Superconductor-semiconductor phase transition in a random field of defects

V. F. Elesin

Moscow Engineering-Physics Institute, 115409 Moscow, Russia (Submitted 12 May 1993) Zh. Eksp. Teor. Fiz. 105, 168–175 (January 1994)

A theoretical model for describing a superconductor-semiconductor phase transition induced by radiation defects or impurities has been proposed. The model is based on the localization of a Bose condensate of Cooper pairs in a random field created by defects. Expressions for the critical temperature and density of the condensate, which make it possible to describe and predict some experimental facts, have been derived.

1. INTRODUCTION

High- T_c superconductors have been found to be far more sensitive to defects (particularly, radiation defects) than conventional superconductors. It has been established experimentally (see, for example, Refs. 1 and 2) that the critical temperature T_c and the critical current J_c (determined by resistive or inductive methods) decrease with increasing values of the concentration of defects N (or, accordingly, the irradiation fluence Φ) and vanish at a certain critical value, while the resistivity increases without bound in the normal state. It has also been shown that the Hall concentration of carriers remains virtually unchanged.

Several hundred experimental reports devoted to the influence of ion, neutron, electron, and other kinds of irradiation on the properties of high- T_c superconductors have been published so far (see, for example, Refs. 2 and 3). An analysis of the data reveals² that the dependence of the reduced temperature T_c/T_{c0} (T_{c0} is the critical temperature before irradiation) on the reduced fluence is a universal function for all kinds of irradiation and for various types of samples and superconductors. Nonmagnetic impurities have a similar influence.⁴

The foregoing suggests that a superconductorsemiconductor phase transition is induced by defects when T_c and J_c vanish at the critical concentration N_c .

The fundamental difference between the behavior of high- T_c superconductors in a field of defects and that of other superconductors should be noted.²

In this report we propose a model describing this phase transition. It is based on the localization of a Bose condensate of Cooper pairs in a random field of defects or impurities.

Several theoretical studies, in which attempts were made to describe a superconductor-semiconductor transition on the basis of the phenomenon of electron localization, have been published (see Refs. 6–10). However, it was shown in Refs. 6 and 7 that T_c does not vanish even under the conditions of an Anderson insulator. The studies employing the scaling approach (see Refs. 8–10) did not yield concrete results that could be compared with experiment.

2. FORMULATION OF THE PROBLEM. FUNDAMENTAL EQUATIONS

We start with the Bogolyubov-de Gennes equations¹¹

$$\varepsilon_n u_n(\mathbf{r}) = \hat{H}_0 u_n(\mathbf{r}) + \Delta(\mathbf{r}) v_n(\mathbf{r}), \qquad (1)$$

$$\varepsilon_n v_n(\mathbf{r}) = -\hat{H}_0^* v_n(\mathbf{r}) + \Delta^*(\mathbf{r}) u_n(\mathbf{r}), \qquad (2)$$

$$\Delta(\mathbf{r}) = V \sum_{n} v_{n}^{*}(\mathbf{r}) u_{n}(\mathbf{r}) (1 - 2n(\varepsilon_{n})), \qquad (3)$$

where the one-particle Hamiltonian

$$\hat{H}_0 = -\nabla^2/2m - \varepsilon_F + U(\mathbf{r}), \quad \hbar = 1$$
 (4)

describes electrons moving in a random potential $U(\mathbf{r})$ created by randomly distributed defects, and the remaining notation is standard.

In the limit of small values of the order parameter $\Delta(\mathbf{r})$ and its derivatives, we can make the transition from (1)-(4) to an equation of the Ginzburg-Landau type¹¹

$$\Delta(\mathbf{r}) = K_0(\mathbf{r})\Delta(\mathbf{r}) + \frac{1}{2}K_1(\mathbf{r})\nabla^2\Delta(\mathbf{r}) + K_2(\mathbf{r})\Delta(\mathbf{r}) |\Delta(\mathbf{r})|^2, \qquad (5)$$

