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Inelastic atomic collisions of relativistic multicharged ions are studied, in which the ions have 
charge numbers Z)1 and relative collision velocities u)l, such that the condition 
Z/v- 1 holds (in atomic units). The Born approximation cannot be used for parameter 
values in this region. The result of such a collision reduces to a sudden transfer of momentum 
to the atomic electrons. The cross sections for ionization of hydrogen atoms are calculated. 
Cases of the collisions of multicharged ions with complex atoms are studied. 

I. INTRODUCTION 

Inelastic processes which occur in the course of colli- 
sions of fast multicharged ions with atoms have rather 
large cross sections. Calculations on these processes are of 
interest primarily from the standpoint of applications. Be- 
cause of the strong ion field, one cannot use the Born ap- 
proximation. As a result, the calculations become very 
complicated, even for nonrelativistic collisions of fast mul- 
ticharged ions with hydrogen atoms.'-5 Relativistic colli- 
sion velocities make the calculations even more 
~om~l ica ted .~  The reason is that the corresponding exper- 
iments (see Refs. 7 and 8 and the papers cited there) often 
use heavy ions of such a large charge that the Born ap- 
proximation, Z/v(l (Z is the charge of the incident ion, v 
is the relative collision velocity, and atomic units are being 
used here and below), does not become applicable even at 
relativistic velocities v- c z  137. Primarily because of ex- 
perimental requirements, there is a need for simple esti- 
mates of the cross sections for inelastic processes accom- 
panying collisions of fast multiply charged ions with 
atoms-an approach has been proposed9 according to 
which the result of the inelastic collision of the fast, non- 
relativistic multicharged ion (under the condition Z/v- 1) 
with the atom reduces to a sudden transfer of momentum 
to atomic electrons. The cross sections for inelastic pro- 
cesses in Refs. 9-12 calculated by this simple approach 
agree well with experiment. 

In the present paper we propose a generalization of the 
method of Ref. 9 (for calculating the cross sections for 
inelastic processes accompanying collisions of multiply 
charged ions and atoms) to the range of relativistic colli- 
sion velocities, for ion charges Z) 1 and for relative colli- 
sion velocities v) 1 such that the condition Z/v- 1 holds, 
with v S c. We estimate the cross sections for ionization of 
the hydrogen atom, and we consider collisions of multi- 
charged ions with complex atoms. This new approach 
proves particularly convenient for the case of multiple ion- 
ization and excitation of complex atoms. 

We first consider a collision between a multicharged ion 
moving at a relativistic velocity and a hydrogen atom. We 
assume that the hydrogen atom is at rest at the origin of 
coordinates, while the ion is moving along a rectilinear 
trajectory R(t)  = b+vt, where b is the impact parameter, 
and v is the ion velocity. In this case the approximation of 
sudden perturbations can be justified in the following way: 
The collision time can be estimated to be r 
- b m / v ,  where B=v/c [in the nonrelativistic case we 
would have r-b/v; the factor appears because of 
the relativistic "flattening" of the field of the ion;I4 see also 
Eq. ( 1 1 ) below]. In a collision, the electron of the hydro- 
gen atom is moving under the influence of the field of the 
ion with an acceleration a - z/(b2 1 -P ), and it is dis- 
placed a distance 1 - a? - Z 1 -B /v2. The following 
conditions must therefore hold: 

K 
1 ) The effect of the perturbation is sudden: r(1 is on 

the order of the time scale of the motion of the electron in 
the hydrogen atom; b 4 v/ dm. This condition imposes 
a restriction on the region of impact parameters. 

2. The distortion of the square of the absolute value of 
the wave function of the atomic electron is small: 141. In 
other words, we have v2/ ) Z. (In the nonrelativis- 
tic case, conditions 1 and 2 become b 4 v and v % @. ) 

An ion in uniform rectilinear motion creates a fieldi4 
described by the following scalar potential q, and vector 
potential A: 

where (x,y,z) = (x,s) =r are the coordinates of the obser- 
vation point, the x axis is directed along v, and s is the 
projection of r onto the plane of the impact parameter. 

2. GENERAL FORMALISM 
Accordingly, the behavior of an electron of a nonrelativis- 
tic hydrogen atom is described by the Schrodinger equa- 

We use the approximation of sudden perturbations, tion .-- -. 

according to which the amplitude for a transition of an 
atom from the state 10) to the In) state due to a sudden aw 
perturbation V(  t) i-= at [Ho+ V(t)]Y, 
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where Ho is the unperturbed Hamiltonian of the hydrogen 
atom, and the perturbation V(t) is (the electron charge is 
-1) 

In ( 1 ), r = (x,s) are the coordinates the electron of the 
hydrogen atom with the atom at the origin of coordinates. 
The size of the hydrogen atom is - 1, so we have s- 1; for 
large impact parameters b> 1 we find from (2) 

where 

Ro(t) = J(x-vtI2+ (1-$)b2. ( 6 )  

The expansion (5) corresponds to transverse (with respect 
to v) uniformity of the field of the ion (at b> 1 ) over the 
extent of the hydrogen atom. Since the hydrogen atom is a 
nonrelativistic system, it is clear in principle that the inter- 
action of the electron of the hydrogen atom with a multi- 
charged ion can be chosen in the form of a retarded scalar 
Coulomb potential: V(t) z -p. However, this point can 
also be verified directly. To do this, we write a gauge trans- 
formation of the potentials (5): 

where 

As a result we find 

However, the linear terms (linear in terms of the dimen- 
sions of the hydrogen) in the perturbation (4) are then 
contained only in the scalar potential p'. We can thus set 
V(t), -pl. 

