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The optical Stark effect in bulk semiconductors and in materials with quantum wells, wires, 
and dots is considered. The effect is due to the interaction of an electronic system with 
intense light whose frequency w is small in comparison with the forbidden zone, but falls on 
the resonance between two conduction bands c and c' or between two sub-bands of 
dimensional quantizations cn' and cn of the c band. Probing of states mixed by this light is 
effected by two femtosecond pulses, one following the other with delay time TD, of 
light of a different frequency R, which is in resonance with the adjacent transition between 
the valence band v and the c band. The polarization of the medium induced by the 
first probing light pulse influences the absorption of the second pulse, the dependence of 
which on TD is calculated by the density matrix method. In the presence of pumping w, 
depending on the type of band structure, one observes either decay of the induced 
polarization with characteristic time -or1 (wl is the Rabi frequency), or oscillations with 
frequency -61,. Such types of time dependence correspond to various spectral 
manifestations of the Stark effect in the steady-state regime-that is, the appearance of a 
break or a gap in the energy band spectrum in the field of a strong light wave. 

1. INTRODUCTION 

Beginning with Refs. 1-3, phenomena associated with 
rearrangement of the energy spectra of crystals in the field 
of a strong electromagnetic wave have become the subject 
of theoretical, and later experimental, ~tudies."'~ Already 
in Refs. 1-3 it was shown that in a resonance at frequency 
w between an intense light beam and an interband transi- 
tion, either a break or a gap arises in the energy spectrum 
of a crystal, brought about by the optical Stark effect. The 
interaction V of the electronic subsystem of the crystal 
with the field of the wave under resonance conditions re- 
moves the degeneracy in the electron-photon system. Ac- 
cordingly, the Stark effect is linear in the field intensity of 
the light wave. The peculiarities of the spectrum which 
arise can be manifested in various ways-in particular, in 
the absorption of sound or of probing light. In the latter 
case, under certain conditions a region of transparency can 
appear against the background of the fundamental absorp- 
tion band. The width of the absorption region (the width 
of the gap in the spectrum) is linear in the field of the light 
wave at light intensities such that the interaction energy 
V 4 h .  At very high light intensities and/or at transitions 
in the far infrared, the magnitude of V ceases to be small in 
comparison with %a, and in this case the dependence of the 
gap width on the field becomes very complicated and even 
nonmonotonic.' ' 

Most papers dedicated to the Stark effect in crystals in 
an intense light field have examined the situation in which 
the intense light is in resonance with the transition between 
states of the upper valence band and the lower conduction 
band or between the ground state of the crystal and an 
exciton level. In this case, there are a number of optical 
processes which take place against the background of the 
optical Stark effect. States in bands near the extrema be- 

come filled, with a corresponding decrease of the effective 
width of the forbidden band Eg, thanks to numerous cor- 
relation effects. On the other hand, the dynamic Moss- 
Burstein effect leads to a shortwave shift of the absorption 
region. 

Thanks to progress in the fabrication technology of 
semiconductor quantum wells and other low-dimensional 
structures, with relatively easily varied parameters and 
large-amplitude optical nonlinearities, and also thanks to 
the development of the technique of ultrashort light pulses, 
it has become possible in recent years to investigate non- 
linearities of such kinds not only theoretically, but also 
e~~erimentall~.~-'~,'~-'~ The data that have been obtained 
as a result of these efforts indicate that the dynamics of 
coherent processes are substantially determined by the con- 
centration of free electrons and holes generated by the in- 
tense light. It was shown, in particular, that coherent op- 
tical effects in excitons at high excitation levels differ 
radically from analogous effects in two-level systems.'5 

In connection with the above it is clear that, in prin- 
ciple, it would be desirable to study the dynamic Stark 
effect in crystals in the field of an intense, resonant light 
wave under conditions in which the radiation does not 
cause a marked change in the populations of the electronic 
system. Such conditions are realized by a double optical 
resonance in which the frequency w of the intense radiation 
falls in resonance between two excited states I 1) and 12) 
(band states, excitonic states, impurity states), and transi- 
tions between the ground state (0) and one of the excited 
states 1 1) are caused by weak radiation with frequency R. 
Such a situation has been considered theoretically for cases 
of double optical resonance in interband  transition^,^.^ ex- 
citonic transitions,16 exciton-band transitions where the in- 
tense light induces a Fano resonance," in transitions be- 
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tween the Landau levels in a quantizing magnetic field,18 
and in impurity transitions.16 

