over the electron coordinate and 
afterwards over the nuclear variable. 

In (8), after the standard procedure of adding and 
subtracting the functions 

and 

A ~ ~ ( R ; w N )  loR d 3 r ~ i M ( r ; w ~ )  'j(r) 

in square brackets, we can write Hint as the sum of two 
terms, 

Hiint=Htt + AHint (9)  

the first of which is the interaction energy in the Rose 
model (or the model "without penetration"8), 

while the second is the "additional" interaction energy re- 
sulting from the dynamical effect of the penetration of the 
electron current into the nucleus: 

(11) 

The evaluation of Hgt taking into account the finite 
size of the nucleus is not a problem. It was performed for 
a number of nuclei in Refs. 11 and 12. The problem now 
consists in estimating the relative contribution of the addi- 
tional term AH,,, . 

3. ANOMALIES IN NEET FOR MAGNETIC DIPOLE 
TRANSITIONS 

We consider the contribution to the NEET process for 
magnetic dipole transitions. To do this we split off from 
Eqs. ( 10) and ( 11 ) the parts corresponding to magnetic 
transitions. Since among the potentials (6) there is only 
one with the appropriate parity, the interaction energy for 
a magnetic transition of multipolarity L is given in the 
Rose model by 

and the additional energy is given by 
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Using the connection between the magnetic potentials 
B ~ J ( R ; ~ )  = [hf'(uR)/jL(uR)]Ay&(R;u), we can 
write Hi,,(ML) in the form 

We can calculate the angular part using the well known 
formulas of Refs. 8 and 16: 

where 

while K =  (I- j) ( 2 j  + 1). (We note that the use of the rep- 
resentation (5) for the electron WF, and phases of the y 
matrices corresponding to a Dirac equation of the form 
E+= (pa + mp+ v) 9, where p= f , a  = fy,  leads to a sign 
different from that in Ref. 8 in matrix elements containing 
the matrix a.) 

After integrating over the angular variables, we obtain 
for the interaction energy 

j0 ( h f ) ( u ~ R )  x dr? 
~ L ( ~ N R )  

~ L ( ~ N R )  

where the atomic matrix element 

(my(uN)) = ( K ~ + K ~ )  I," dr?hf)(uNr) 

must be calculated numerically. The second term in ( 17) is 
an integral over the region of the nucleus where uNr( 1. 
(Indeed, in NEET uN cannot exceed the binding energy of 
an electron in the K shell of the atom, so that we always 
have uNR ( 1 in that process.) To evaluate it, we expand 
the Bessel and Hankel functions in their small arguments, 
and we expand the electron WF in powers of r in the 
vicinity of the nucleus. Since one of the necessary condi- 
tions for the occurrence of an anomaly is a considerable 
difference in the amplitude of the electron WF in the nu- 
cleus, we need only an expansion for the wave functions of 
the nSlI2 and mPlI2(n,m, = 1,2,3 ...) subshells. For these 
WF, we can write the well known expansion (see, e.g., Ref. 
8) in the following form: 

We have introduced here the Bohr radius aB to distinguish 
a characteristic atomic scale, while gO,P and c are con- 
stants to be calculated. 

We can now evaluate the integral over the electron 
variable in the second term in (17) explicitly, for an M1 
transition (we shall distinguish the latter by the Kronecker 
symbol awl)  it turns out to be 

Finally, introducing two nuclear current magnetic- 
multipole transition matrix elements, a normal (NfM) and 
an anomalous ( N Y ~ ) )  on, 

and the nuclear penetration parameter of Ref. 8, A('' = (N 
Y p ) ) / ( N L ) ,  we can write the final expression for the 
interaction energy for a magnetic transition in the form 
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where A N = 2 ~ / ~ N  is the wavelength of the nuclear transi- 
tion. 

Since the atomic matrix element (m :(aN)) can be 
calculated explicitly using Eq. ( 18), we can determine the 
relative contribution of the anomaly by comparing the 
terms in the braces in Eq. (22). 

