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A theoretical model for describing a superconductor-semiconductor phase transition induced 
by radiation defects or impurities has been proposed. The model is based on the 
localization of a Bose condensate of Cooper pairs in a random field created by defects. 
Expressions for the critical temperature and density of the condensate, which make it possible 
to describe and predict some experimental facts, have been derived. 

1. INTRODUCTION 

High-T, superconductors have been found to be far 
more sensitive to defects (particularly, radiation defects) 
than conventional superconductors. It has been established 
experimentally (see, for example, Refs. 1 and 2) that the 
critical temperature T, and the critical current J, (deter- 
mined by resistive or inductive methods) decrease with 
increasing values of the concentration of defects N (or, 
accordingly, the irradiation fluence @) and vanish at a 
certain critical value, while the resistivity increases without 
bound in the normal state. It has also been shown that the 
Hall concentration of carriers remains virtually un- 
changed. 

Several hundred experimental reports devoted to the 
influence of ion, neutron, electron, and other kinds of ir- 
radiation on the properties of high-T, superconductors 
have been published so far (see, for example, Refs. 2 and 
3). An analysis of the data reveals2 that the dependence of 
the reduced temperature TJT& (T,, is the critical tem- 
perature before irradiation) on the reduced fluence is a 
universal function for all kinds of irradiation and for var- 
ious types of samples and superconductors. Nonmagnetic 
impurities have a similar infl~ence.~ 

The foregoing suggests that a superconductor- 
semiconductor phase transition is induced by defects when 
T, and J, vanish at the critical concentration N,. 

The fundamental difference between the behavior of 
high-T, superconductors in a field of defects and that of 
other superconductors should be noted.2 

In this report we propose a model describing this phase 
transition. It is based on the localization of a Bose conden- 
sate of Cooper pairs in a random field of defects or impu- 
rities. 

Several theoretical studies, in which attempts were 
made to describe a superconductor-semiconductor transi- 
tion on the basis of the phenomenon of electron localiza- 
tion, have been published (see Refs. 6-10). However, it 
was shown in Refs. 6 and 7 that T, does not vanish even 
under the conditions of an Anderson insulator. The studies 
employing the scaling approach (see Refs. 8-10) did not 
yield concrete results that could be compared with exper- 
iment. 

2. FORMULATION OF THE PROBLEM. FUNDAMENTAL 
EQUATIONS 

We start with the Bogolyubov-de Gennes equationsH 

where the one-particle Hamiltonian 

describes electrons moving in a random potential U(r) 
created by randomly distributed defects, and the remaining 
notation is standard. 

In the limit of small values of the order parameter 
A(r) and its derivatives, we can make the transition from 
( 1 )-(4) to an equation of the Ginzburg-Landau typeH 

where 

are random functions in the general case. In fact, 

can be expressed in terms of the exact one-particle Green's 
functions 

for an electron moving in a random field U(r). Equations 
like (5)-(8) have been derived in several studies (see, for 
example, Refs. 12 and 10). 

Next, with no loss of generality, we assume that only 
K,(r) is a random function, i.e., we set 
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When these assumptions are taken into account, Eq. 
(5) takes the form 

The coefficients KO, K1, and K2 were found for weak dis- 
order in Ref. 13, for strong localization in the self- 
consistent approximation in Ref. 7, and with the aid of 
scaling theory in Ref. 6. 

When the critical temperature and current are calcu- 
lated from (1 I) ,  the term containing SKo(r) is usually 
omitted. This is equivalent to assuming that the order pa- 
rameter is self-averaging (see Ref. l l ). It has been shown 
that T, and the current then do not vanish even in an 
Anderson insulator phase.697 Therefore, the self-averaging 
approximation is inadequate for describing the phase tran- 
sition. 