The many references cited above consider the dynamic 
Stark effect for the case of stationary double optical reso- 
nance. In this case, to observe the effects of rearrangement 
of the spectrum, it is necessary that the light intensity 
J,R lo8 w/cm2. Sufficiently long light pulses of such 
power, even in the absence of a single-photon resonance 
between the ground state and excited states of the elec- 
tronic subsystem, give rise to an appreciable number of 
free carriers, including-as a result of multiphoton 
absorption-ionization of impurities, etc. Since this com- 
plicates the actual physical picture of double optical reso- 
nance, it makes sense to investigate the dynamic Stark ef- 
fect under nonstationary conditions in which the pumping 
w and weak probing light R appear in the form of picosec- 
ond or shorter pulses. In this case, when speaking of 
"weak" light (the probing beam R),  we have in mind the 
smallness of the "area" under a pulse of such light. Instead 
of the spectral picture of the dynamic Stark effect charac- 
teristic of stationary double optical resonance, the transient 
approach provides a time sweep with distinguishing fea- 
tures corresponding to this or that type of band spectrum 
in the field of the strong electromagnetic wave. 

2. THE DENSITY MATRIX OF A THREE-LEVEL SYSTEM 
DURING A TRANSIENT DOUBLE OPTICAL RESONANCE 

Let us consider an intrinsic semiconductor (or dielec- 
tric) in the field of strong pump radiation with frequency 
w, which is small in comparison with E, (or with 
R,,,,,,-the spacing between the levels of the dimensional 
quantization in the conduction band c and the valence 
band v in quantum-confined systems), but falls at the res- 
onance between states of two conduction bands or two 
valence bands. For definiteness, in what follows we will 
speak of conduction bands 11) and 12). For the sake of 
brevity, we will drop for now the subscript k (the wave 
vector), which characterizes the states in the band. The 
field w is assumed to be quasistationary. This means here 
that the duration r, of a pulse of light w exceeds the re- 
laxation time r, of a pulse of carriers in the band, i.e., 
r,R 10-l2 S. TWO ultrashort (rn- 10-100 fs) pulses of 
weak radiation with frequency S1, resonant with the tran- 
sition between the ground state of the crystal 10) (the 
vacuum of the electron-hole pairs) and the I 1) state, are 
incident upon the crystal in succession, with delay time r~ . 

Let light with frequency R propagate in the medium in 
the direction of the z axis between its front (z=0) and 
back (z= L)  surfaces. We denote by E$) the electric field 
strength of the light wave R of the ith pulse ( i= 1,2) in the 
medium near z=0. We assume that the change in EX) due 
to passage through the medium, A E ~ ) ,  is small in compar- 
ison with EX). Then the absorptivity per unit area is given 
bYl9 

where P,(z,t) is the amplitude of the reactive component of 
the polarization of the medium, and tl(z) is the time at 
which the field begins to act on the medium at the point z. 

To calculate P, we will make use of the density matrix 
formalism in the approximation which represents the elec- 
tronic system of the crystal in the form of a set of nonin- 
teracting three-level systems, each of which is character- 
ized by its own wave vector k and the corresponding 
energy ~ , ( k ) .  Obviously, this is a very rough approxima- 
tion, but the factors which detract from its faithfulness 
turn out in the situation under consideration not to be very 
important. These factors include the uncertainty in the 
quasimomentum of the electron-hole pairs which arise in 
an interband transition induced by an ultrashort light 
pulse: Ak- (ma)-'. However, taking account of the ac- 
tual indirect transitions in the given case leads to the same 
results as are obtained for a system with direct transitions 
connecting states with the same k to different bands (see, 
for example, Ref. 20). At the same time, the adopted 
model allows for spreading of a packet of states with un- 
certainty Ak in the quasimomentum (and this plays a sub- 
stantial role here). In the case in which generation takes 
place due to the weak light R, the effects of filling of the 
bands and of the Coulomb interaction') are also negligible. 
Outside of the adopted approximation, the solution of the 
problem would have required the successive consideration 
of the relaxation of the photoexcited carriers. However, as 
will become clear in what follows, the dynamics of the 
processes under consideration here is usually determined 
not so much by relaxation as by the peculiarities of the 
electronic spectra which are being rearranged in the field of 
the wave w, and also by the aforementioned spreading of 
states in the continuous spectrum. Therefore we will limit 
ourselves to a description of relaxation with the help of the 
phenomenologically introduced decay parameter y (the re- 
ciprocal transverse relaxation time). The applicability of a 
two-level model to interband nonlinearities with allowance 
for saturation and relaxation effects is discussed in detail in 
Ref. 21. 