4. ANOMALIES IN NEET IN ELECTRIC DIPOLE TRANSITIONS 

The calculation of the anomalies in electric transitions 
is considerably more complicated. In that case there re- 
main in Eq. ( 11 ) for the interaction energy three terms 
that contain scalar, electric, and longitudinal multipoles. 
Working with the potentials (6) now becomes exceedingly 
cumbersome and inconvenient. We therefore introduce, as 
in Ref. 8, the pair of vector potentials 

The electromagnetic potentials (6) can be expressed in 
terms of the functions (23): 

However, the main convenience of the potentials (23) con- 
sists in that, firstly, as in the case of the magnetic multi- 
poles, the relation B ~ ~ ) ( R ; w )  = (h(L1; (OR )/ 
jL+ 1 (OR ) A k l )  (R;w) is satisfied and, secondly, that the 
easily proven equation 

holds for the region r >  R, and a similar equation, with the 
appropriate substitution A tt B, holds for the region r < R. 

If we use Eqs. (23) and (25), the interaction energy 
( lo)-( 1 1 ) for electric transitions takes the form 

Integration over the angular variables is the same in 
(26) and (27), and using what we have said above about 
the phases of the y matrices, it gives the following  result^:^ 

J dnrqf(r)P$i(r) YL.(~) 

where v= f 1, while the functions F (r)  are defined as 

For the interaction energy H ~ , ( E L )  in the Rose 
model, the integrals over the nuclear and the electron vari- 
ables in Eq. (26) can be separated, which makes it possible 
to work separately with the nuclear and electron parts. 

We transform J g d 3 ~ ~ o ( ~  )AtM(R;wN) as follows. It 
follows from the equation of continuity for the electromag- 
netic current of the nucleus 

a, Jo(t,R) +div J(t,R) =O 

that Jo(R) = (i/wN)divJ(R). We substitute and integrate 
by parts. Since the functions AfM(R;aN) have no singu- 
larities at zero and there is no current through the surface 
of the nucleus, one can easily show by using Gauss's the- 
orem that this integral is equal to - i s g d 3 R ~ ( R )  
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A$(R;wN) [the longitudinal potential AIM(R;wN) is 
related to ALM(R;wN) by AIM(R;oN) = (l/oN)grad 
ALM(R;~N)I.  

It is not possible to carry out an analogous procedure 
with the electron part because of the behavior of the func- 
tions BLM(r;w) at zero. One must perform the calculation 
using Eqs. (28)-(29) and the Green-Rose theoremS for 
combining Bessel functions and the wave functions (5 )  
that are solutions of the Dirac equation: 

(30) 

where the function 9 L ( r , ~ N )  is defined by 

2L+ 1 
9' L(r,wN) = -- ?[gi(r)ff(r) -fi(r)gf(r) I .  

WN 

(31) 

(The Green-Rose theorem in the form (30) with the cru- 
cial additional factor (Ef - Ei)/ 1 Ef - Ei 1 was proved in 
Ref. 17.) The formula for the interaction energy 
H;,(EL)~OW takes the form 

where the nuclear and the atomic matrix elements are, 
respectively, equal to 

-L)gi(r)ff(r) + (Ki-Kf 

+L)f i ( r )gf ( r ) ) l .  (34) 

As is done in the theory of internal conversion, we 
transfer the second term in braces in (32) to the anoma- 
lous part. It is nonvanishing only for a limited number of 
transitions with xi+ x = =t ( L + 1 ) and makes an appre- 
ciable contribution to the interaction energy only when 
there are anomalies present. If, however, the nuclear tran- 
sition does not satisfy the conditions under which anoma- 
lies are possible, the contribution of the second term in 

(32) to the magnitude of the interaction energy is clearly 
negligible. This is the reason why the second term in (32) 
was neglected in Refs. 11 and 12. 

As to the additional interaction energy AHint(EL), use 
of the potentials A Y ~  and BY" makes its evaluation similar 
to that of AHint(ML). After integration over the angular 
part of the electron WF we get 

X 1 Jo(R)AtM(R;oN) loR dr? 

+i  J ( R )  . A ~ ~ * ( R ; u ~ )  IoR dr? 
v= * 1 

Since R <Ro, and hence the integration over the radial 
variable r is carried out only over the region of the nucleus, 
we can, firstly, expand the Bessel and Hankel functions in 
a small parameter and, secondly, use the representation 
( 19) for the radial components of the electron WF in the 
expressions for 3:) (r)and 3, ( r ) ,  which yields 

where the factor q =  1 for I i )  = I in the 
I + I S 1 / 2 )  electron transition and q = - 1 for 
1 i )  = I Sl I2 )  in the I Sl I2  -' I electron transition (recall 
that the anomalous term is considered here only for atomic 
E l  transitions between the PlI2 and SlIZ states). 