We next take into account the contribution of SKo(r), 
which turns out to be decisive. Rewriting Eq. ( 11 ) as 

where 

reveals its similarity to the _nonlinear Schrodinger_equation 
with an assigned energy E in a random field U(r). By 
definition 

and the correlator in the white-noise approximation 

can be calculated for specific cases. 
If the nonlinear term in ( 12) is neglected, the equation 

for a condensate of Cooper pairs 

together with (13) and (14) has the same form as the 
~rresponding system for an electron in the random field 
U(r). The equation for the discrete problem (in a lattice) 
is equivalent to the Anderson model, if U(r) is compared 
with the energy at a lattice site ei, and 

where W is the width of the distribution function in en- 
ergy, 

3. LOCALIZATION OF A BOSE CONDENSATE OF COOPER 
PAIRS 

In the one-dimensional case, the solutions of ( 13)- 
( 15) _are known to be localized states. This means that for 
any U(r) a condensate of Cooper pairs is localized, and a 
nondecaying current is impossible. In the three- 
dimensional case (and possibly the two-dimensional case) 
an Anderson transition occurs, i.e., localized and delocal- 
ized states exist, and the energy E, separating them de- 
pends on the degree of disorder W. For example, numeri- 
cal calculations in the Anderson rnodell4'l5 give 

for a two-dimensional square lattice and a three- 
dimensional cubic lattice, respectively. From (18) and 
( 16) we have 

where xd is a numerical factor tiat depends on the dimen- 
sionality of the space d. Since E and 9 are temperature- 
dependent, ( 19) is the equation for a certain critical tem- 
perature T = T,, above which all states are localized. 

The coefficients KO and K1 and correlator (14) have 
been calculated in several studies (see Refs. 13 and 10). 
The expressions obtained in the dirty limit ( T,T(~ ) are 

where go is the low-temperature coherence length, Uo is the 
Fourier component of the potential of a defect, p is the 
density of electronic states, and VF is the velocity of an 
electron on the Fermi surface. 

From Eqs. (20) and (19) we can derive an equation 
for the temperature T,, above which the Bose condensate 
is completely localized, 

- 

Hence we obtain an expression for T, in the three- 
dimensional case 

and an expression for the two-dimensional case 

where uc=e2&/6, u is the conductivity, and e is the 
charge of the electron. 

We introduced the special notation T, for the transi- 
tion temperature to distinguish it from T,, which may be 
defined as the temperature above which A=$=O. In the 
situation under consideration, the order parameter $ is not 
equal to zero at T, > T > T,, but a superconducting cur- 
rent is impossible. Therefore, T, is the temperature above 
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which a nonzero resistivity can be measured experimen- 
tally by a resistive or inductive method. Since 1/r is pro- 
portional to the concentration of defects, T, decreases with 
increasing N according to (24) and (23). 

The problem of taking into account the nonlinear term 
in ( 12) (i.e., the interaction occurring during localization) 
is difficult and has not been solved completely. This inter- 
action is known to result in shielding of the random po- 
tential and certain other effects. Such shielding causes a 
decrease in the effective value of W, in ( 19). In addition, 
the term a$l$I makes it possible to describe the temper- 
ature dependence. In the absence of disorder, this depen- 
dence is known to be given by the relation 

I $ 1 2 = 9 . 4 ~ c ( ~ c - ~ ) .  (25) 

If C(r)  is nonzero, an evaluation can be performed in 
the following-manner. Averaging ( 12) and taking into ac- 
count that (U(r)$(r)) =O (Ref. 16), we obtain 

whose integration over space gives 

Bearing in mind the overall spatial uniformity of the con- 
densate, we obtain an estimate of its density 

which indicates that the density of the condensate is pro- 
portional to the temperature difference Tc- T. If T is be- 
low T,, there exist two condensates: a localized condensate 
with a density 1 $,I and a delocalized condensate with a 
density I qP 1 ', so that the total density is 

[ $ , I 2 +  \ $ P I 2 =  I $ I 2 .  (29) 

4. DISCUSSION OF RESULTS. COMPARISON WITH 
EXPERIMENT 

Equation (22) for T, is applicable to the two- 
dimensional and three-dimensional cases and is indepen- 
dent of the pairing mechanism. However, for conventional 
superconductors with a large concentration of electrons 
and a large Fermi energy EF, the parameters E I . ~  and EF/T, 
are very large, so that T, differs only slightly from T, [see 
(23)l. The situation is different in quasi-two-dimensional 
high-T, oxide superconductors: E, is small, and EI;.~ may 
reach unity at a relative concentration of defects equal to 

to lo-'. Therefore, we shall discuss only the two- 
dimensional case further. The critical temperature and the 
Fermi energy for a two-dimensional superconductor with- 
out defects are given 

where V is the attraction energy, G is the cutoff frequency 
of the attractive interaction (G is assumed to be large com- 

pared with EF and T,), m is the mass of the electron, and 
E, is the binding energy of a pair. Relations (30) hold 
provided E,) E, . Otherwise, according to Ref. 18, we have 

