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We consider a system of two particles interacting through a gauge field with a Lagrangian 
which is the sum of a Maxwell term and a Chern-Simons term. We show that if the 
magnetic flux associated with the particles is sufficiently large and the temperature sufficiently 
low, the system may possess (unstable) states with a negative compressibility such as 
can occur in a van der Waals gas. 

1. Leinaas and Myrheim have shown in Ref. 1 that 
there may exist particles (later called anyons2) in two- 
dimensional space which satisfy an intermediate statistic. 
Under an exchange of two anyons, the wavefunction ac- 
quires a phase factor exp(irA) where the quantity A, the 
so-called statistical parameter, can be any real number. 
The anyon problem is of interest in its own right (and is 
rather complicated), and at the same time the problem of 
their possible physical nature is very important. Essentially 
the only known model in which intermediate statistics arise 
effectively is a model of particles interacting with a Chern- 
Simons gauge field. (We note that it is the Chern-Simons 
field that appears in the theory of the quantum Hall 
e f fe~t .~)  Considering the Lagrangian 

with conserved current jp, and writing down the corre- 
sponding field equations, we note that the charge e effec- 
tively becomes "a magnetic flux tube", Q,=e/a; in other 
words, it generates a vector potential 

where q, is the polar angle (the charge is at the origin). The 
potential is clearly a pure gauge potential, and can be re- 
moved through a gauge transformation; however, such a 
transformation multiplies the wave function by a phase 
factor, as a result of which the new wave function satisfies 
the commutation relation 

where 

and this means the effective appearance of anyons. (Here 
and henceforth we assume the "bare" particles to be 
bosons.) Moreover, it has been e~tablished~.~ that a Chern- 
Simons field can be induced by fermions interacting with a 
gauge field. In fact, if we introduce into the theory a term 

then after integration over +, the Chern-Simons term that 
enters into ( 1 ) appears in the effective action for A. At a 
finite temperature and densityY6 the coefficient a is given by 

where f l  is the inverse temperature and p the chemical 
potential. Another interesting possibility for the appear- 
ance of a Chern-Simons term was considered in Ref. 7. It 
was shown that the classical dynamics of a liquid in a plane 
can be considered to be a gauge theory. It turns out that 
the field theory describing small oscillations of the liquid 
relative to the minimum of some (density-dependent) po- 
tential is the usual electrodynamics, and if the liquid is 
charged and a magnetic field is applied to it, there will 
effectively be a Chern-Simons term, and the vortex excita- 
tions acquire intermediate statistics. 

2. In connection with the possibility of inducing a 
Chern-Simons term, it is of interest to study a theory in 
which both the latter and a Maxwell term are present. 
Consider, for instance, the Lagrangian 

L = -1 F $pv+' a& 
4 P pVnApaV An -Ap jp. (7) 

The corresponding field equations have the form 

or, in terms of the field strengths, 

akEk= j%a B, (9) 

E~'(~,B+(TE,) = j k + ~ k .  (10) 

The solution of these equations for a point charge 
( j0=es2(r) ,  jk=0) ,  is 8 

ea xk 
Ek(r)  =- 277 - r K~ (ar ) ,  

( r  =xlel +x2e2, r= I r ( ). The function Ko(x) behaves as 
-ln(x/2) for x g l  and as @.exp( - x )  for x)l, 
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while Kl(x) = -Ki(x). Hence, the electric field is a 
Coulomb field (proportional to l/r) near the charge 
(ar< 1 ) and the magnetic field is logarithmic, whereas far 
from the charge (a* 1 ) both fields decrease in proportion 
to exp( -ar). The vector potential corresponding to ( 11) 
and (12) can be chosen in the form 

where 

The magnetic flux through an area S is 
FIG. 1 .  The functions f ( x )  and h ( x ) .  

