
On the theory of nonequilibrium phenomena in the flow of a gas mixture in a capillary 
V. M. Zhdanov 

Engineering-Physics Institute, 115409 Moscow, Russia 

V. I. Roldughin 

Institute of Physical Chemistry, Russian Academy of Sciences, 11 7915 Moscow, Russia 
(Submitted 27 September 1993) 
Zh. Eksp. Teor. Fiz. 105, 321-337 (February 1994) 

Based on the linearized kinetic equation, expressions for the heat and mass fluxes between 
two vessels linked by a cylindrical capillary are obtained. The cross-section averages 
of the diffusion fluxes, heat fluxes, and mass-averaged gas velocity are expressed in terms of 
pressure, temperature, and component concentration gradients, and the moments of 
the distribution function at the capillary wall. It is shown that the Burnett terms can be 
separated explicitly in the fluxes and that the expressions of interest can be written down in 
terms of the slip velocity and the moments of the Knudsen part of the distribution 
function. The kinetic expression for boundary entropy production is analyzed, by means of 
which a system of linear phenomenological equations for the slip velocity and the 
fluxes localized in the Knudsen layer is constructed. 

1. INTRODUCTION 

The general relations describing the transfer of mass 
and heat between two vessels linked by a narrow capillary 
are known to be established by the irreversible thermody- 
namics of discontinuous systems.' Of independent interest 
is the kinetic justification of the corresponding system of 
linear phenomenological transport equations-allowing, in 
particular, the determination of an explicit form of the 
kinetic coefficients of the Onsager matrix. For flows of a 
gas mixture in a capillary, this problem can be solved 
through the use of the linearized Boltzmann kinetic 

Attempts at calculating the kinetic coefficients 
for the case of a cylindrical channel and arbitrary Knudsen 
numbers have so far been usually specialized in character, 
mostly using a model collision integral in the Boltzmann 

On the other hand, fairly general relations for 
capillary heat and mass fluxes can be derived on the basis 
of the kinetic equation with an exact collision integral. For 
the flow of a pure monatomic gas in a plane channel, this 
has recently been demonstrated in Ref. 9. 

The present paper analyzes heat and mass transfer tak- 

and Knudsen contributions to the wall values of the mo- 
ments makes it possible to separate the Burnett terms ex- 
plicitly in the flux expressions and so to reduce the problem 
to that of calculating the slip velocity and the moments of 
the Knudsen distribution function. These latter turn out to 
be closely related to the Knudsen layer localized heat and 
mass fluxes. All the above quantities can be calculated us- 
ing the methods (e.g., variational ones) developed for the 
solution of the boundary problems of kinetic the~ry.~" ' - '~  

The paper also analyzes the kinetic expression for en- 
tropy production. Along with the known expressions, the 
so-called boundary entropy production is intr~duced, '~"~ 
on which basis the system of linear phenomenological 
equations for the slip velocity and for the fluxes localized in 
the Knudsen layer is constructed. The resulting equations 
add importantly to the conventional irreversible thermo- 
dynamics relations in that they form, in a sense, a system of 
boundary conditions for the flow of the gas mixture in a 
capillary. 

2. AVERAGED DIFFUSION AND HEAT FLUXES 

ing placd in a &ulticomponent gas mixture under the ac- Consider an N-component gas mixture flowing in a 
tion of pressure, temperature, and partial c~ncentration circular cylindrical capillary of radius R under the action 
gradients, the mixture flowing in a circular cylindrical cap- .fa pressure gradient (k=p- 1vB), temperature gradient 
illary. It proves possible to express the cross-section aver- (,= T-'v,T), and partial concentration gradient 
aged diffusion and heat fluxes, as well as the mass-averaged [sa=~z(n,/n)]. ~t is assumed that p, T, and n, vary slowly 
velocity of the mixture, in terms of the corresponding gra- over the typical molecular mean free path 1 so that 
dients and the moments of the distribution function as 
determined directly at the wall. The moments themselves Ikll 41,  1711 41,  Isall 4 1 .  (1 
then appear as functionals of, first, the familiar diffusion, If the mixture flows slowly in the channel (the flow veloc- 
viscosity, and heat conductivity solutions obtained within ity u is appreciably less than the typical thermal molecular 
the usual Cha~man-Enskog approximation, and second, velocity), the distribution function for the molecules of 
the Burnett solution arising in a higher-order approxima- species a is sought in the fom'69'7 

tion of the same method.'032 A formal representation of the 
obtained expressions based on the separation of the bulk f , ( ~ , , r ) = f ~ ~ ) [ l + @ ~ ( ~ , , ~ ~  ) I ,  

(2) 
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Here x, is the two-dimensional radius-vector in the trans- 
verse cross section of the channel; the z axis is directed 
along the capillary; /3, = md2kBTo, kB is the Boltzmann 
constant, and the index zero corresponds to the parameters 
of the absolute Maxwellian distribution f& The nonequi- 
librium correction to the distribution function, @, , satisfies 
the system of linearized kinetic equations'"'8 

where LaB is the linearized collision integral for molecular 
species a and /3, 

where pa=m,n, is the mass density of the molecular spe- 
cies a ,  n=B,n,, p=X,pa. 

