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A theory of magnetic breakdown (MB), in which the spin of the conduction electron is 
flipped, has been developed. The general expressions for the oscillating parts of the number 
density of states and for the thermodynamic potential have been derived in the form of 
multiple Fourier series under the conditions of magnetic breakdown, with allowance for the 
spin-orbit coupling. The coefficients of these series are expressed in terms of the 
product of the elements of a full MB s-matrix of fourth rank. The amplitude characteristics 
of the de Haas-van Alphen effect for the main orbits in zinc are found to change 
considerably when the spin degrees of freedom are taken into account. For this metal the 
theory which is being developed is found to be in qualitative agreement with the 
known experimental data on the oscillation of the de Haas-van Alphen effect on a "needle." 

Oscillations of the thermodynamic potential and its 
derivatives in a magnetic field-the de Haas-van Alphen 
effect-provide reliable information on the energy struc- 
ture of metals and on their Fermi surfaces.' These oscilla- 
tions arise as the Fermi energy gF is crossed by a succes- 
sion of quasiequidistant discrete energy levels as the 
strength of the magnetic field is varied. Here there must be 
closed electron trajectories on the Fermi surface which sat- 
isfy the following equations in the semiclassical 
approximation:2 

where gF is the Fermi energy, p is the quasimomentum, p, 
is the projection of the quasimomentum onto the magnetic 
field H, n specifies the band, and o= t ,1 is the spin index. 

A topological restructuring of electron trajectories oc- 
curs in certain metals in sufficiently strong magnetic fields, 
and so-called magnetic breakthrough occurs. This term 
represents a set of phenomena which stem from the tun- 
neling of a conduction electron between semiclassical tra- 
jectories of different bands separated by an anomalously 
small energy gap. 

The theory of magnetic breakthrough has been devel- 
oped extensively. It is presented in detail in reviews by 
Stark and ~ a l i k o v ~  and Kaganov and ~ l u t s k i n . ~  The theory 
for the de Haas-van Alphen effect is presented in detail in 
the book by Shenberg.' That book also presents the theory 

, of magnetic breakthrough and cites a long list of theoreti- 
cal and experimental studies of these questions. It follows 
from these papers that small regions in which two bands 
come anomalously close to each other (and in which the 
semiclassical approximation2-the customary approxima- 
tion for metals-is not valid) can be thought of as centers 
of a quantum interband scattering of electrons in quasimo- 
mentum space and can be called "magnetic breakthrough 
 site^."^ Under magnetic breakthrough conditions, the to- 
pology of the trajectories of conduction electrons in ( 1) 
changes: in quasimomentum space, a plane network of 
semiclassical regions belonging to different bands and 

linked by magnetic breakthrough sites forms. This network 
is called a "magnetic breakthrough configuration."') The 
motion of conduction electrons along a magnetic break- 
through configuration is a probabilistic process, and the 
wave functions of different regions are related to each other 
by s-matrices. These matrices describe a two-channel 
magnetic-breakthrough scattering of conduction electrons 
by magnetic-breakthrough sites. These matrices do not in- 
corporate a spin-orbit interaction. The energy spectrum 
(the "magnetic-breakthrough spectrum") which arises in 
the course of magnetic breakthrough occupies an interme- 
diate position between a strictly deterministic spectrum un- 
der semiclassical conditions and a completely stochastic 
spectrum of disordered systems. 

There are various ways to calculate the oscillatory in- 
crements in thermodynamic properties in the case of mag- 
netic breakthrough. The method of Falikov and 
stakhovyak5 is based on a theorem which relates the den- 
sity of states to the Fourier transformation of a Green's 
function. This function corresponds to a superposition of 
semiclassical wave packets which return to a given point in 
the magnetic-breakthrough network of bound orbits along 
all possible paths. Their amplitudes decrease in the process 
in accordance with the number of magnetic-breakthrough 
sites which they pass, while their phases are determined by 
the areas of the sectors traced out by these trajectories. 
Another method, proposed by ~ l u t s k i n , ~  is to represent the 
oscillatory part of the number density of states, B(E,p,), as 
the sum of multiple Fourier series. The coefficients of this 
series can be expressed in terms of a product of the ele- 
ments of the s-matrices of the given magnetic- 
breakthrough configuration. The phases are proportional 
to the areas of the closed orbits constructed from the semi- 
classical regions. 