where the contour C is the boundary of S and is parame- 
trized by R (q).  In particular, if S is a circle of radius p we 
have @[S] = - (277/e) D(p), where 

where 

We have intentionally dropped the Coulomb interaction. 
Indeed, the scaling 

and A is given by Eq. (4). 
The problem of N noninteracting anyons is, according 

to what we have said above, equivalent to the problem of N 
particles interacting through the vector potential (2). In 
our case we have (13) and (14) instead of (2). As this is 
not a pure gauge potential, the particles are necessarily 
interacting. We restrict ourselves here to considering the 
N=2 case, which is the only one that permits of a more or 
less exact discussion. In that case, the motion of the center 
of mass can be separated as usual, leading to the problem 
of a single mass m/2. In order for the problem to have a 
discrete spectrum, we introduce an external harmonic po- 
tential. The Hamiltonian of the relative motion is 

leaves Eq. (22) unchanged, but transforms the Coulomb 
term e2 In p into 

The Coulomb repulsion can thus be suppressed by appro- 
priately choosing y arbitrarily large. 

The relative motion is thus characterized by the poten- 
tial V(p). There are two characteristic quantities with di- 
mensions of distance, a-' and (mu)-'/2, SO that it makes 
sense to introduce the dimensionless parameter 
~ = a ( m u ) - " ~ .  For levels which do not lie too high p, 
takes on values of order (mu)  -'I2, SO that the argument of 
f [see (17)] is of the same order as a. We show the be- 
havior off (x) in Fig. 1. Since the values of x for which f 
changes appreciably are of order unity, the spectrum de- 
pends in an essential way on how large a is compared to 
unity. 

3. We begin by considering limiting cases. 
1 ) Let a< 1, i.e., the particles are extremely close to 

one another. It follows from what we have said above that 
we can then neglect the quantity D(p) in (23). Equation 
(22) is then the radial equation for the usual problem of a 
two-dimentional harmonic oscillator. The eigenvalues in 
that limit are 

where, according to ( 14) and ( 17), we have 

The commutation relations for the wave function have the 
standard form 

PjkW = e x p ( i ~ ~ )  W, (20) 

where K=O( 1 ) for bosons (fermions). The angular part of 
the wave function can be separated as 

where n=0,1,2, ... is the radial quantum number and M is 
even (odd) for bosons (fermions). At extremely small dis- 
tances, the presence of the Chern-Simons term does not 
make any difference whatever. 

M must have the same parity as K. It is now necessary to 
find the energy eigenvalues from the equation 
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2) Let -1. We can then substitute for D(p) in (23) 
its limiting value D( w ) =A. The equation has the same 
form as in the previous case, with M+A instead of M. 
Correspondingly, we have instead. of (24) 

This is the form of the spectrum of the relative motion of 
two noninteracting anyonslp2 with S= A ( A  + 1) for even 
(odd) M. As we mentioned earlier, this result occurs in the 
purely Chem-Simons theory. At large distances, the pres- 
ence of the Maxwell term therefore has no effect whatever.' 
The relative part of the partition function has the form 

and the second virial coefficient is9 

where A =  (2?r/m T) In is the thermal wavelength. 
A gas of particles interacting in the way considered 

here thus behaves like the usual Bose or Fermi gas at high 
densities, and like a gas of anyons at low densities. We now 
turn to a discussion of the intermediate case, in which we 
must analyze Eq. (22) in detail. 

We denote the first and second terms in (23) by Vl (p) 
and V2(p), respectively. It is clear from the definition of 
V, , ( 1 ) that Vl (p) >O for all p, (2) that Vl ( w ) =0, and 
(3) that Vl (0) = oo for M # O  (centrifugal barrier) and 
Vl (0) =O for M = 0. Moreover, we have 