Equations (3) must be completed by the boundary 
conditions for @, at the wall of the channel"'16 

Here 2 is the generalized boundary operator possessing the 
reciprocity property, i.e., B,(v, + v:) = B,( - v: 
-+ -v,); n, (xf ) is the unit normal at the point xf of the 
channel surface, directed inward; dF is the differential el- 
ement of the surface, and 8 is the Heaviside step function. 

Let us define the diffusion velocity w, = u, - u and the 
reduced heat flux ha = q, - $ of the molecular species 
a ,  both in the z direction, by 

where u=Z,(p,/p)u, is the mass-averaged flow velocity 
and p,=n,kBT. In the following we will be interested in 
the cross section averages of the diffusion velocity, (w,), 
and of the total heat flux, (q,) = B,(h,) +; Zg,(w,). 
Let us show that these may be expressed, using (3 ) ,  in 
terms of certain moments of the distribution function on 
the wall of the channel, to be determined independently. 

To this end we employ the well-known integral rela- 
tions of the Chapman-Enskog method which arise in the 
solution of diffusion and heat conductivity problems in in- 
finite  ace,^,'^ 

where the functions @$, and @, satisfy the conditions 

(10) 

Let us consider the diffusive transport of a given mo- 
lecular species. The diffusion velocity (w,) averaged over 
the channel cross section S may be written as 

(11) 

Using (8) we rewrite ( 1 1 ) in the form 

where we have introduced the notation 

Owing to the symmetry property of the linearized collision 
operator ([@,L]= [L,@]) we may put (12) in the form 

Replacing L(@) by the left-hand side of Eq. (3) and per- 
forming the velocity and cross section integrations, we find 
(index y is replaced by a in the final expression) 

2 
(w,)=- 2 D&Bz-D~aVzln T + z W ( R ) .  

B 
(15) 

Here 
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The last term in (15) is easily transformed by the two- 
dimensional Gauss divergence theorem (after introducing 
v,@: under the divergence sign). In particular, for a circu- 
lar cylindrical capillary, 

3. MASS-AVERAGED VELOCITY OF A GAS MIXTURE IN A 
CHANNEL 

In order to determine the cross-section-averaged veloc- 
ity of the mixture flow, (u,), we use the integral relations 

The coefficients Dd and DTa in (15) correspond to 
the familiar diffusion and thermal-diffusion coefficients for 
a multicomponent The total-pressure gradient 
term in (15) vanishes upon integration on account of the 
first of the conditions (10). Note, however, that the pres- 
sure gradient dependence (barodiffusion) is accounted for 
through the dS, contribution and is present in the w ( R )  
term. 

In a similar way, an expression for the averaged heat 
flux is found. Let us express (h,) =Za(h,) in the form 

The first of these arises in the solution of the mixture vis- 
cosity problem according to the usual Chapman-Enskog 
method2'10 (the corresponding solution is denoted by @,), 
the second is the extension to the case of a circular cylin- 
drical capillary of the corresponding plane-flow relation of 
Ref. 20 for the Burnett correction ( a B )  to the distribution 
function. Note that the viscosity of the mixture is defined 
in this context by the expression 

V =  - [ ~ V A , V P ~ @ ~ I  (29) 

From Eq. (28) we express the combination or, using ( 9 ) ,  

Using the symmetry property of the collision integral and 
replacing L(@) by the left-hand side of (3), after the ap- 
propriate integration we have 

For the cross-section-averaged velocity (u,) we have 

Using again the symmetry property of the collision integral 
and replacing L (@) by the left-hand side of (3), in view of 
the condition2 Here 

we have 

The pressure gradient term in (21) vanishes in view of the 
second condition of ( 10). 