After the appropriate substitutions one can easily get 
the internal integrals in (35). Expanding the potentials 
A ~ L  and ALM in (35) in the small parameter wNR, we find 
that 
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In fact, in these last formulas we made a choice of the 
nuclear penetration operators. Following the work by 
Voikhanskii and ~ i s t e n ~ a r t e n ~  we define them by the equa- 
tions 

where nR = R/R. 
We then use the fact that for the nuclear current, by 

virtue of continuity, 

which enables us to eliminate the operator J ( R )  
n R q M ( n R )  from consideration, expressing it in the ap- 

propriate way in terms of two other ones, J o ( R ) q M  
( n ~ )  and J(R) [ n ~  X Y*,L,M(~R)]. 

Using such a substitution and also the well known 
expansion of the spherical vectors YLL*I;M(nR) in a 
longitudinal/transverse basis1 

we easily obtain for the matrix elements of J ( R ) .  

Y*,L+ I ; M ( ~ R )  

A 

( M ,  is the proton mass). Note that d 2 ,  which is essen- 
tially an operator of the matrix element of the transition 
spin currents, leads to a completely different selection rule 
in the asymptotic quantum number of the Nilsson model 
tkan the usual y emission op%rator and charge operator 
dl. It is therefore precisely 4, which is responsible for 
the occurrence of most of the anomalies in the electric 
tran~itions.~" 

Using Eqs. (38) and the explicit form of the functions 
F;+')(~=O), for AHi,, (EL) we obtain 

The matrix elemenAs ( 2 1 )  and ( 2 2 )  in (40) are defined 
by the relations = J z d 3 R ~ $  (R)dl ,2\YI(R).  

Using Eqs. (38), we can express the n u c l e ~  matrix 
el%ment ( N ~ $ ) ( W ~ ) )  in terms of the ME (,MI) and 
( A 2 )  and rewrite the interaction energy (32) in the Rose 
model: 

Using the equation of continuity for the nuclear cur- 
rent, the representation of the longitudinal potential in 
terms of the gradient of the function ALM(R,uN) which we 
have already used above, and the relation A ~ ~ ( R , w ~ )  

% 
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= ,/-AIM(R,oN), we can express the nuclear 

matrix element (NfM(oN)) (3 1 ) for an electric transition 
as 

where the nuclear y emission matrix element of electric 
multipoles is by definition equal to 

Using VoTkhanskiY and Listengarten's nucley penetra- 
tion paramet%rs6 for electric multipoles A( ' )  = ( d l ) / ( U , )  
and A(') = (A 2)/( U,,), we can write the final expression 
for the nucleus~lectron interaction energy in NEET pro- 
cessed for electric transitions in the form 

As in the case of anomalies in the ICC, the role of the 
term containing the nuclear charge parameter A ( ' )  is rela- 
tively small compared to that of the second, containing the 
transition spin current parameter A(2). Here we are dealing 
not only with an additional small quantity introduced by 
an extra factor R d a B ,  but also with the previously men- 
tioned difference in the selection rules for the matrix ele- 

ments ( 3 2 )  and (U,,). AS for the contribution to the 
anomaly from the second term in Eq. (32), its magnitude 
is approximately 1/3. 

5. NUMERICAL ESTIMATES AND DISCUSSION OF THE 
RESULTS 

The relative probability P for the excitation of nuclei in 
atomic transitions can be calculated using Eq. (2),  in 
which the square of the interaction energy E;,, which by 
definition is equal to 

can easily be evaluated using the formulas from Refs. 10 
and 11: 

The reduced probability B(E(M) L;I-P)  is here ex- 
pressed in the standard way in terms of the matrix ele- 
ments (21) and (33): 

and by ( I % ~ ( ~ ) ( w ~ ) )  we have denoted the total atomic 
matrix element including the expressions in braces in (22) 
and (42): 

We now determine the contribution of anomalies to the 
probability for a NEET process in the '93~r,  19 '~u,  ' " ~ a ,  
and 2 3 7 ~ p  nuclei. 