However, these papers'33-5 discussed effects associated 
with only the orbital motion of the conduction electrons 
during magnetic breakthrough; there was essentially no 
discussion of the spin properties of the conduction elec- 
trons. It was shown in Ref. 6 that incorporating the spin- 
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orbit interaction and the spin degrees of freedom of the 
conduction electrons into the theory of magnetic break- 
through leads to a substantial change in a basic dynamic 
characteristic of the magnetic-breakthrough s-matrix. 
When the spin of the conduction electrons is taken into 
account, this matrix becomes a 4 x 4  matrix, while the 
spin-orbit interaction gives rise to a probability for break- 
through with spin flip. Incorporating the spin-orbit inter- 
action thus renders the magnetic-breakthrough scattering a 
three-channel process; that circumstance in turn leads to a 
significant complication of the magnetic-breakthrough 
spectrum.' A systematic theory of magnetic breakthrough 
incorporating the spin of the conduction electrons and 
the spin-orbit interaction in the relaxation-time 
approximation8 yields a very good explanation of the ex- 
perimentally observedg doubling of the peaks of the 
magnetic-breakthrough oscillations of the galvanomag- 
netic characteristics of zinc. 

In this situation it is obviously worthwhile to take a 
theoretical look at the effect of the spin-orbit interaction 
on oscillations in the density of states under the conditions 
of coherent magnetic breakthrough, since a spin flip of the 
conduction electrons in the course of magnetic break- 
through leads to an interference of semiclassical states of 
conduction electrons with different spin directions. This 
interference should undoubtedly be reflected in the de 
Haas-van Alphen e f fe~ t .~  

In the present paper we derive an expression for the 
oscillatory part of the thermodynamic potential under 
magnetic-breakthrough conditions, incorporating the spin- 
orbit interaction (Sec. 2). In Sec. 3 we calculate the am- 
plitudes for the de Haas-van Alphen effect and the main 
orbits of the 2D magnetic-breakthrough network which 
arises in Zn when the magnetic field is directed along the 

FIG. 1. Depiction of magnetic breakthrough vertex ( 1  and 2 are incom- 
ing segments of the quasiclassical trajectories, 3' and 4' are outgoing). 
Arrows indicate the direction of conduction electron motion and the 
direction of the spin a. 

hexagonal axis. The band gap in zinc is of a spin-orbit 
nature.113"0 The probability for magnetic breakthrough 
with spin flip becomes substantial in this case,6 making it 
necessary to use the theory which we have derived for this 
metal. In Sec. 4 we derive an expression for the second 
derivative of the magnetization with respect to the field. 
This expression describes the de Haas-van Alphen effect at 
"needles" in Zn under magnetic-breakthrough conditions. 
We compare a plot of this field dependence with the ex- 
perimental curve from Ref. 10. The theoretical curve is 
plotted with parameter values from Ref. 8, which were 
extracted from experimental data on the galvanomagnetic 
properties of Zn under magnetic-breakthrough  condition^.^ 
In the following section of the paper we take a brief look at 
the coherent motion of conduction electrons along a 
magnetic-breakthrough configuration with spin flip at 
magnetic-breakthrough sites. It then becomes possible to 
express the oscillatory part of the density of states in terms 
of the magnetic-breakthrough spectrum. 

1. COHERENT MAGNETIC BREAKTHROUGH WITH SPIN 
FLIP 

We consider the coherent motion of conduction elec- 
trons or the time evolution of a semiclassical wave packet 
along a magnetic-breakthrough configuration, taking spin 
degrees of freedom into account. 