where

$$K_0(\mathbf{r}) = \int K(\mathbf{r}, \mathbf{r}') d^d \mathbf{r}', \qquad (6)$$
$$K_1(\mathbf{r}) = \int (\mathbf{r} - \mathbf{r}')^2 K(\mathbf{r}, \mathbf{r}') d^d \mathbf{r}', \quad K_2(\mathbf{r})$$

are random functions in the general case. In fact,

$$K(\mathbf{r}_1,\mathbf{r}_2) = \frac{V}{\beta} \sum_{i\omega_n} G(r_1 r_2, i\omega_n) G(r_1 r_2, -i\omega_n)$$
(7)

can be expressed in terms of the exact one-particle Green's functions

$$G(\mathbf{r}_{1}\mathbf{r}_{2}\omega) = \sum_{n} \frac{\psi_{n}(\mathbf{r}_{1})\psi_{n}^{*}(\mathbf{r}_{2})}{\omega - \varepsilon_{n}}$$
(8)

for an electron moving in a random field $U(\mathbf{r})$. Equations like (5)-(8) have been derived in several studies (see, for example, Refs. 12 and 10).

Next, with no loss of generality, we assume that only $K_0(\mathbf{r})$ is a random function, i.e., we set

$$K_0(\mathbf{r}) = \langle K_0(\mathbf{r}) \rangle + \delta K_0(\mathbf{r}), \quad \langle K_0(\mathbf{r}) \rangle = K_0, \tag{9}$$

$$K_1(\mathbf{r}) \rightarrow \langle K_1(\mathbf{r}) \rangle = K_1, \quad K_2(\mathbf{r}) \rightarrow \langle K_2(\mathbf{r}) \rangle = K_2.$$
 (10)

When these assumptions are taken into account, Eq. (5) takes the form

$$\frac{1}{2}K_{1}\nabla^{2}\Delta(\mathbf{r}) + (K_{0}-1)\Delta(\mathbf{r}) + \delta K_{0}(\mathbf{r})\Delta(\mathbf{r})$$
$$+K_{2}\Delta(\mathbf{r})|\Delta(\mathbf{r})|^{2} = 0.$$
(11)

The coefficients K_0 , K_1 , and K_2 were found for weak disorder in Ref. 13, for strong localization in the self-consistent approximation in Ref. 7, and with the aid of scaling theory in Ref. 6.

When the critical temperature and current are calculated from (11), the term containing $\delta K_0(\mathbf{r})$ is usually omitted. This is equivalent to assuming that the order parameter is self-averaging (see Ref. 11). It has been shown that T_c and the current then do not vanish even in an Anderson insulator phase.^{6,7} Therefore, the self-averaging approximation is inadequate for describing the phase transition.

We next take into account the contribution of $\delta K_0(\mathbf{r})$, which turns out to be decisive. Rewriting Eq. (11) as

$$\frac{1}{2m}\nabla^2\psi(\mathbf{r}) + \psi(\mathbf{r})\left[\widetilde{E} + \widetilde{U}(\mathbf{r}) + \alpha |\psi(\mathbf{r})|^2\right] = 0, \quad (12)$$

where

$$\psi(\mathbf{r}) \equiv \Delta(\mathbf{r}), \quad \widetilde{E} = (K_0 - 1)/mK_1,$$
$$\widetilde{U}(\mathbf{r}) = \delta K_0(\mathbf{r})/mK_1, \quad \alpha = K_2/K_1m$$

reveals its similarity to the nonlinear Schrödinger equation with an assigned energy \tilde{E} in a random field $\tilde{U}(\mathbf{r})$. By definition

$$\langle U(\mathbf{r})\rangle = 0, \tag{13}$$

and the correlator in the white-noise approximation

$$\langle \tilde{U}(\mathbf{r})\tilde{U}(\mathbf{r}')\rangle = \mathscr{D}\delta_d(\mathbf{r} - \mathbf{r}')$$
(14)

can be calculated for specific cases.