We show part of the level scheme for the iridium atom 
and the ' 9 3 ~ r  nucleus in Fig. 2 (the characteristics of the 
nuclear levels are taken from Ref. 19). For the I-forbidden 
magnetic dipole transition 2d3,,-3sl/, from the ground 

shell E,(keV) J y  El keV) TI,? 

FIG. 2. Parts of the level scheme of the iridium 
atom and the I9'1r nucleus. 

K lS1,+2 L-76.11 1 / 
193 

Ir atom Ir nucleus 
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FIG. 3. Electron WF of the ISl/, state when there is a vacancy in the M I  
shell, and of the 3SI,, state when there is a vacancy in the K shell for the 
I9'1r nucleus. Abscissa: distance from the center of the nucleus in 
x = r / a P  

state to the first excited 1/2+ state (73.04 keV) in 193~r,  an 
anomaly has been predicted (see Ref. 8),  but so far not 
observed experimentally. In the shell model, adapted suit- 
ably for a description of the properties of M1 in nuclei such 
as 1 9 3 ~ r  and 1 9 7 ~ ~ ,  there is an estimate I(') =9.7 in Ref. 8 
for the penetration parameter, and we shall use that. The 
relativistic electron WF were evaluated using the program 
of Ref. 20 in the nuclear potential (1)  and the average 
self-consistent field of the electron shell, which was con- 
structed using the relativistic variant of the Hartree-Fock- 
Slater method. The atomic matrix element ( 18) for an M1 
transition between the 3SlI2 state in the Irf ion with a hole 
in the K shell and the 1Sl/2 state in the 1r' ion with a hole 
in the M shell is equal to (my(wN)) 
= -2.9. 1oe3-i. 10.4. The behavior of these electron WF 
in the region of the nucleus is shown in Fig. 3. They are 
approximated by Eqs. ( 19) with coefficients which have 
been calculated by the least-squares method. The result is 
3Sll2: c=580.1, p= - 1605.4; 1SlI2: c=3121.7, p 
= - 1598.1. The expression in the braces in (22) takes the 
form {(my(wN)) + iI(')0.16). Adopting the value found 
for (mr(wN), we find that taking the anomaly into ac- 
count for the magnitude of I(') given in Ref. 8 reduces the 
probability for the NEET process by an approximate factor 
1.3-1.4 as compared to the calculation in the Rose model 
(see Table I ) .  

A similar situation also occurs in 1 9 7 ~ ~ .  The magni- 
tude of the parameter I(" for the I-forbidden 

TABLE I. 

2d3/2+3~1/2 M1 transition from the ground state to the 
first excited 1/2+ state (77.35 keV) has not been estab- 
lished accurately. The theoretical estimate i1(')=4.3 from 
Ref. 8 agrees with one experimental set of data,21 
I(')=3.4*1.9, cm but disagrees with another,22 
I(') = 1.8 *0.3, cm. In the Table we have given the change 
in the NEET probability for both experimental values of 
I('). 

Note that in both the and 1 9 7 ~ ~  nuclei, the cross 
section for the excitation of the appropriate levels in the 
inelastic scattering of electrons by the nuclei is less than the 
cross section for the NEET process. The latter is equal to 
the product of the cross section UK for the ionization of the 
K shell and the relative probability for NEET proper. The 
cross section for inelastic scattering is in both cases com- 
pletely determined by the E2 component, and is essentially 
independent of the contribution from the M1 component 
(the magnitude of the latter here is no more than 10%). 
All this enables us to obtain important information about 
the properties of the M1 transitions considered in both 
nuclei in experiments with an electron beam of the kind 
described in Ref. 23, where the probability for NEET was 
measured in ' 9 7 ~ ~ . ' )  

An interesting situation has developed in the determi- 
nation of anomalies in the ICC in the 2 3 7 ~ p  nucleus. On 
the one hand, in the lower part of the spectrum consider- 
able anomalies are well known in the ICC for two E l  
transitions from the 5/2- level (59.5 keV) to the 7/2+ 
(33.2 keV) and 5/2+ (0,O) states which lie between the 
r [ N n Z A ) ]  = 5/2-[523] and 5/2+[642] rotational bands. 
On the other hand, the presence of these anomalies agrees 
poorly with the known selection rules in the asymptotic 
quantum number of the Nilsson r n ~ d e l . ~  Finally, for the 
7/2- ( 102.96 keV) -+ 5/2+ (0,O) transition between the 
same rotational bands, no anomalies in the ICC have been 
observed up to the present. An experimental study of the 
NEET process might therefore given an independent an- 
swer to the problem of the existence of anomalies in the E l  
transition with an energy of 103 keV in 2 3 7 ~ p  (see Table 
I ) .  