We denote by p,,, the elements of the density matrix 
of a three-level system in the field of the light waves S1 and 
w. In place of the matrix elements plo and j520 it is conve- 
nient to introduce the quantities 

where K ~ , , ,  are the wave vectors of the light waves. 
Assuming that the interaction with the light fi con- 

nects only the states 10) and I I),  we represent the polar- 
ization in the form 

where dm, are the matrix elements of the dipole moment 
operator, and N d V o  is the number of three-level systems 
per unit v01ume.~) 

We introduce the notation 
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Vf t f~ )= f i - l dmf in (w) ,  a:= 1 el 1 2. ( 4 )  

Discarding terms oscillating with frequencies 2R and 2o, 
we obtain 

where C0 depends on time while el can be taken as con- 
stant in the time interval of interest. We consider only 
processes associated with the induced polarization, which 
is linear in eo. Variation of the populations in the elec- 
tronic subsystem is described by the terms of higher order 
in eo and is not taken into account in Eqs. ( 5 ) .  

The system ( 5 )  reduces to a single equation: 

As the initial condition we take plo(t=O) =O. We repre- 
sent the solution of Eq. (6) in the form 

where 

A 1 , 2 - ~  -L - (a10+a20) * d(a10-a20)2+40:~.  ( 8 )  

Here and below we use the notation 

The quantities i l l , ,  describe the energy spectrum of the 
excited states of the electronic system in the optical Stark 
effect. 

3. ABSORPTION OF WEAK LIGHT 

We will calculate the energy Dl absorbed from the 
first pulse of light R per unit area of beam cross section. 
We assume that ray( 1 .  We introduce the notation 

In what follows we assume that the light pulse R has a 
Gaussian envelope: 

The normalizing factor A can be conveniently expressed in 
terms of the energies gi ( i=  1,2) per unit area of trans- 
verse beam cross section transported into the medium by 
each of the two pulses R: 

The quantity E in Eq. ( 12 )  differs from the true dielectric 
constant E ( R )  by the fact that it does not include the 
contribution of the transitions, explicitly considered here, 
in the isolated two- and three-level systems. 

To calculate the energy absorbed during the pulse, we 
substitute Eqs. ( 7 ) - (12 )  into Eqs. ( 3 )  and ( 1 )  and inte- 
grate over time from zero to the end of the pulse. We 
obtain 

In the absence of pumping 

It is clear that for fixed energy in the short light pulse the 
energy absorbed by the two- or three-level systems is pro- 
portional to the duration of the pulse ( - 

Let us now calculate the energy absorbed from the 
second light pulse R, following the first after the time delay 
r D .  For simplicity, we t.ake the shape of both light pulses R 
to be identical. We have 

where ~4;)  differs from the quantity A ~ O ) ,  given by for- 
mula ( 13),  only by the substitution 011  + 622. The term 
~4:) on the right-hand side of formula ( 17) describes the 
absorption from the second pulse, due to the polarization 
induced by the first pulse: 

In the absence of pumping Eq. ( 18) reduces to 

It is useful to consider the absorption of two ultrashort 
light pulses R on the interband transitions in bulk materi- 
als, and also in systems with quantum wells and wires, 
starting from the case in which pumping o is absent. In 
this case we have to deal with a coherent, linear optical 
process in which absorption of the light pulse is modulated 
as a result of the polarization induced by the preceding 
pulse. In the parabolic bands model we have for this case 

where m, and mu are the effective masses of the electron in 
the conduction band c and the valence band v, k2 is the 
square of the three-, two-, and one-dimensional wave vec- 
tor for systems with dimensionality d =  3, 2, 1 ,  respectively, 
and Rent,,, are the frequencies of the transitions between 
the levels with dimensional quantization in the conduction 
band and in the valence band. 
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We now integrate over k-space. For the case ah2/4( 1, 
i.e., for short pulses and a modest offset of the frequency R 
from the absorption band edge, we find that the energy 
absorbed from the first light pulse R is 

where 

r(x)  is the gamma function, Nl/S is the number of quan- 
tum wires per unit area of cross section perpendicular to 
them, and N2/L1 is the number of quantum wells per unit 
length in the direction perpendicular to their plane. 