The motion of the conduction electrons is coherent 
under the conditions4 7, r-) 1/0,, where T is the relax- 
ation time, T,, is the small-angle scattering time, and o, is 
the cyclotron frequency. In taking the spin degrees of free- 
dom into account below, we assume everywhere that the 
typical spin relaxation time r, is much longer than any 
other time scale of the problem (7, r,, , or o; I). This 
condition is valid for pure metals and low temperatures. 
The spin flip of conduction electrons in the course of mo- 
tion along a magnetic-breakthrough configuration is thus 
governed by magnetic-breakthrough scattering alone. In 
this case, each semiclassical region of trajectory ( 1 ) can be 
characterized by the set iu, where i specifies the region, and 
u specifies the spin direction of the conduction electron in 
this region. The band index n is uniquely determined by 
the region index i. We denote by 1 t;iu) a wave packet-a 
state with a finite momentum uncertainty AP and a finite 
coordinate uncertainty AR-which is localized in region i 
at time t. As it moves along the semiclassical region iu to 
the nearest magnetic-breakthrough site, the wave packet 
acquires a phase shift 

where cpi(E,pz) is the increment in the transverse action, 
Si= * ~ / 2  is the sum of all phase shifts which occur in 
region i during passage through classical turning points, 
and 

is the spin contribution to the phase shift, which stems 
from the Zeeman splitting of the spin energy levels in the 
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magnetic field when spin-orbit interaction is taken into 
ac~ount.~'" In ( 3 ) ,  the quantities gi=gi(E,p,) and 
miu=miu(E,pz) are the g-factor and effective cyclotron 
mass of a conduction electron in region i, mo is the mass of 
a free electron, the plus sign corresponds to o= t, and the 
minus sign to a= l . 

Each magnetic-breakthrough site (a  schematic dia- 
gram of which is shown in Fig. l )  is a center of quantum- 
mechanical scattering of electrons, which is connected to 
eight semiclassical regions when spin is taken into account. 
After passing through magnetic-breakthrough sites, a 

semiclassical packet 1 t;io) splits into three parts in accor- 
dance with the expression 

where the primes specify the regions (and the correspond- 
ing spin projections) which emerge from the magnetic- 
breakthrough site (Fig. 1). The scattering amplitudes in 
(4) are elements of an s-matrix, which can be written as 
follows when the spin-orbit interaction is taken into 
a c ~ o u n t : ~  

where w is the total probability for an interband transition 
of a conduction electron, Ho is a characteristic breakdown 
field, which incorporates the spin-orbit interaction, and a 
is a parameter of the spin-orbit interaction in magnetic- 
breakthrough theory. The s-matrix parameters (Ho and a )  
depend on the characteristics of the band spectrum of the 
metal and on the matrix element of the velocity operator of 
the conduction electron, calculated at the center of the 
magnetic-breakthrough site ( p = pM) . Exact expressions 
for these parameters are given in Ref. 6; here we will sim- 
ply mention that an estimate of a shows that a is on the 
order of one when the spin-orbit interaction has a strong 
effect, while O<a(l when the spin-orbit interaction is 
weak. We would also point out that if the spin-orbit inter- 
action is ignored (a=O, P= 1) then all results reduce to 
those derived previously in magnetic-breakthrough 

The choice of signs in (5)  is determined by the 
sign of the difference 

[gnu(pM) - gntug(pM)] ,  n=n(i)  and n1=n'(i'). 
(5b) 

The upper signs correspond to the positive value in (5b). 
The quantities p, T, and A in (5) are real functions of 

H, Ho, g,, and p,. The quantity A can be written as a 
function of HdH as follows: 

This expression determines the phase shift of the wave 
function of a conduction electron in the course of magnetic 
breakthrough; T ( x )  is the gamma function. 