If the nonlinear term in (12) is neglected, the equation for a condensate of Cooper pairs

$$\frac{1}{2m}\nabla^2\psi(\mathbf{r}) + [\widetilde{E} + \widetilde{U}(\mathbf{r})]\psi(\mathbf{r}) = 0$$
(15)

together with (13) and (14) has the same form as the corresponding system for an electron in the random field $\tilde{U}(\mathbf{r})$. The equation for the discrete problem (in a lattice) is equivalent to the Anderson model, if $\tilde{U}(\mathbf{r})$ is compared with the energy at a lattice site ε_i , and

$$\mathscr{D} = W^2 / 12, \tag{16}$$

where W is the width of the distribution function in energy,

$$P(\varepsilon) = \frac{1}{W} \begin{cases} 1, & |\varepsilon| < W/2, \\ 0, & |\varepsilon| > W/2, \end{cases}$$

$$\langle \varepsilon_i \rangle = 0, \quad \langle \varepsilon_i \varepsilon_j \rangle = \delta_{ij} W^2 / 12. \end{cases}$$
(17)

3. LOCALIZATION OF A BOSE CONDENSATE OF COOPER PAIRS

In the one-dimensional case, the solutions of (13)-(15) are known to be localized states. This means that for any $\tilde{U}(\mathbf{r})$ a condensate of Cooper pairs is localized, and a nondecaying current is impossible. In the threedimensional case (and possibly the two-dimensional case) an Anderson transition occurs, i.e., localized and delocalized states exist, and the energy E_c separating them depends on the degree of disorder W. For example, numerical calculations in the Anderson model^{14,15} give

$$W_c/E_c = \chi_2 = 6.1, \quad W_c/E_c = \chi_3 = 14.4$$
 (18)

for a two-dimensional square lattice and a threedimensional cubic lattice, respectively. From (18) and (16) we have

$$E_{c} = \widetilde{E} = \frac{K_{0}(T) - 1}{mK_{1}} = \frac{2\sqrt{3}\mathscr{D}^{1/2}}{\chi_{d}},$$
(19)

where χ_d is a numerical factor that depends on the dimensionality of the space d. Since \tilde{E} and \mathcal{D} are temperaturedependent, (19) is the equation for a certain critical temperature $T = T_s$, above which all states are localized.

The coefficients K_0 and K_1 and correlator (14) have been calculated in several studies (see Refs. 13 and 10). The expressions obtained in the dirty limit ($T_c \tau \ll 1$) are

$$K_0 = V\rho \ln \frac{\widetilde{\omega}}{T}, \quad \mathscr{D}^{1/2} = \frac{V\widetilde{\delta}}{\xi_0^d T_c m K_1}, \tag{20}$$

$$\xi_0^2 = v_F^2 \tau / T_c, \quad 1/\tau = 2\pi N |U_0|^2 \rho, \quad \tilde{\delta} \sim 1,$$
 (21)

where ξ_0 is the low-temperature coherence length, U_0 is the Fourier component of the potential of a defect, ρ is the density of electronic states, and v_F is the velocity of an electron on the Fermi surface.

From Eqs. (20) and (19) we can derive an equation for the temperature T_s , above which the Bose condensate is completely localized,

$$-\frac{T_s}{T_c} = \frac{\chi_d \delta}{\xi_0^d T_c \rho}.$$
 (22)

Hence we obtain an expression for T_s in the threedimensional case

$$T_{s} = T_{c} \left[1 - \frac{\sqrt{3}\pi^{2}}{30} \left(\frac{T_{c}}{\varepsilon_{F}} \right)^{1/2} \frac{\widetilde{\delta}}{(\varepsilon_{F}\tau)^{3/2}} \right]$$
(23)

and an expression for the two-dimensional case

1

$$T_{s} = T_{c} \left[1 - \frac{\sqrt{3}\pi\delta}{6\varepsilon_{F}\tau} \right] = T_{c} \left[1 - \frac{\sigma_{c}}{\sigma} \right], \qquad (24)$$

where $\sigma_c = e^2 \sqrt{3\delta}/6$, σ is the conductivity, and e is the charge of the electron.