where v=M/A, F ( p )  is a positive function, and 

The behavior of h(x) is shown in Fig. 1, together with 
that of f (x). There is a minimum h(0.59) = -0.062, and 
arooth(l.ll)=O. ForallO<x< W,  wehaveh(x) < f ( x ) .  
It follows from (28) that V1 can behave in five different 
ways, depending on the value of v. (a) v < - 1; in that case 
Vl decreases monotonically. (b) - 1 < v < 0; in that case 
there is a minimum V,(pl) =0, where pl is determined 
from the equation f (upl) = -v, and a maximum at the 
point p2 > pl where h(ap2) = -v. (c) v=O, i.e., M=O (if 
the "bare" particles are bosons). In that case the minimum 
is shifted to the point pl=O and the maximum is posi- 
tioned at up2= 1.1 I. (d) 0 < v <0.062. As in (b), there is 
a minimum at a point pl and a maximum at p2 > pl , but 
here pl and p2 are two roots of the equation h(ap) = -v, 
and Vl (pl ) does not vanish. Finally, (e) v > 0.062 again 
leads to a monotonic decrease in Vl . 

The behavior of Vl(p) for these cases is sketched in 
Figs. 2a to 2e. 

Since V1 tends to zero in all cases as p - W, no bound 
states can exist without a harmonic attraction. The pres- 
ence of V2, on the other hand, guarantees the existence of 
such states. However, we shall see that a situation is pos- 
sible in which their energy is hardly dependent on o. 

FIG. 2. The function V , ( p )  for varjous values of v: (a) v= -2; (b) 
v=-0.5; (c) v=O; (d) v=0.03; (e) v=0.3. 

Of course, it is impossible to solve (22) exactly. We 
restrict ourselves here to a simple qualitative analysis 
which is fully sufficient to explain the basic properties of 
the system. We consider the case in which the "bare" par- 
ticles are bosons, so that M must be even, and we pay 
attention to low-lying states-primarily to the ground 
state. 

We explained that if w is so small that a> 1, the levels 
are determined by (25). We assume for definiteness that 
A > 0. The lowest level will be the one corresponding to the 
even M which is closest to -A. In particular, if A is an odd 
integer, the ground state will be doubly degenerate (M= 
- A - l and M = - A + 1, which corresponds to fermions) . 

The quantity [M+ D ( ~ ) ] ~  varies from M* for p=O to 
[M+ A ] ~  for p = w ; correspondingly, the ratio EM Jw var- 
ies with increasing w from I M+  A 1 +2n + 1 for w=O to 
(MI+2n+l for w+m. For v<-1 (v>0.062), 
[M+ D ( ~ ) ] ~  increases (decreases) monotonically. For 
v < - 1 and v > 0.062, the function V(p) has a single min- 
imum and the ratio EMJw increases or decreases mono- 
tonically. For O<v<0.062 and moderate values of o, 
V(p) can have two minima, and the problem must be 
considered to be that of a double-well potential. In that 
case some singularities are possible in the behavior of 
EM,,/@, but as they do not affect the behavior of the ground 
state, and we shall not analyze them. (Note that as the 
minimum nonvanishing value of M is 2, states with such 
values of v cannot exist at all for A < 33.3.) 

The most interesting case is - 1 < v<O; it is clear that 
the ground state always lies just in that region. We have 

where 
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is a dimensionless function, the behavior of which depends 
only on M and A; it behaves as shown in Fig. 2b for - 1 
< v < 0 and as shown in Fig. 2c for v=O. Thus, V1 itself 
contains a potential well; its depth increases with A. For 
small A the well is too shallow to alter the spectrum ap- 
preciably, but for sufficiently large A, bound levels can 
appear in the well; it is just the behavior of such levels 
which is of most interest. 