For this choice of perturbation we have 

dt. (9) 

When we substitute this integral into ( 1 ), the first term on 
the right side of (9) gives rise to a constant phase factor, 
which is independent of the coordinates of the atomic elec- 
tron. Although this phase factor is infinite, it does not 
affect the probability for transitions, so it can be discarded. 
Without any loss of generality, in the approximation of 
sudden perturbations, we can thus replace (4) by the per- 
turbation 

This potential can be considered to be acting for a finite 
time T, SO we have 

where T has the meaning of the time over which potential 
(10) acts, and q is the momentum transferred to the 
atomic electron. It is this procedure (involving the omis- 
sion of a constant phase factor and making it possible to 
introduce a collision time T) which justifies the application 
of the sudden-perturbation approximation to a long-range 
Coulomb field (cf. the corresponding computational pro- 
cedure in Ref. 1). Accordingly, under the condition of a 
sudden perturbation, i.e., with T( 1 on the order of the time 
scale for the motion of an electron in the hydrogen atom, 
the amplitude for the transition ( 1 ) takes the form 

Here, according to ( 1 1 ), we have qr = qs, where s is the 
projection of r onto the impact-parameter plane. The result 
of the collision of the multicharged relativistic ion with the 
atom thus reduces to a sudden transfer of momentum to 
the atomic electron. This interpretation is valid for impact 
parameters for which expansion (5)  is valid, i.e., b) 1, and 
for which the inequality 741 holds (hence b 
4 V/ - Z/ dm2 at v - Z) or for impact parame- 
ters b such that 

The cross section for the transition of the hydrogen 
atom from the state 10) to the state In) is found by mul- 
tiplying the square of the absolute value of the amplitude 
for the transition from 10) to I n) by 2.rrbdb and by inte- 
grating over all impact parameters b. For the same reasons 
as in the nonrelativistic case [which is discussed in detail 
after the derivation of Eq. (5) in Ref. 91, we can ignore the 
contributions from the regions b < b, and b > bo, and we 
can assume 

From ( 1 1 ) we have q = 2Z/vb and, correspondingly, 

According to ( 15), the momentum transfer q is small in 
comparison with mc (m= 1 is the mass of an electron). 
This implies that for bl<b<bo (the impact parameters 
which basically determine the cross section) the hydrogen 
atom can be assumed nonrelativistic, even in the final state 
(even in the continuum). 

150 JETP 78 (2). February 1994 V. I. Matveev and M. M. Musakhanov 150 



TABLE I. Cross sections for ionization of the hydrogen atom as a function of the relative collision velocity. 

P Ion energy, -1 z2, crl z2, 
MeV/ nucleon lo3 a.u. [Q. ( 17)] lo3 a.u. [Eq. ( 16)] 

Further calculations based on Eq. (14) are possible 
only by numerical methods. However, in the case of the 
ionization of the hydrogen atom we can propose, by anal- 
ogy with Ref. 9, the following approximate formula for the 
total cross section for ionization by impact by a multi- 
charged ion moving at a relativistic velocity v satisfying 
Z/v- 1: 

Table I shows the results of a calculation of the cross sec- 
tion for the ionization of the hydrogen atom through im- 
pact with a relativistic multicharged ion. The third column 
shows the Born approximation (or the Bethe asymptotic 
expression) l5 

This approximation systematically overestimates the cross 
section by ~30-10% because, as in Ref. 9, the Born ap- 
proximation is not unitary. This small difference between 
our result, (16) and the Born approximation is possible 
only for one-electron transitions; for multielectron transi- 
tions in complex atoms, the situation is completely differ- 
ent. 