We introduced the special notation T_s for the transition temperature to distinguish it from T_c , which may be defined as the temperature above which $\Delta = \psi = 0$. In the situation under consideration, the order parameter ψ is not equal to zero at $T_c > T > T_s$, but a superconducting current is impossible. Therefore, T_s is the temperature above which a nonzero resistivity can be measured experimentally by a resistive or inductive method. Since $1/\tau$ is proportional to the concentration of defects, T_s decreases with increasing N according to (24) and (23).

The problem of taking into account the nonlinear term in (12) (i.e., the interaction occurring during localization) is difficult and has not been solved completely. This interaction is known to result in shielding of the random potential and certain other effects. Such shielding causes a decrease in the effective value of W_c in (19). In addition, the term $\alpha \psi |\psi|^2$ makes it possible to describe the temperature dependence. In the absence of disorder, this dependence is known to be given by the relation

$$|\psi|^2 \simeq 9.4T_c(T_c - T).$$
 (25)

If $\tilde{U}(\mathbf{r})$ is nonzero, an evaluation can be performed in the following manner. Averaging (12) and taking into account that $\langle \tilde{U}(r)\psi(r)\rangle = 0$ (Ref. 16), we obtain

$$\frac{1}{2m} \nabla^2 \langle \psi \rangle + \widetilde{E} \langle \psi \rangle - \alpha \langle \psi | \psi |^2 \rangle = 0, \qquad (26)$$

whose integration over space gives

$$\int \langle \psi | \psi |^2 \rangle d^d r = \alpha^{-1} \widetilde{E} \int \langle \psi \rangle d^d r.$$
(27)

Bearing in mind the overall spatial uniformity of the condensate, we obtain an estimate of its density

$$\langle \psi | \psi |^2 \rangle \sim \tilde{E} \langle \psi \rangle / \alpha,$$
 (28)

which indicates that the density of the condensate is proportional to the temperature difference $T_c - T$. If T is below T_s , there exist two condensates: a localized condensate with a density $|\psi_l|^2$ and a delocalized condensate with a density $|\psi_p|^2$, so that the total density is

$$|\psi_l|^2 + |\psi_p|^2 = |\psi|^2.$$
(29)

4. DISCUSSION OF RESULTS. COMPARISON WITH EXPERIMENT

Equation (22) for T_s is applicable to the twodimensional and three-dimensional cases and is independent of the pairing mechanism. However, for conventional superconductors with a large concentration of electrons and a large Fermi energy ε_F , the parameters $\varepsilon_F \tau$ and ε_F/T_c are very large, so that T_s differs only slightly from T_c [see (23)]. The situation is different in quasi-two-dimensional high- T_c oxide superconductors: ε_F is small, and $\varepsilon_F \tau$ may reach unity at a relative concentration of defects equal to 10^{-3} to 10^{-2} . Therefore, we shall discuss only the twodimensional case further. The critical temperature and the Fermi energy for a two-dimensional superconductor without defects are given by^{17,18}

$$T_{c} = (2\varepsilon_{F}\varepsilon_{a})^{1/2}, \quad \varepsilon_{a} = 2\widetilde{\omega} \exp(-2\pi/mV)\gamma^{2}/\pi^{2}, \quad (30)$$
$$\varepsilon_{F} = \frac{n\pi}{m}, \quad \gamma = \exp(0.577),$$

where V is the attraction energy, $\tilde{\omega}$ is the cutoff frequency of the attractive interaction ($\tilde{\omega}$ is assumed to be large compared with ε_F and T_c), *m* is the mass of the electron, and ε_a is the binding energy of a pair. Relations (30) hold provided $\varepsilon_F \gg \varepsilon_a$. Otherwise, according to Ref. 18, we have

$$T_c \simeq \varepsilon_F$$
.