It is clear that for aA2/4(1, the dependence on the 
pulse duration rn of the energy absorbed from the first 
light pulse in an interband transition is determined largely 
by the dimensionality of the system. 

Let us carry out a rough numerical estimate of the 
absorption of a light pulse R. We assume band structure 
parameters corresponding to GaAs: E,z 1.43 eV, 
Adz0.33 eV, mc~0.05mo, the matrix element of the op- 
tical interband transition Zc,z0.5 . cm. Then 

If we take the linear distance between the quantum- 
dimensional objects to be 200 A, then we have 

These estimates show that in order to observe the 
above effects, the light should propagate distances of sev- 
eral microns in bulk materials, and tens of microns in ma- 
terials with quantum wells, wires, and dots. Therefore, for 
d=  1 and d=2, the light should obviously propagate in the 
direction of the wire or parallel to the planes of the quan- 
tum wells. 

Let us consider one more case, with a large offset from 
the absorption edge: ah2/4, 1. Then 

where 

El=@/4, a2=J2?r/4, b3=1/&. (26) 

For the energy absorbed from the second pulse, for 
delay times 'TD 2 UA we have 

where A,@) is given by the right-hand side of Eq. (22) 
with the substitution el OZ2, 

xexp ---yrD cos ArD+- , (28) ( ) ( ?) 
where 

The time-dependent factor in brackets on the right- 
hand side of Eq. (28) is associated with the spreading in 
the continuous spectrum of a packet containing states with 
different energies and momenta created by a light pulse of 
finite duration ( - 6). For small a this factor reduces to 
( &/T,)~/~, and for a ) r d A  it ceases to depend on rD. 

From Eqs. (27) and (28), it is obvious that coherent 
modulation of the second light pulse In can be observed at 
delay times TD such that & < TD 6 y- '. If the pulse dura- 
tion T~ is -30 fs, then, as follows from Eqs. (27) and 
(28), it is possible to observe the effect by varying rD 
within these limits while detuning the resonance by A 6 2/ 
& (i.e., A 6 3040  meV). All the same, if the detuning A 
is less than the frequency of the optical phonon Ro, then in 
pure materials at low temperatures the relaxation time y-' 
can exceed the above value by 1-2 orders of magnitude. 

4. NONSTATIONARY DOUBLE OPTICAL RESONANCE IN 
INTERBAND TRANSITIONS 

We introduce in addition to (4) the notation 

The quantities marked with a prime in definitions (30) 
belong to the conduction band c', which is mixed with the 
c band by the intense light o. In this new notation 

So for the case of a d-dimensional system (d= 1,2,3), ac- 
cording to Eqs. ( 15) and ( 18), the integral 

enters into the expression for 02;') [see Eqs. (9) and 
(15)l. 

In order to obtain an approximate value for Wd, we 
will use the method of steepest descent. Its application here 
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requires a certain amount of care, especially in the case of 
identical signs of v and v' [see definitions (21) and (30)l. 
The integration contour in the complex plane passing 
through the saddle points in the right ( r )  and left (I) 
half-planes 

should bypass the branch points associated with the pres- 
ence of the root in Eqs. (32), (33). 

Omitting the details of the calculations, we simply 
present the expression for the energy absorbed from the 
second light pulse R thanks to the polarization induced by 
the first light pulse: 

where Ad:), the energy absorbed from the second light 
pulse fl in the absence of the first light pulse, is given by 
the right-hand side of Eq. (22) with the substitution 
e11+e229 

The phase qd depends weakly on the delay time T ~ .  The 
quantity p- in Eq. (36) vanishes at the double resonance 
when there is a point kR in k-space at which 

simultaneously. 
It is clear from Eq. (36) that the described effect takes 

place only in a small neighborhood ( -A /  &) of the dou- 
ble resonance point, while in the absence of a pump field w, 
the first of the light pulses Q has a marked influence on the 
absorption of the second pulse only at small offsets A of the 
frequency R from the absorption edge. 