Introducing the thermal diffusion relations2 
Here 

and the thermal conductivity of a multicomponent mixture 

it is convenient to write (q,) in the form 

Now let us try to relate (Mp) to certain wall moment 
values. For this it is convenient to write Eq. (3) in cylin- 
drical coordinates, which corresponds to representing the 
first term on the left-hand side of (3) in the form2' 
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a@, a@, ~iq *a va+aq a@, + - - - - - .  V a l  -- 
ax, a r  r a~,, r a ~ , ~  (36) 

Multiplying (3), with (36), by m , ~ & ~ ,  integrating over 
the velocities and summing over a we find 

Integration of (37) gives 

r 
[mv,,v,@] = -- Vg.  2 (38) 

Now let us multiply (3) by ~,p&~@,, . Integrating over 
the velocities and summing over a we obtain 

= [V+~@,,L(@) I . (39) 

For a transformation of the right-hand side we use the 
symmetry of the collision integral as well as the relations 
(27) and (38), whereas on the left we integrate by part in 
the last two terms. The result is 

Integration over r yields 

Now substitute (40) into the expression for (M,), Eq. 
(35), remembering that v: , = $,+ vb. For a circular cy- 
lindrical capillary we find 

After integrating by parts in the second term we obtain 

Replacing the integral in (41) by using (40) for r=R 
finally gives 

Substitution of (42) into (31) results in 

4. SEPARATION OF THE BULK AND KNUDSEN 
CONTRIBUTIONS TO THE FLUXES 

Note that the expressions for the diffusion velocity, Eq. 
( 15), and for the heat flux, Eq. (26), are formally free of 
terms associated with the presence of the Burnett contri- 
butions. However, the existence of the bulk heat flux'"9 
and of the barodiffusion effect in a viscous gas 
which are due to precisely the Burnett terms, are well 
known. On the other hand, in the velocity of the gas mix- 
ture flow as a whole [formula (43)] there appear the bulk 
Burnett contributions (the terms proportional to aBr and 
bJm) absent from the usual hydrodynamic description.23 
As in the pure-gas case,9 the problem is easily resolved by 
noting that the bulk contributions are contained in the 
moments of the distribution function as measured at the 
wall. We will show this by employing the real structure of 
the distribution function, with the bulk and Knudsen parts 
separated in it. Let us express @, in the form Qh+q,, 
where20"' 

Here uh(r) is the hydrodynamic velocity of the mixture. 
For a circular cylindrical capillary23 

where u;(r) and u;(r) are the first and second derivatives 
of the velocity with respect to r, with ui(R) 
= (R/29)Vg. The gas velocity at the wall (or slip veloc- 
ity) uh(R) must be found independent of the solution of 
the corresponding kinetic problem. Note that for small 
Knudsen numbers (I/R 4 1 ) the Knudsen part of the dis- 
tribution function, q, , is localized in a thin boundary layer 
near the wall, but in the general case the division into ah 
and q, is formal in character. 

Substituting (45) into (19) we find 

The remaining terms disappear on integration because of 
the unevenness with respect to v,. Substitution of (47) into 
( 15 ) gives 

where 

b, = - [vz@: ,v;u,*,] . 
Similarly, for MJR) we have where 
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and 

where 

It is easy to show that the coefficients ba and a~ do 
relate to the Burnett contributions to the diffusion and heat 
fluxes, and that the expressions (49) and (5 1 ) are in fact 
identical with (33) and (32). We demonstrate this by tak- 
ing the coefficient ba as an example. Note that instead of 
(49) we may write 

Here we have used (40) with @ replaced by vz@: (which is 
independent of r) ; and the conditions [v,@:, 1] = 0 (Ref. 2 ) 
and [$a: ,m] =o, the latter following from ( 10). Using 
(28) we have 

The term proportional to pS/p goes to zero on account of 
the condition (30) giving 

which is identical with (33). 
A similar argument shows the identity of (51) and 

(32). 
Now let us transform the expression for (u,). Using 

(45) we have 

+ [~?v,@~,q(R) I . (53) 

After (52) and (53) are substituted into (43) and the 
definitions (49) and (5 1 ), are used a considerable part of 
the terms cancel out and the final expression for (u,) takes 
the form 

Let us show that the moments of the Knudsen distri- 
bution function at the wall of the channel can be expressed 
in terms of the Knudsen layer localized heat and mass 
fluxes. To this end we turn to consider the equation for qa 

Multiplying this by v J ~ @ $ ~ ,  integrating over the veloc- 
ities, summing over a ,  and averaging over the cross section 
of the channel, we can easily show by means of transfor- 
mations similar to those given in Sec. 2 that (in the final 
expression y is replaced by a)  

Here j,=ja- (na/p)j^m is the Knudsen layer localized 
diffusion cux of particles of species a. Note that ,. 
jm=XamJa and 

In a similar way it is established that 

where 

Now let us consider the structure of qa terms which 
enter the expression for (u,). Multiplying (55) by 
m a v d d  with the use of (36) and then integrating over 
the velocities and summing over a we find 

from which, in view of the symmetry of the channel, it 
follows that 

[mvz,v,q(R)l = O .  (60) 

Now repeating the procedure used in Sec. 3, using (60) we 
find 

[v#f@,,q(R)l = O .  

