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The theory of optical bistability (OB) and self-oscillations in condensed media involving 
excitons and biexcitons is elaborated. A CuCl crystal, where convincing experimental evidences 
for biexciton existence are available, is chosen as a model. Equations of states of the 
steady-state OB theory, differing substantially from the analogous equations in the model of 
two-level atoms and exciton spectrum domain, are derived. Stability of steady states is 
studied, and self-oscillations are shown to appear in unstable sections of OB curves. Either 
regular or stochastic self-pulsations with formation of complicated limit cycles and 
strange attractors in the phase space are possible, depending on the system parameters. A 
scenario for the transition to the dynamic chaos mode is found. The dynamic OB is 
also studied, and deformation of a pulse transmitted through a crystal is shown. The 
occurrence of spatial turbulence in a system of coherent excitons, photons, and biexcitons in 
crystals is predicted. 

1. INTRODUCTION 

At present, the phenomenon of optical bistability 
(OB) has become an object of numerdus theoretical and 
experimental investigations and is, in essence, an indepen- 
dent area of nonlinear optics.' Semiconductors possessing 
high values of nonlinear susceptibilities are the most prom- 
ising objects for O B . ~  A fairly complete review of OB in 
semiconductors is given in Refs. 3 and 4. Of special interest 
is the investigation of OB in the case of resonant excitation 
of excitons and biexcitons due to "giant" nonlinearities4 
and the short relaxation times of quasiparticles. 

OB in the exciton spectrum was fist studied theoreti- 
cally in the works by Elesin and ~ o ~ a e v . ~  The work by 
Kochelan et al. '17 treats the same range of problems. In our 
work,&13 a theory of optical bistability, switching, regular 
and stochastic self-pulsations in a system of coherent exci- 
tons of high density with allowance for exciton-exciton 
interaction was constructed on the basis of the Keldysh 
equations.14 This phenomenon was revealed experimen- 
tally in the works by Dneprovskii et a1. 15*" 

The notion of a biexciton, whose existence was pre- 
dicted by ~oskalenko" and   am pert," is widely invoked 
to interpret new absorption and fluorescence bands in 
semiconductors. At present, convincing experimental 
proofs of the existence of biexcitons in CuCl crystal are 
available. These proofs are based on the observation of the 
M-band resulting from biexciton radiative 
rec~mbination'~-~' and two-photon excitation of biexciton 
from the crystal ground state.22y23 In the work of Gogolin, 
Rashba, and ~ a n a m u r a , ~ ~ ~ ~  the corresponding transitions 
are shown to feature giant oscillator strengths favoring the 
most pronounced manifestation of nonlinear phenomena in 
this frequency range. 

In a CuCl crystal, the biexciton bond energy is of the 
order of I&-40 meV, and the exciton absorption band 
and the M-band of biexciton recombination are well sepa- 
rated from each other in essential contrast to the situation 

in CdS and CdSe crystals where the biexciton bond energy 
is small, IbieX-3 meV. Hence in studies of nonlinear opti- 
cal phenomena in crystals of the CdS type, photons of the 
same pulse can excite excitons from the ground crystal 
state and convert them to biexcitons in the case when the 
spectral width of the incident radiation is 8Aw - Ibiex. In a 
CuCl crystal, the photon frequency resonant with the ex- 
citon transition frequency has a large resonance detuning 
with respect to the transition in the region of the fluores- 
cence M-band due to the large bond energy. - On the other hand, it is known that the observation of 
coherent nonlinear effects such as nonlinear n ~ t a t i o n , ~ ~ ~ '  
self-induced t r a n ~ ~ a r e n c ~ , ~ ~ ' ~ ~  and OB with the participa- 
tion of excitons and biexcitons requires the prior prepara- 
tion of a coherent exciton system. Then the excitons can 
convert optically to biexcitons under the action of a pulse 
resonant with the exciton-biexciton transition frequency. 
Therefore, a correct study of the OB phenomenon in a 
CuCl crystal necessitates simultaneous action of two inde- 
pendent optical pulses each being in resonance with a def- 
inite transition. Note that OB of excitons and biexcitons 
was studied in Refs. 33-38. We have shown in our work33 
that both amplitude and frequency hysteresis are possible 
in a system of coherent excitons, photons, and biexcitons. 
The prediction that a bistable dependence of polariton den- 
sity on incident light intensity can exist in crystal two- 
photon excitation was made in Ref. 35.  In Ref. 36, an 
intensity-dependent dielectric function exhibiting bistable 
behavior was calculated using the density matrix formal- 
ism. The OB phenomenon in a system of excitons and 
biexcitons in a Fabry-Perot cavity was investigated in Ref. 
37 with allowance for the Kerr correction for the exciton 
dielectric function. The OB phenomenon in a system of 
coherent excitons and biexcitons for various quantum tran- 
sitions was studied theoretically in Ref. 38.  The common 
disadvantage of these works is in the fact that propagation 
effects are not included, stability of steady-state curves of 
the OB theory is not examined, switching times between 
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OB branches are not studied, and self-pulsations appearing 
in a system due to the hysteresis curve instability are not 
investigated. In Ref. 39 we studied steady-state and tran- 
sient OB and mutilstabilities involving excitons and biex- 
citons for crystals of the CdS type. In this paper, we con- 
struct the theory of OB, switching times, regular and 
chaotic self-pulsations in a CuCl crystal with the partici- 
pation of coherent excitons and biexcitons. 