We first of all consider the M=O case. We then have 
V(X) = h 2 ~ ( x ) ,  where ~ ( x )  =[ f (x)/x12 (see Fig. 2c). For 
w=O, all states decay and there are no stationary ones. 
However, when we introduce the harmonic potential, the 
behavior of the levels is determined not only by this poten- 
tial but also by the aforementioned well (and for suffi- 
ciently large A, mainly by the well). Let us consider the 
situation in more detail. When w is so small that 0 1 ,  
V(p) has a minimum at a point where 1 - f ( a p )  (1, and 
the corresponding level lies far below where it would lie in 
the well considered. However, when w increases, the am- 
plitude of the wave function in the well also increases. For 
sufficiently large A, a state is ultimately formed in which 
essentially the whole wavefunction is concentrated in the 
well. For some value of w, the right-hand minimum of 
V(p) becomes higher than the level in the well so that 
outside the well there remains only the tail of the wave 
function, while for some larger w, the right-hand minimum 
disappears altogether. For A not too large (of order lo2 to 
lo3, as shown by numerical estimates), V2 is, in such a 
state in the classically allowed region, not much smaller 
than V,, i.e., the harmonic potential makes an appreciable 
contribution to the ground state energy Eo. If, however, A 
is of order lo5 to lo6, the value of p corresponding to the 
right-hand classical turning point is so small that V2g V1 
in the whole of the allowed region. This means that the 
energy of the ground state is essentially determined by the 
effective attraction caused by the presence of the Chern- 
Simons term and not by the harmonic attraction; the role 
of the latter reduces merely to guaranteeing the existence 
of a stationary state. Correspondingly, increasing w in this 
case hardly affects the position of the level as long as a does 
not become so small that f ( a p )  (1 at the right-hand turn- 
ing point, which again means a transition to a regime of 
noninteracting bosons. 

We now consider states with - 1 < v < 0, i.e., -A < M 
< 0. They differ from the state with M=O due to the pres- 
ence of the centrifugal barrier, so that there exists a left- 
hand classical turning point. For extremely small w, these 
states behave like the one considered above (in this case 
the larger I M I within the indicated limits, the lower the 
energy). However, when w increases the picture may be 
different. Since in the states considered, the average value 
of p is larger than in the one with M=O (the particles are 
farther from one another), the frequency range between 
the "drop" in the level in the well and the start of a con- 
siderable growth of its energy due to the increase in w is 
narrower. For sufficiently large I M I ,  this region (in which 

FIG. 3. Behavior of the ground state (solid line). 

the energy of this level is practically constant) disappears. 
Of course, it does not have sharp boundaries, so that its 
disappearance is not a sudden process. 

Levels with - 1 < v < 0 thus behave with increasing w 
qualitatively as follows: initially there is linear growth ( E  
z I M +  A 1 w), then a region where the dependence is weak 
(aE/aw is small), and finally again linear growth ( E  
z 1 MI w); the transition from one regime to another is 
gradual (moreover, the width of the transition region may 
be of the same order or even larger than the width of any 
of the three regions mentioned). The larger I M I is, the 
narrower the middle region. 

It is interesting to trace the behavior of the ground 
state. We assume for definiteness that A is an even number. 
For extremely small w there is then a single ground state 
with M =  -A (we denote its energy by E-A,O). However, 
the quantity E-A,O increases with w faster than E-A+2,0, SO 

that for some value of w there is an intersection of levels, 
after which the state with M =  -A + 2 becomes the ground 
state. For some yet larger value of w, it is replaced in turn 
by the state with M =  -A +4, and so on, until M = 0 (Fig. 
3). For sufficiently large A, it turns out that over some 
range of w values, some state is the ground state while its 
energy is weakly dependent on w, as we described above. 
The pressure at T=O (and at sufficiently low tempera- 
tures) is therefore rather low in that w range, and in par- 
ticular, may become less than the pressure at some lower 
values of w. This indicates a situation analogous to the one 
occurring in a van der Waals gas, the pressure of which 
under well-known conditions decreases when the volume 
decreases, which indicates the formation of unstable states 
which are interpreted as belonging, in fact, to the phase 
transition region. We conclude that there are indications of 
the presence of a van der Waals type phase transition in the 
gas of particles which interact through a Maxwell-Chern- 
Simons field, caused by the effective attraction due to the 
presence of a Chern-Simons term. 

The authors express their sincere gratitude to I. An- 
drich, N. Weiss, H. Zats, F. Karsh, and S. Shuto for useful 
discussions. 
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