Finally, using (60) one can obtain 

It should be emphasized that localization in the Knudsen 
layer has a direct physical meaning only in the case when 
this layer is clearly separable-for example, for Knudsen 
numbers Kn< 1. In the general case, to the Knudsen fluxes 
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actually corresponds the difference between the fluxes cal- 
culated from the total distribution function and the wall- 
extrapolated hydrodynamic (or bulk) fluxes. 

Using (56), (57), (59), and (61 ), the final expressions 
for the cross section averages of the diffusion velocity, heat 
flux, and mass-averaged gas mixture velocity can be writ- 
ten in the form 

Note that the Burnett coefficients aB and b,, as is seen 
from (51) and (49), can be calculated using the familiar 
expressions for @$, @*, and @, (Refs. 2, 19). A complete 
calculation of the cross section averages of the velocities 
and heat fluxes makes it necessary to determine uh(R ) and 
the moments of the Knudsen distribution function at the 
wall of the channel, which can be accomplished in the 
framework of the methods developed for the solution of the 
linearized kinetic equation for boundary We 
will not present the details of this kind of calculations (see, 
e.g., Refs. 11-13, 24, 18) but rather will focus on the der- 
ivation of general relations complementing the system of 
equations (62)-(64). These relations follow from the anal- 
ysis of the kinetic expression for entropy production and 
extend the system of linear phenomenological equations 
commonly used in irreversible thermodynamics.' 

5. PRODUCTION OF ENTROPY IN THE GAS MIXTURE 
CAPILLARY FLOW 

Following Refs. 14 and 15, consider the individual 
components of the entropy production obtained from the 
system of kinetic equations (3). The production of entropy 
due to intermolecular collisions is given by the expression 

Substituting for L(@) from the left-hand side of the ki- 
netic equations (3), integrating over the velocities and av- 
eraging over the channel cross section we obtain 

The production of entropy in molecule-wall collisions is 
equal, with opposite sign, to the entropy flux onto the 

k B  
(AS*) =, [v , ,@'(~) l .  

As a result, for the total entropy production we arrive 
at the classical result"25 

In writing the last term it is taken into account that 
]dS,=0. To the (AS)  expression there corresponds the 

system of phenomenological equations"25 

where the Aij are the kinetic coefficients satisfying Onsag- 
er's symmetry relations, and To is the average temperature 
of the gas. 

The entropy production as determined by the bulk dis- 
tribution function is 

The bulk distribution function satisfies equations (3) 
with @a replaced by @&. With their help, for the cross- 
section average of ASb we find 

By subtracting from (67) the entropy production (ASb) 
we obtain the so-called boundary entropy production 

A A 

(71) 

Here j,, jq ,  and I, are defined by expressions (57), 
(58), and (61). 

Physically, the entropy production (71) is the sum of 
the contributions due to molecular collisions with the wall; 
due to collisions among the molecules "having" the Knud- 
sen distribution function; and due to collisions of the same 
molecules with those obeying the bulk distribution 
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function.15 The last term in (71) can be calculated using 
the bulk distribution function (45). The result is 

where 

The system of phenomenological equations corresponding 
to the entropy production ASx with (72), can be written in 
the form 

Equations (74) complement (62)-(64) representing, in a 
sense, a system of boundary conditions for the flow of a 
multicomponent mixture in a channel. 

For small Knudsen numbers, the first equation de- 
scribes the viscous, diffusion, and thermal slip effects as 
well as the baroslip effect."'12 The next three equations 
characterize the diffusion and the heat and mass transfer in 
the boundary layers. Onsager's symmetry relations 
Aij = Aji interrelate heat and matter fluxes in the boundary 
layers, caused by various thermodynamic "forces." The 
equalities AOk=AM) relate gas slip velocities of various 
types and, what results from changes in the hydrodynamic 
normal-to-surface velocity, the heat and matter fluxes in 
kinetic boundary layers. 

For intermediate and large Knudsen numbers, the sep- 
aration of the system (74) is formal and difficult to inter- 
pret. In these mixture flow regimes the system (74) just 
indicates that, first, we can separate from the total fluxes 
(68) certain parts expressible through the Knudsen distri- 

bution function and, second, that it is possible to derive 
symmetry relations for the coefficients characterizing these 
parts. 