2. THE HAMlLTONlAN OF THE PROBLEM AND THE BASIC 
EQUATIONS 

In the most general case, the coherent interaction of 
resonant laser radiation with excitons and biexcitons differs 
essentially from the two-level atom model. The point is 
that a system of excitons and biexcitons differs from a 
disordered combination of atoms or impurity centers in 
method of preparation and organization of the initial state. 
Excitons and biexcitons are transient crystal excitations, 
whereas a system of two-level atoms can be in the ground 
state as long as desired. Therefore, as noted earlier, for the 
OB phenomenon to occur the exciton system should be 
prepared in advance using a laser source with photon en- 
ergies hl = E,-I,, , where E, is the band gap and I,, is 
the exciton bond energy. The photons of the second laser 
pulse causing exciton-biexciton conversion have an energy 
h2 =Eg-Iex -Ibiex . 

For simplicity, we shall use the three-level model, as 
applied to a copper chloride crystal, in which the energies 
of the "crystal ground state-exciton" and "exciton- 
biexciton" transitions differ by the biexciton bond energy. 
Suppose that photons of the first pulse are in resonance 
with a transition in the exciton spectral range, and photons 
of the second pulse are in resonance with the region of the 
fluorescence M-band of a CuCl crystal. We consider one 
macrofilled mode of coherent (in the Bogolyubov sense) 
excitons and biexcitons and one macrofilled mode of co- 
herent photons of every pulse. The full Hamiltonian of the 
problem consists of a sum of Hamiltonians of free excitons, 
biexcitons, and fields, as well as the interaction Hamil- 
tonian which in the model adopted has the form 

where a+(b+)  is the creation operator of exciton (biexci- 
ton), g is the constant of exciton-photon interaction, G is 
the exciton-biexciton optical conversion coefficient and 
Ei+ ( - )  is the positive (negative) -frequency component of 
the electric field of electromagnetic wave of the jth pulse. 

The equations of motion for the exciton and biexciton 
amplitudes have the form 

where hex and hiex are the energies of exciton and biex- 
citon formation, respectively, and ye, and ybiex are the de- 
cay constants of excitons and biexcitons determining the 
rate of quasiparticle escape from coherent modes to inco- 

FIG. 1 .  Ring cavity diagram. EI,, , ER,, , and ET,/ are the amplitudes of 
incident, reflected, and transmitted fields, respectively. 

herent. These constants were inserted phenomenologically 
into the equations of motion. Note that these equations can 
be derived rigorously in terms of the quantum theory of 
fluctuations and decays from the flow part of the corre- 
sponding Fokker-Planck equationw The equations for the 
positive-frequency field component have the form 

Here, cl and c2 are the velocities of field propagation in the 
medium. 

Let us represent the solution of Eqs. (2)-(4) in the 
form of a product of slowly-varying envelopes and rapidly 
oscillating components with carrier frequencies wl and w2 
and wave vectors kl and k2: 

E; = e: exp ( - iw2t + ik2z). 

Let us consider further the OB theory in the ring cavity 
geometry. Let a sample of length L be placed between the 
input and the output cavity mirrors which are character- 
ized by a transmission coefficient T. The two remaining 
mirrors are considered to be totally reflecting (see Fig. 1 ). 
The boundary conditions for the ring cavity have the form 

where ET,j and EI,j are the amplitudes of the fields incident 
on the cavity input mirror and transmitted through the 
cavity, R = 1 - T is the reflection coefficient of the cavity 
mirrors 1 and 2, At= (21+ L)/co is the retardation time 
introduced by the feedback, co is the velocity of light in 
vacuo, and is the phase increment in the cavity. Sub- 
stituting (6) in Eqs. (2)-(5) in the slowly-varying- 
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envelope approximation1~8 and the mean-field approx- 
irnati~n"~ with allowance for the boundary conditions (7 ) , 
we get 

where X,, Y, , A, B are the normalized field amplitudes, T 

is the dimensionless time, and Cj are the constants of the 
OB theory defined by the expressions 

- - 

Yex a .L c,T 7=ybiext, d=- C . - A  a,=- 
Ybiex 

' 1 - 4 ~ '  J ybiexL ' 

Equations ( 8 )-( 1 1 ) describe temporal evolution of coher- 
ent excitons, biexcitons, and electromagnetic fields in the 
ring cavity and are the basis for studying . OB. . 