Let us turn our attention to the fact that formula (36) 
is valid only when the effective masses in the c and c' bands 
are somewhat different, such that v- > 2wla &F'/T~. The 
case in which m, and m,, are identical is considered in the 
following section. Furthermore, Eq. (36) does not describe 
the situation in which the double resonance is realized ex- 
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FIG. 1. Band diagram of a crystal at double interband optical resonance: 
a )  same, b) different signs of the effective masses in the c and c' bands. 
The dotted curves represent the bands in the presence of intense pumping 
0. 

tremely close ( A  5 u1l2) to the absorption edge. The cal- 
culation for this case leads to extraordinarily cumbersome 
expressions. The case of identical signs of the reduced 
masses (v,vf > 0) corresponds, as was shown in Refs. 2 and 
3, to the presence of a break in the band energy spectrum, 
which is altered by the interaction with the pump radiation 
field w. The dispersion law for the two branches of the 
spectrum (see Fig. la )  is given by Eq. (32). It follows 
from Eq. (36) that in such a situation interference of states 
in the two branches of the spectrum leads to an exponential 
decay of the induced polarization (with time constant 
v-/ @wl E E; l ) ,  which is modulated by oscillations 
with a frequency that vanishes when the double optical 
resonance conditions are fulfilled exactly. 

Consideration of the problem in terms of the dynamic 
Stark effect is adequate at high enough pump intensities, 
when wl k y. In this case, as is clear from Eq. (36), field- 
induced decay of the polarization dominates over the usual 
relaxation as a result of collisions with phonons, electron- 
electron collisions, or scattering from defects. If the light w 
mixes two different conduction bands, then the typical 
value of the matrix element d12- 10-l8 cgs units. To obtain 
the Rabi frequency 01- 1013 s-' requires the light inten- 
sities J,- lo9 w/cm2. If the light w propagates in a direct- 
band material with quantum wells of width I, then 

In this case, for 1- 100 A, n = 1, n' =2, the matrix element 
d12 takes values of the order of - lo-'' cgs units. Accord- 
ingly, to obtain wl- 1013 s-' here requires intensities two 
orders smaller: J,- 10' w/cm2 (see also Sec. 5). 

For different signs of v and v' in the band spectrum 
renormalized by the interaction with the field a ,  there ap- 
pears now not a break, but a gap (see Fig. lb) .  Under 
stationary conditions when the frequency of the probing 
light R falls within the gap, absorption disappears (at least, 
if relaxation y is neglected), and against the background of 
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the fundamental absorption band there appears a spectral 
region in which the medium is For the case 
of a pulsed probe, we obtain (35), where now 

(d- 1 ) I 2  

Q;(v,v')=@d(-;)l"($) (41 

It should be kept in mind that now -vvl>O, 
v-=v+ Iv'I, A1<O, and S=A+ IA'I. The phase Q);, as 
before, depends weakly on T ~ .  

From Eq. (40) it is clear that field-induced decay is 
absent at p- =0, and the induced absorption oscillates 
with frequency 2wl m / ( v  + 1 v' I ), proportional to 
the field strength of the pump wave. Decay of the oscilla- 
tions in the actual range of values of the parameters is 
determined to an equal degree by two factors: the "relax- 
ation" exponential exp( - y ~ ~ )  and the pre-exponential 
factor ( W ~ U / T ~ ) ' / ~  associated with the spreading of the 
packet of states created by the first light pulse R. 

5. TRANSIENT DOUBLE OPTICAL RESONANCE FOR 
IDENTICAL EFFECTIVE MASSES OF CARRIERS IN EXCITED 
STATES 

Let us return to the case of identical signs of the re- 
duced masses in the c and c' bands, mixed by the intense 
light field w. In Section 4 we already noted that Eq. (36) is 
valid only for somewhat different values of the effective 
masses in the c and c' bands and v- correspondingly not 
too small. However, when the roles of the c and c' bands 
(states I 1) and 12) ) are played by states in quantum wells 
or quantum wires, obtained as a result of dimensional 
quantization of one nondegenerate band (e.g., r6 in A3B5 
materials), but the effective masses in layers forming quan- 
tum wells and barriers differ only slightly, then the values 
of v- turn out to correspondingly close to zero. Since the 
situation at small v differs only slightly from that at v- = 0, 
we limit ourselves to the latter case. The calculations for 
v- =O are significantly simpler than for different v and v'. 
As a result, for one- and two-dimensional materials we 
obtain 

For exact resonance at the absorption edge and for long 
enough delay times ~ ~ # 2 w ~ ~ ,  (43) takes an especially sim- 
ple form: 

Xexp( - - T ~ Y ) C O S ( W ~ T ~ ) .  (45) 

Clearly, even in the case of "parallel" bands, decay of 
oscillations is determined by both the time y-I which char- 
acterizes (in some sense) homogeneous broadening of di- 
mensional quantization levels and by the power-law factor 
( J;;/T~)~/~ associated with coherence spreading in the 
continuous spectrum. 