There is a very large anomaly in the ICC, for the El 
transition of energy 6.24 keV (conversion decay of the first 
excited level) in the ' " ~ a  nucleus. The excitation of this 
level in a NEET process is possible in the 3SIl2-, 2P3/, and 

-- - -  - - - - - 

Transition NEET probability 

Nucleus in the nucleus in the atom Neglecting the anomaly Taking the anomaly into account Penetration parameter 

1 9 7 ~ ~  MI, 77 keV 3s1/2+ ISID 1.4X 1.3X 10- ' A'''= 1.8 
1 . 2 ~  lo-' ),(o) = 3.4 

Iq31r MI,  73 keV 3s112- ls1/2 7 . 4 ~  lo-9 5 . 4 ~  lo-9 A"' =9.8 
2 3 7 ~ P  El ,  103 keV 2f'1/z-+ 4 / 2  2 . 4 ~  lo-'3 1 . 7 ~  1 0 1 2  (A(,'= -165) 

2p3/2+ lS1/2 2 . 9 ~  2.9 x 1 0 1 2  
total 3 . 2 ~  1 0 - l 2  4 . 6 ~  l o i 2  

" l ~ a  El ,  6.24 keV 3s1/2 -2p1/2 4.2 X 10- l6  6 . 8 ~  l 0 I 4  A(21= - 620 
3s3/2 - 2p3/2 9 . 0 ~  l o 1 5  9 . 0 ~  10-l5 

total 9 . 4 ~  10-l5 7 . 7 ~  1 0 - 1 ~  
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3S1/2-2P1/2 electronic transitions. A strong anomaly ap- 
pears in the second transition. The numerical values are 
given in the Table. We note merely that the partial NEET 
probability for the 3S1/2+2P1/2 electronic transition in- 
creases by a factor of approximately 170 when the anomaly 
is taken into account. In this specific case, even the relative 
softness of the transition is important; as a result of it, the 
factor ( ~ , / a ~ ) ~  in Eq. (41) starts to play an important 
role. As a result, even the total probability for the process 
(if we irradiate l g l ~ a  atoms with an electron beam ionizing 
both the 2PlI2 and the 2P3,, shells) increases by an order 
of magnitude as compared to when the anomaly is not 
taken into account. As for absolute values of the NEET 
probability, in l g l ~ a  we used for their calculation data 
about the widths of the vacancies in atomic L and M shells 
from Ref. 24. 

From the example of l g l ~ a ,  it is well known that a 
measurement of the NEET probability for low-energy tran- 
sitions (where the internal conversion process is possible 
only from the M and higher shells while NEET goes 
"downward," for instance, to the L shell) can give very 
useful information about the nuclear penetration matrix 
elements. The anomalies in NEET can in a number of cases 
manifest itself more strongly than in the ICC due to the 
strong localization of the electron WF in the low-lying 
atomic shells, and hence the large amplitude of those WF 
in the nucleus. For the same reason the NEET process can 
also turn out to be useful for a study of anomalies in tran- 
sitions with a multipolarity larger than unity. 

Finally, NEET is a rather rare process which requires 
the satisfying of rigid conditions on the energy and multi- 
polarity of the atomic and nuclear transitions. However, 
the number of nuclei in which one can observe NEET can 
be relatively easily widened if one achieves an appropriate 
change in the energies of the "working" levels between 
which the atomic transition takes place, through multiple 
ionization of some of the atomic shells. Such a variation in 
the energy w~ of the atomic transition does not present 
particular technical complications and, if necessary, can be 
realized for a relatively large number of atoms. 

In conclusion the authors has the pleasant task to 
thank M. A. Listengarten for useful discussions of the 
problems relating to anomalies in NEET and for a number 
of timely pieces of advice and hints which made the work 
of this problem considerably easier. 
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