Utilizing the expression for τ [see (21)], from (24) we find

$$T_{s} = T_{c} - \beta N, \quad \beta = \frac{\pi^{2} \delta |U_{0}|^{2} \rho T_{c}}{\sqrt{3} \varepsilon_{F}}, \qquad (31)$$

$$T_c / \varepsilon_F = 2\varepsilon_a / T_c = (2\varepsilon_a / \varepsilon_F)^{1/2}, \quad \varepsilon_F \gg \varepsilon_a,$$

$$T_c / \varepsilon_F = 1, \quad \varepsilon_F \leqslant \varepsilon_a.$$
 (32)

The concentration of radiation defects is proportional to the fluence of high-energy particles $N = \gamma \Phi$, so that

$$T_{s} = T_{c} - \widetilde{\beta}\phi, \quad \widetilde{\beta} = \beta\gamma.$$
(33)

The latter equality coincides with the corresponding relation in Ref. 5, which we obtained on the basis of qualitative arguments to describe $T_c(\Phi)$ in initially oxygendeficient films.

It should be borne in mind that (31) and (32) hold provided T_s does not differ excessively from T_c [see (20)]. However, their behavior at $T_s \rightarrow 0$ remains qualitatively correct, since the contribution of the term with $T_s \simeq 0$ in (22) becomes small. Therefore, Eqs. (31) and (32) my be regarded as approximate interpolation formulas over the entire temperature range.

Expressions (31) and (32) enable us to qualitatively describe the phase transition and some of its properties:

1. The universal dependence of T_s/T_{c0} on Φ/Φ_0

$$T_{s}/T_{c0} = 1 - \Phi/2\Phi_{0}, \quad \Phi_{0} = T_{c0}/2\beta,$$
 (34)

which is close to the experimentally observed linear dependence.

2. The fact that T_s vanishes at a certain critical value of the fluence $\Phi_c(0)$ (and, accordingly, of the concentration of defects or impurities)

$$\Phi_c(0) = 2\Phi_0 = T_{c0}/\beta, \tag{35}$$

which is proportional to the concentration of carriers (and, therefore, T_{c0}^2 or T_{c0}) (see, for example, Refs. 2 and 5).

3. The appearance of nonzero resistivity at a finite temperature, if the fluence exceeds a certain value

$$\Phi_c(T) = (T_c - T)/\beta. \tag{36}$$

4. The behavior of the rate of variation of $T_s(\Phi)$

$$\partial T_s / \partial \Phi = -\tilde{\beta}$$
 (37)

as a function of the oxygen deficiency. In particular, in samples with high values of T_{c0} , this rate decreases with increasing T_{c0} , while in oxygen-deficient samples ($\varepsilon_F \leqslant \varepsilon_a$) the slope no longer depends on T_c [see Eq. (32)].

5. The universal dependence of T_s on the London penetration depth λ (Ref. 19), if it is taken into account that in the dirty limit $\lambda^{-2} \sim \tau$.

6. The observed deviations of the ratio $2\Delta/T_s$ and the temperature dependence of $\Delta(T)$ from those given by the

BCS theory [the large values of $2\Delta/T_s$ and weak dependence of $\Delta(T)$ as $T \rightarrow T_s$, which are attributable to the difference between T_c and T_s .

7. A superconductor-semiconductor transition as the oxygen concentration (i.e., ε_F) is lowered at a fixed concentration of defects in a particular sample [see (31)].

The model under consideration predicts the existence of a localized Bose condensate $(\langle |\psi|^2 \rangle \neq 0)$ in the range $T_s < T < T_c$. The dependence of the order parameter $|\psi|^2$ on Φ should be measured to test this prediction. This can be accomplished in tunneling, ultrasonic or electromagnetic probing, and Andreev reflection experiments. When $\Phi > \Phi_c(T)$ [or $T_c > T > T_s(\Phi)$], effects caused by the gap in the spectrum of excitations should be observed, although the resistivity will be nonzero $[R(T)\neq 0]$.