To streamline the equations, we replace the two sym- 
bols iu by the one symbol i for a semiclassical region. Odd- 
numbered regions correspond to states of the conduction 
electron with spin up, and even-numbered regions to states 

with spin down: u =  t and a= l , respectively. The new 
region label i uniquely determines the index of the band 
and the spin direction of the conduction electron: nu 
=nu(i). 

Incorporating the spin degrees of freedom and the ex- 
istence of a third scattering channel (a#O) doubles the 
number of semiclassical regions of trajectory ( 1 ) making 
up the magnetic breakthrough configuration (in compari- 
son with that in Refs. 1 and 3-5). The number of non- 
equivalent regions also doubles. In this sense, the results of 
this section of the paper constitute a simple generalization 
of the results presented in a re vie^.^ Here it is necessary to 
assign various numbers (i,j, ...) from 1 to N to nonequiv- 
alent regions. In the case of a closed magnetic break- 
through configuration, the total number of regions serves 
as N. 

The wave packet ( t ; i l )  which arises after magnetic 
breakthrough scattering evolves in a semiclassical fashion 
until it is scattered by the next magnetic breakthrough site, 
etc. The scattering occurs at the times 

where Ti is the time of motion through region i, and the 
nonnegative integers li represent the number of passages of 
a conduction electron through region i. The time tL is reck- 
oned from the time of the first scattering. 

In expression (6) we have introduced the 
N-dimensional vectors L (I, ,...IN) and T( T I  ,.. . TN) . 

As a result of multiple scattering, the semiclassical 
packets proliferate exponentially in time. In the case of 
closed magnetic breakthrough configurations, these pack- 
ets interfere, forming a packet with a resultant amplitude 
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When spin and the spin-orbit interaction are ignored, this 
amplitude satisfies the recurrence relations derived by 
Slutskin. l2  

The mathematical tools developed in Ref. 13 for ana- 
lyzing magnetic breakthrough configurations and for con- 
structing corresponding dispersion relations under mag- 
netic breakthrough conditions do not impose any 
limitations on the form or rank of the s-matrices. On this 
basis we make use of the results of Ref. 13, and we also 
write a few formulas which make it possible to express the 
oscillatory part of the density of states, v(E,p,), as multiple 
Fourier series of semiclassical phase shifts and resultant 
amplitudes A (L) : 

The quantity A i , , (~ )  is the smooth part of the amplitude, 
consisting of a product of corresponding elements of 
s-matrices corresponding to magnetic breakthrough sites 
through which path L passes. The quantities A;,,(L) are 
the quantum probability amplitudes for finding a conduc- 
tion electron in region j at a time LT after the first scat- 
tering by the starting region i. To generate a complete 
description of the dynamics of the conduction electrons 
under magnetic breakthrough conditions, we need to know 
the entire infinite set of amplitudes A i , , ( ~ ) .  In expression 
(8) it is not possible to carry out the summation over the 
spin a explicitly, in contrast with the situation in equation 
(4.2.3) of Ref. 4. The reason is our incorporation of the 
spin-orbit interaction. 

In the sum over L in (8), the only nonvanishing am- 
plitudes A i , , ( ~ )  are those with L's which generate closed 
trajectories which pass through region i. All closed trajec- 
tories which begin and end in region i generate all possible 
closed j-paths. Each j-path passes lk times through the kth 
region of the closed trajectory (k=  1,2, ..., N).  For a given 
L, the j-paths differ from each other in the order of passage 
through semiclassical regions of the magnetic break- 
through network. Corresponding to the order of the pas- 
sage of a j-path is a certain sequence of region labels 
[i, ..., i]. The first and last terms of this sequence are the 
same as the first and second subscripts in 1, , (L)  . Writing 
the given L's in the form L=rj, we have the following 
equation for the amplitude Zi,,(L): 

where j is an N-vector with mutually simple integer com- 
ponents which have no common divisors, r determines the 
number of "circuits" of the j-path, and the quantity 
Rb( j ) ,  which is independent of the index of region i, is 
uniquely determined by the N-vector L=rj. Equation (9) 
shows that the same amplitude A;,,(L) corresponds to 
closed j-paths [i,.. ., i', ..., i] which differ by a cyclic permu- 
tation of the terms of the sequence [i', ..., i, ..., i ']. Since there 
exist sequences [i, ..., i] which do not change upon cyclic 

permutation (i' =i), the quantity R b ( j )  is identical for all 
such permutations, and the number of such sequences, j i ,  
appears in (22). 