"we do not deal here with excitonic effects. The optical Stark effect in 
excitons during transient double optical resonance will be considered 
separately. 

2)~quations (3)-(23) can be tied directly to the case of 0-dimensional 
systems (quantum dots) or to the case of impurity centers, described by 
the three-dimensional model. 

'v. M. Galitskii, S. P. Goreslavskil, and V. F. Elesin, Zh. Eksp. Teor. 
Fiz. 57, 207 (1969) [Sov. Phys. JETP 30, 117 (1969)l; V. M. Galitskii 
and V. F. Elesin, Resonance Interaction of Electromagnetic Waves with 
Semiconductors [in Russian], Energoatomizdat, Moscow (1986). 

'E. Yu. Perlin and V. A. Kovarskii, Fiz. Tverd. Tela 12, 3105 (1970) 
[Sov. Phys. Solid State 12, 2512 (1970-71)]. 

'Y. Yacobi, Phys. Rev. B 1, 1966 (1970). 
4 ~ ~ .  I. Balkarei and E. M. Epshteln, Fiz. Tverd. Tela 17, 2312 (1975) 

[Sov. Phys. Solid State 17, 1529 (1975)l. 
5 ~ .  Tzoar and J. I.,Gersten, Phys. Rev. B 12, 1132 (1975). 
6 ~ .  K. Avetisyan, E. M. Kazaryan, A. 0. Melikyan et al., Fiz. Tekh. 
Poluprovodn. 15, 1493 (1981) [Sov. Phys. Semicond. 15, 865 (1981)l. 

's. Schmitt-Rink, D. S. Chemla, and H. Haug, Phys. Rev. B 37, 941 
(1988); S. Schmitt-Rink, D. S. Chemla, and D. S. Miller, Adv. Phys. 
38, 89 (1989). 

'A. Mysyrowicz, D. Hulin, A. Antonetti et al., Phys. Rev. Lett. 56,2748 
(1986). 

9 ~ .  von Lehmen, D. S. Chemla, J. E. Zucker et al., Opt. Lett. 11, 609 
(1986). 

'OM. Joffre, D. Hulin, J.-P. Foing et al., IEEE J. Quant. Electron. 25, 
2505 (1989). 

'IS. D. Ganichev, E. L. Ivchenko, E. Yu. Perlin et al., Zh. ~ k s p  Teor. 
Fiz. 91, 1233 (1986) [Sov. Phys. JETP 64, 729 (1986)l. 

1 2 ~ .  Hulin and M. Joffre, Phys. Rev. Lett. 65, 3425 (1990). 
"s. Glutsch and F. Bechstedt, Phys. Rev. B 44, 1368 (1991). 
140. Betbeden-Matibet, M. Combescot, and C. Tanguy, Phys. Rev. B 44, 

3762 (1991). 
151. Abram, Phys. Rev. B 40, 5460 (1989). 

103 JETP 78 (I), January 1994 E. Yu. Perlin 103 



1 6 ~ .  I. Shmiglyuk, S. A. Moskalenko, and P. I. Bardetskii, Fiz. Tekh. 1 9 ~ .  Shoemaker, in Laser and Coherence Spectroscopy, ed. by J .  Steinfeld, 
Poluprovodn. 8, 904 (1974) [Sov. Phys. Semicond. 8, 582 (1974)l. Plenum, New York (1978). 

"E. Yu. Perlin, Fiz. Tverd. Tela IS, 66 (1973) [Sov. Phys. Solid State 15, Z O ~ .  N. Belov and E. A. Manykin, Preprint of IAE No. 4826/IO, Mos- 
44 (1973)l; Opt. Spektrosk. 41, 263 (1976) [Opt. Spectrosc. 41, 153 cow, 1989. 
(197611. 'IF. De Rougemont and R. Frey, Phys. Rev. B 37, 1237 (1988). 

"E. P. Sinyavskii, Kinetic Eficts in Electron-Phonon Systems in a Laser 
Radiation Field [in Russian], Shtiintsa, Kishinev ( 1976). Translated by Paul F. Schippnick 

104 JETP 78 (I), January 1994 E. Yu. Perlin 104 