6. THE SYMMETRY OF THE KINETIC COEFFICIENTS 

It is known that the kinetic coefficients Rap in the sys- 
tem of phenomenological equations (68) satisfy Onsager's 
reciprocity relations.' The proof of the corresponding sym- 
metry relations is obtainable in the framework of the gen- 
eral statistical concepts of irreversible thermodynamics as 
well at the level of the purely kinetic approach. For the 
flow of a pure gas, the symmetry of the coefficients RUB has 
been proved in Refs. 16, 17, and 9. Since the system of 
phenomenological equations (74) depends on only a part 
of entropy production for its construction, the question 
may arise as to the validity of Onsager's relations for the 
kinetic coefficients Aa8. Below we prove the symmetry of 
these coefficients based on the kinetic approach first used in 
Ref. 9. 

We make use of a relation obtained in Ref. 17, which is 
easily extended to the flow of a multicomponent mixture in 
a capillary and can be written in the form 

where and q2 are the solutions of the Boltzmann equa- 
tion (3) with homogeneous boundary conditions, and 3 
is the operator of inversion in velocity space, i.e., Y $ ( v )  
=$(-v). 

The relation (75) is easily proved by using the bound- 
ary conditions (5). Then (75) is rewritten in the form 

The vanishing of this difference is ensured by the reciproc- 
ity relations for the kernel of the scattering operator, 
B(v,vl). 

We turn now to the general form of the distribution 
function (45). Note that the unknowns in this expansion 
are the slip velocity uh(R) and the Knudsen distribution 
functions pa, whereas the remaining parameters [Vg, 
VzT, dm, and ui(R)] are considered specified. Because of 
the linearity of the original problem and of the boundary 
conditions themselves, one may consider uh(R) and pa to 
be linear combinations of the relevant quantities, so that 
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Here uT= (2kBTdpafl)1'2 is the characteristic thermal ve- 
locity of the molecules and pd is the reduced mass of the 
molecules of species a and 8. 

As an example, we now prove the symmetry of the 
coefficients hN and ANO by using the equality (75), in 
which y5, stands for the solution proportional to ui,  and 1,6~ 
that proportional to VzT/To. We can do that, because for 
either of these parts of the distribution function the bound- 
ary conditions (5) are homogeneous, which is exactly what 
is needed to justify (75). Substitution of 'p: and 'p: into 
(75) gives 

where vn=vl n, . 
Dropping the terms which vanish upon the velocity 

integration, after opening the brackets we obtain 

Now drop the common multiplier uLVz In T and integrate 
(79) over the capillary perimeter. As a result, using (29) 
and (51) we find 

+ f [Y'pU,unpT]dl=o.  (80) 

The first of the integrals on the left-hand side of (80) is 
transformed as follows: 

It is easily shown that the second integral in (80) vanishes. 
This is seen by applying the same transformations used in 
obtaining ( 8 1 ) to give 

The vanishing of the last integral follows from the condi- 
tion (60). 

Now let us show that the third integral in (80) also 
goes to zero. To this end note that 

The quantities 'p: and 'pz each satisfy Eq. (55). Multiply 
the equation for 'p: by Y'pz and that for 'p$, by Y p : .  
Subtracting one from the other, integrating over the 
fd-weighted velocities, and summing over a we have, us- 
ing the evenness of the operator Y in velocity space and 
condition ( 82), 

Integrating this over the cross section and using Gauss' 
theorem yields 

As a result, instead of (80) we can write 

By comparing the left- and right-hand sides of (83) with 
the system of equations (74), we readily see that the com- 
bination on the left-hand side of (83) represents the coef- 
ficient AON/kBTO, whereas that on the right-hand side is 
A&kBTo, so that Eq. (83) is equivalent to the Onsager 
reciprocity relations being valid for the kinetic coefficients 
AoN=ANo. In a similar way one establishes the validity of 
the Onsager relations for any other symmetric kinetic co- 
efficients in the system (74). 

In conclusion we note that, on the face of it, the proof 
of the reciprocity relations does not require the symmetry 
properties of the linearized collision integral but rests en- 
tirely on the symmetry of the kernel of the wall scattering 
operator for the particles. In reality this is not true because 
there are certain relations involved in the course of the 
proof that follow from connections which exist between the 
fluxes and the wall-related moments of the distribution 
function and whose derivation is based, in turn, on the use 
of the symmetry of the collision integral. 
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