3. EXCITATION AND IONIZATION OF A COMPLEX ATOM 

A natural generalization of Eq. ( 14) to the case of the 
collision of a fast, relativistic multiply charged ion with a 
complex N-electron nonrelativistic atom can be carried out 
directly by replacing V ( t )  in (4) by the operator repre- 
senting the interaction of the multicharged ion with atomic 
electrons, with the subsequent obvious repetition of calcu- 
lations which led us to Eq. (14). As a result the cross 

section for the transition of an atom from state 10) to state 
In) in a collision with a multicharged ion moving at a 
relativistic velocity takes the form 

where the state In) may correspond to the excitation or 
ionization of one or several electrons, and r, are the coor- 
dinates of the atomic electrons. Equation (18) is valid if 
the relative collision velocity satisfies v) v, (v, are charac- 
teristic atomic velocities), if the ion charge satisfies Z)Za 
(2, is the charge of the atomic nucleus, and Z/v- 1 and 
v :S c), and also if, over the time r, we can ignore interelec- 
tron interactions in comparison with interactions of the 
atomic electrons with the multicharged ions. The scatter- 
ing of a fast multicharged ion by an atom thus reduces to 
a sudden transfer of momentum q to each of the atomic 
electrons. The range of the integration over the momentum 
transfer q= 2Z/vb in ( 18) is found, as in the case of the 
hydrogen atom, from the limits on the applicability of the 
approach. According to (15) it is sufficient to redefine bo 
and bl here. The values of bo are found from the equality 
r= r, ( r  is an atomic time scale), and b, is found from the 
equality bl = r, ( r, is an atomic length scale). 

As an example we consider the K shell. We introduce 
Z,, the effective charge of the nucleus for the K shell. We 
then have b1 = 1/Z, and, correspondingly, ql =2ZZa/v. 
We then find 7,- 1/Z; and r = bJ-/v. From the 
equality r=ra we find bo d-/v = 1 / ~ :  or bo 
= v/(z: m). Correspondingly, for v-Z we have 
bo = z / ( z : , / ~ ) ;  we then find qo = 2Z/vbo 
= 2 ,/m~yv ( cf. Ref. 9). 

Many studies have recently been carried out on the 
multiple ionization of complex atoms in collisions with fast 

151 JETP 78 (2), February 1994 V. I. Matveev and M. M. Musakhanov 151 



multicharged ions (see, for example, Ref. 8 and the papers 
cited there). Most of the studies have used ions of high 
charge Z> 1, moving at velocities v) 1, with Z/v - 1. In 
calculations on such processes, the multielectron ionization 
of the complex atom should be explained on the basis of 
the so-called direct excitation of the atom by the strong 
field of the multicharged ion.16 Phenomenologically, this 
approach corresponds to the independent-electron model1' 
which is customarily used in such cases. The mechanism of 
direct excitation also corresponds to our approach, accord- 
ing to which the excitation of a complex atom in a collision 
with a fast multicharged ion results from a sudden transfer 
of momentum to atomic electrons. It is thus a simple mat- 
ter to derive the formulas of the model of independent 
electrons directly from ( 18) (see also Ref. 12). It follows 
from the arguments which led us to Eq. (18) that the 
probability for the transition of a complex atom from an 
initial state QO(rl ,..., rN) to a final state Qn(rl ,..., rN) as the 
result of a collision with a fast multicharged ion is 

Xexp - i q z r a  QO(rl, ..., rN) . 1 a 1  I 

where the summation is over all possible values of 1 and m 
for the given n shell, S, is the number of such values, and 
n is the principal quantum number. Obviously, 
P(q) r P( I q 1 ) is independent of the angles of the vector q. 
Since we have q=2Z/(ub), P=P(b) is a function of the 
impact parameter b. This function has the obvious mean- 
ing of the average probability for the ionization of one 
electron. Replacing each one-electron form factor in (21) 
by the average in (22), we then find the following expres- 
sion for the probability for M-fold ionization (this is the 
usual expression for the independent-electron 
approximation) :8 

The widely used independent-electron model thus follows 
directly from our approach under natural simplifications. 

5. CONCLUSION 

To calculate this probability we write the wave functions in 
the Hartree approximation: 

Hence the total probability for M-fold ionization of an 
N-electron atom corresponding to the transition of some M 
electrons into continuum states, while the other N-M elec- 
trons go into arbitrary states of the discrete spectrum, is as 
follows, where we are taking account of the unitarity of the 
probability ( 19) : 

where 

is a one-electron inelastic form factor, and ks is the mo- 
mentum of an electron in the continuum. In addition, in 
the case M = N  we should set I'Iy=M+l[l -Pj(q)]= 1 in 
(21 ). We note that the probability (21 ) depends on the 
vector q. However, after an average is taken over the pro- 
jections of the total orbital angular momentum of the ini- 
tial state of the atom, the probability is a function only of 
191. 

For simplicity we will discuss the ionization of only the 
outer shell below; then N is the number of electrons in the 
shell. We introduce the average value, over the orbital an- 
gular momentum I and its projection m, of the one-electron 
inelastic form factor for each electron of the shell: 

The simple approach proposed here completely re- 
places complicated numerical calculations of the cross sec- 
tions for ionization and excitation of atoms by fast, rela- 
tivistic multicharged ions in the case in which the Born 
approximation cannot be used ( Z -  v,Z) l,v < c). The cal- 
culation method proposed here proves particularly conve- 
nient for estimating cross sections for the simultaneous 
excitation or ionization of two or more electrons when 
complex atoms collide with fast multicharged ions. 
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