Utilizing the expression for r [see (21)], from (24) we find 

The concentration of radiation defects is proportional to 
the fluence of high-energy particles N=y@, so that 

The latter equality coincides with the corresponding 
relation in Ref. 5, which we obtained on the basis of qual- 
itative arguments to describe T,(@) in initially oxygen- 
deficient films. 

It should be borne in mind that (3  1 ) and (32) hold 
provided T, does not differ excessively from T, [see (20)l. 
However, their behavior at T,+O remains qualitatively 
correct, since the contribution of the term with T,=O in 
(22) becomes small. Therefore, Eqs. (3 1 ) and (32) my be 
regarded as approximate interpolation formulas over the 
entire temperature range. 

Expressions (3 1 ) and (32) enable us to qualitatively 
describe the phase transition and some of its properties: 

1. The universal dependence of TJT, on a/@, 

TJT, = 1 - @/2Q0, Qo = T&~B, (34) 

which is close to the experimentally observed linear depen- 
dence. 

2. The fact that T, vanishes at a certain critical value of 
the fluence @,(O) (and, accordingly, of the concentration 
of defects or impurities) 

which is proportional to the concentration of carriers (and, 
therefore, T,$, or T,) (see, for example, Refs. 2 and 5). 

3. The appearance of nonzero resistivity at a finite tem- 
perature, if the fluence exceeds a certain value 

4. The behavior of the rate of variation of T,(@) 

as a function of the oxygen deficiency. In particular, in 
samples with high values of T,, this rate decreases with 
increasing T,, while in oxygen-deficient samples (E~GE, )  
the slope no longer depends on T, [see Eq. (32)]. 

5. The universal dependence of T, on the London pen- 
etration depth il (Ref. 19), if it is taken into account that 
in the dirty limit ~ - ~ - r .  

6. The observed deviations of the ratio 2A/T, and the 
temperature dependence of A(T)  from those given by the 

91 JETP 78 (I), January 1994 V. F. Elesin 91 



BCS theory [the large values of 2A/Ts and weak depen- 
dence of A( T)  as T+  TJ, which are attributable to the 
difference between T, and T,. 

7. A superconductor-semiconductor transition as the 
oxygen concentration (i.e., EF) is lowered at a fixed con- 
centration of defects in a particular sample [see (31)]. 

The model under consideration predicts the existence 
of a localized Bose condensate ( ( I JI I ') +O) in the range 
T, < T < Tc. The dependence of the order parameter I JI I 
on 9 should be measured to test this prediction. This can 
be accomplished in tunneling, ultrasonic or electromag- 
netic probing, and Andreev reflection experiments. When 
9 > @,(T) [or Tc> T > Ts(@)], effects caused by the gap 
in the spectrum of excitations should be observed, although 
the resistivity will be nonzero [R(T)#O]. 

The localization of a Bose condensate is probably not 
the only factor which can alter the critical temperature. 
Another possible mechanism, which operates when there is 
weak localization, was proposed in Ref. 17 and is based on 
enhancement of the fluctuations of a Bose condensate as a 
result of scattering from defects, due to a decrease in the 
coherence length. The corresponding expression for Tc is" 

so that the rate of variation t3TJacP is &,JcF smaller than 
the rate given by Eq. (37). Therefore, when the fluence is 
small (and E~>E,),  it may be expected that Ts(@) will 
have form (38) and will then be described by Eq. (37). 

Another reason for variations in Tc may be the effect of 
defects on the attraction energy. Numerical calculations of 
the binding energy E, in two-dimensional Cu408 clusters 
with disorde8' also predict that E, will decrease and vanish 
as the degree of disorder rises. In those calculations the 
binding energy was calculated by exact diagonalization. 
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