The localization of a Bose condensate is probably not the only factor which can alter the critical temperature. Another possible mechanism, which operates when there is weak localization, was proposed in Ref. 17 and is based on enhancement of the fluctuations of a Bose condensate as a result of scattering from defects, due to a decrease in the coherence length. The corresponding expression for T_c is¹⁷

$$T_{c}/T_{c0} = 1 - m\varepsilon_{a}\eta/\varepsilon_{F}^{2}\tau, \quad \varepsilon_{F} \gg \varepsilon_{a}, \quad \eta \sim 1, \quad (38)$$

so that the rate of variation $\partial T_c / \partial \Phi$ is $\varepsilon_a / \varepsilon_F$ smaller than the rate given by Eq. (37). Therefore, when the fluence is small (and $\varepsilon_F \gg \varepsilon_a$), it may be expected that $T_s(\Phi)$ will have form (38) and will then be described by Eq. (37).

Another reason for variations in T_c may be the effect of defects on the attraction energy. Numerical calculations of the binding energy ε_s in two-dimensional Cu₄O₈ clusters with disorder²⁰ also predict that ε_s will decrease and vanish as the degree of disorder rises. In those calculations the binding energy was calculated by exact diagonalization.

We thank A. F. Andreev, Yu. V. Kopaev, and N. A. Chernoplekov for discussing our work. This research was performed as part of Project No. 90.413 of the Russian Program for High- T_c Superconductors.

- ¹S. V. Antonenko, I. Yu. Bezotosnyĭ, A. I. Grigor'ev, N. N. Degtyarenko et al., JETP Lett. 46, 456 (1987).
- ²V. F. Elesin and I. A. Rudnev, Sverkhprovodimost: Fiz. Khim. Tekh. 4, 2055 (1991).
- ³K. Shiraishi, J. Nucl. Mater. 169, 305 (1989).
- ⁴R. K. Nkum, A. Punnet, W. R. Datars, Physica C (Amsterdam) 202, 371 (1992).
- ⁵V. F. Elesin, P. B. Zhilin, V. E. Zhuchkov et al., Sverkhprovodimost: Fiz. Khim. Tekh. 5, 2315 (1992).
- ⁶A. Kapitulnik and G. Kotliar, Phys. Rev. Lett. 54, 473 (1985); Phys. Rev. B 33, 3146 (1986).
- ⁷L. N. Bulaevskii and M. V. Sadovskii, J. Low Temp. Phys. 59, 89 (1985).
- ⁸M. Ma and A. Lee, Phys. Rev. B 32, 5658 (1985).
- ⁹M. P. A. Fisher, G. Grinstein, and S. M. Girvin, Phys. Rev. Lett. 64, 587 (1990).
- ¹⁰T. K. Ng, Phys. Rev. B 43, 10 204 (1991).
- ¹¹P. G. de Gennes, Superconductivity of Metals and Alloys, W. A. Benjamin, New York-Amsterdam (1966) [Russ. transl., Mir, Moscow, 1968].
- ¹²A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 61, 1221 (1971) [Sov. Phys. JETP 34, 651 (1972)].
- ¹³A. Abrikosov and L. P. Gor'kov, Zh. Eksp. Teor. Fiz. 36, 319 (1959) [Sov. Phys. JETP 9, 220 (1959)].
- ¹⁴J. T. Edwards and D. J. Thouless, J. Phys. C 5, 807 (1972).
- ¹⁵D. Weaire and V. Srivastava, Commun. Phys. 2, 73 (1977).
- ¹⁶V. I. Klyatskin and V. I. Tatarskii, Usp. Fiz. Nauk 110, 499 (1973) [Sov. Phys. Usp. 16, 494 (1974)].
- ¹⁷V. F. Elesin, Sverkhprovodimost: Fiz. Khim. Tekh. 4, 658 (1991).
- ¹⁸P. Nozieres and S. Schmitt-Rink, J. Low Temp. Phys., 59, 195 (1985).
- ¹⁹I. R. Haksham, R. N. Kleinman, and A. T. Fickay, Bell (1989) (Pre-
- print). ²⁰V. F. Elesin, V. A. Kashurnikov, L. A. Openov *et al.*, Zh. Eksp. Teor. Fiz. 101, 682 (1992) [Sov. Phys. JETP 74, 363 (1992)].

Translated by P. Shelnitz