In the steady-state case, x1 = X ~ = A  = B=O, we get 
coupled equations of states of the OB theory in a CuCl 
crystal: 

These equations express the relation between the normal- 
ized wave amplitudes at the input (Y1 and Y2) and the 
output (X1 and X2) of the cavity and are in essence the 
equations for a nonlinear optical quadrupole with two in- 
put and two output channels.38 The variation of one or 
both parameters provides flexible variation of the quadru- 
pole output parameters. Optical bistability is possible in 
both channels. For instance, it is easily seen from (13)- 
( 14) that at a fixed Y1 value, nonlinear dependence of the 
amplitude X2 of radiation leaving the cavity in the second 
channel is determined not only by the bistability parameter 
in the second channel C2 but by the bistability constant of 
the first channel and the pumping amplitude in the first 
channel as well. This fact presents a unique possibility of 
controlling the nonlinear behavior in the second channel 
by the pumping in the first channel. The criterion for the 
existence of OB in the second channel is the inequality 

FIG. 2. Steady-state OB. XI,  X2( Y2) in the ring cavity at various values 
of the parameters: a)  Yl = 10, CI = 5, C2=4, d=0.1; b) Y, = 10, Cl =5, 
C2=4, d=0.7; C )  Y1=40, C,=20, C2=19, d=0.7. 

which differs fundamentally from the conditions of OB 
occurrence in two-level and in the exciton spec- 
trum range.9"2,13 The nonlinear dependence of the output 
radiation amplitudes X1 and X2 on the input radiation am- 
plitudes under the conditions such that OB occurs is 
shown in Fig. 2 for various values of the parameters. 

3. COMPUTER EXPERIMENT 

It is of great interest to investigate the stability of the 
OB curve in connection with the possible development of 
self-pulsations in unstable sections of the OB curves. The 
investigation of stability of optical hysteresis steady states 
with respect to small perturbations is determined by the 
characteristic equation for the Jacobian of the system: 

where E is the unit matrix. If the real parts of all the roots 
of the characteristic equation are negative, the correspond- 

- -  0, 2C1, 0 

0, -e2-A, 2C2B, -2C2A 

d, dB, A ,  -dX2 

0, A, X2 9 -1-2 
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FIG. 3. Optical switching from the lower to the upper branches and from 
the upper to the lower branches (the evolution of points A, B in Fig. 2a, 
respectively). 

ing steady states are stable with respect to small perturba- 
tions. Using the Routh-Hurwitz criterion, stability of 
steady states at various values of the parameters was inves- 
tigated. For C, = 5, C2 =4, d=0.1, Y, = 10, both the upper 
and the lower branches of the OB curves are stable (Fig. 
2a). It is of interest to study switching times between them. 
The basis for the investigation of the switching times is the 
set of equations (8)-(13). At present, there is no standard 
algorithm for solving nonlinear differential equations of 
general form and it is a difficult problem to obtain analyt- 
ical solutions of Eqs. (a)-( 13 ). In this connection, we 
performed a computer experiment. The initial conditions 
are taken in such a way that they correspond to the Y2 
value near the "up-down" switching threshold. At time 
t=O, a discontinuous change the pumping Y2 is prescribed 
such that Y2 + A Y2 lies to the other side of the correspond- 
ing switching threshold. Switching from the lower OB 
branches to the upper ones and from the upper branches to 
the lower ones is shown in Fig. 3. As seen from the figure, 
the switching times are of the same order and are 
T= ( 10- 1 5 ) ~ ; ~  s. This differs essentially from the corre- 
sponding switching times in the model of two-level systems 
where up and down switching times are essentially differ- 
ent. Since the relaxation times of excitons and biexcitons in 
CuCl are t- lo-" s (Ref. 41 ), optical switching times in a 
system of coherent excitons lie in the picosecond range. At 
certain parameter values, a part of the OB curves becomes 
unstable. The nonlinear dependences of X, , X2( Y,) are 
plotted in Fig. 2b for Y1= 10, C1=5, C2=4, and d=0.7. 
The upper parts of the OB curves are stable as before, 
whereas a part of the lower branches becomes unstable. In 
this case, nonlinear self-pulsations develop in the system. 
As one moves from the point C(C1) to the point D( Dl), 
bifurcation of oscillation period doubling is observed in the 
system, and the phase trajectory goes into a limit cycle 
(Fig. 4). At the point E, the system switches to the upper 

FIG. 4. Temporal evolution of the system at Y, = 10, C, = 5 ,  C2=4, 
d=0.7. a) evolution of point C, Fig. 2b; b) evolution of point D, Fig. 2b. 

branches of the OB curves. The dynamic evolution of the 
system becomes more complicated as the parameters in- 
crease (C1 = 20, C2 = 19, d=0.7). Near the point F (Fig. 
2c) corresponding to the initial point of instability regions, 
nonlinear periodic self-oscillations appear in the system, 
and the phase trajectory goes into a limit cycle in the shape 
of a figure eight curve. As the imaging point moves to- 
wards the window center, the oscillations become more 
complicated, new harmonics appear in their spectrum, and 
finally, stochastic self-oscillation and an optical turbulence 
mode develops in the middle part of the window [the point 
G(G')]. The stochastic self-modulation process and the 
corresponding projections of the phase trajectories are 
shown in Fig. 5b. In contrast to the famous Lorenz 

where stochastic oscillations and strange attrac- 
tor creation are associated with jumps between the corre- 
sponding equilibrium states, in our case, stochasticity is 
related to the creation of a chaotic attractor in the four- 
dimensional phase space which is filled with phase trajec- 
tories in a complicated manner. As the imaging point 
moves further to the right, regular nonlinear oscillations 
develop in the system again, and the phase trajectories go 
into a limiting cycle of complicated structure (Fig. 5c) 
after which the system makes a jump to the upper stable 
branches of the OB curves. In experimental investigations 
of OB, not static but dynamic OB is often observed, which 
results from the comparison of time-dependent external 
pumping with the corresponding system response. OB of 
such type was first considered by Bischofberger and 
 hen.^* The behavior of a nonlinear Fabry-Perot interfer- 
ometer filled with a Kerr medium under the action of 
pulses of various shapes has been studied theoretically and 
experimentally. The authors obtained a very good agree- 
ment between theory and experiment. As for dynamic OB 
in a system of excitons, photons, and biexcitons, this prob- 
lem has not been solved yet. We performed a computer 
experiment in which the set of nonlinear differential equa- 
tions (a)-( l l ) describing the dynamics of coherent exci- 
tons, photons, and biexcitons was solved numerically with 
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FIG. 5. Temporal evolution of the system at YI=40, Cl=20, C2=19, 
d=0.7. a)  evolution of point F, Fig. 2c; b) evolution of point G, Fig. 2c; 
C )  evolution of point K, Fig. 2c. 

allowance for the initial conditions for the ring cavity. The 
external pumping Y ( r )  was a parabolic function of time. 
The results of the experiment performed are presented in 
Fig. 6. In Fig. 6a, the shape of the incident pulse of length 
r= 100 and the amplitude of field leaving the cavity are 
presented for the case when both the upper and the lower 
branches of the OB curves are stable. As a result, OB with 
the counterclockwise motion is present in both channels. 
In Fig. 6b, hysteresis curves with counterclockwise motion 
are also presented. However, in the lower branch there are 
sections with self-pulsations of large amplitude exhibiting 
both regular and chaotic behavior. This is associated with 
the fact that a system of coherent excitons, photons, and 

FIG. 6. Dynamic bistability for external pulse of the parabolic shape of 
lengtha) ~=100 ,  Cl=5, C2=4, d=0.1; b) ~ = 1 0 0 ,  Cl=5, C2=4, d=0.7. 

biexcitons falls into the instability region at the corre- 
sponding values of the parameters. Note in conclusion that 
the self-oscillations studied arising due to instability of the 
steady states are one more example of the occurrence of 
temporal structures in nonlinear dynamic systems. Mean- 
while, the input equations are nonlinear partial differential 
equations describing the space-time evolution of coherent 
quasiparticles in condensed media. A theory for the evolu- 
tion of spatial turbulence has been developed for equations 
of this type.46 A new class of transitions of the "order- 
chaos" type in the form of moving transition fronts was 
found. Analogous phenomenon may occur in a system of 
excitons, photons, and biexcitons as well. Along with dy- 
namic optical turbulence, the development of spatial tur- 
bulence and the occurrence of structures of the "order- 
chaos'' and "chaos-order" types are possible. 
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