Accordingly, the sum 

with L's which generate closed trajectories, can be written 
as another sum over j-:paths. Working from (8), and using 
(9), we find 

where the scalar products Tj= Tj  and jy=yj give us, re- 
spectively, the cyclotron period and the semiclassical phase 
shift acquired by a conduction electron on the closed tra- 
jectory. A conduction electron begins its motion with one 
spin direction, and after a time Tj it returns to the same 
point, with the same spin direction. 

The summation in (10) is carried out over all possible 
j's which generate closed j-paths. Following Ref. 4, we 
call all the j-paths corresponding to the N-vector j a "j- 
orbit." The vector j in (10) embodies information on the 
spin directions of the conduction electrons in all regions of 
possible closed orbits. 

2. OSCILLATORY PART OF THE THERMODYNAMIC 
POTENTIAL UNDER MAGNETIC BREAKTHROUGH 
CONDITIONS WITH A SPIN-ORBIT INTERACTION 

In the absence of magnetic breakthrough, quantum os- 
cillations on plots of thermodynamic properties versus the 
magnetic field can be expressed in terms of the oscillatory 
part of the density of states, G(E,p,), with given values of E 
and p,, as is well known. 

A calculation of the oscillatory part of the thermody- 
namic potential, 6 ,  with the help of the density of states in 
(10) can be carried out in the standard way. We will not 
repeat that well-known, laborious procedure (see, for ex- 
ample, Refs. 1 and 2). We proceed immediately to the final 
expression for 6 per unit volume of a metal, but in this 
expression it is not possible in general to explicitly carry 
out the summation over spin projections, and the spin in- 
dex itself is "hidden" in j: 

Here s$(E,~,) is the "spinless" area of the closed j-orbit, 
23-y is a constant phase shift, independent of magnetic 
breakthr~ugh,~) and .RT is a thermal factor, given by 
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All quantities in ( 11) and (12) which depend on E and p, 3. AMPLITUDES OF THE DE HAAS-VAN ALPHEN EFFECT 
are evaluated at E= tYF andpz=p5 where the label ( spec- IN ZINC FOR THE BASIC ORBITS 

ifies the extremal areas-of the )-orbits. We also note that in 
our case, as in Ref. 12, for closed trajectories which do not 
lie within the first Brillouin zone, all quantities having an 
index j are composite magnetic breakthrough analogs of 
corresponding semiclassical quantities. In particular, < 
and Aj are determined by corresponding sums of the spin 
contribution in (3) and of the phase shifts of the wave 
function of a conduction electron upon magnetic break- 
through [see (%)]  along a j-orbit. 

For j orbits which lie in a common band and on which 
the spin of the conduction electron does not flip even in the 
case a+, it is possible to carry out the summation over 
spin projections in ( 1 1 ), as in the case of (for example) 
triangular orbits on "needles" in Zn. The expression for fi 
then acquires a standard spin factor R,(j) =cos(m$), 
where $= (mj/2mo)gj, is called the "spin splitting pa- 
rameter of the j-orbit."3) For such orbits, expression (1 l )  
is the same as the expression for fi given in Ref. 4, aside 
from the changes in notation. In the absence of spin-orbit 
interaction (a=O), but with spin states being taken into 
account, we naturally find a corresponding result. 

Expression ( 1 1 ) thus generalizes Slutskin's result4 to 
the case in which the spin-orbit interaction must be taken 
into account under magnetic breakthrough conditions. 
When the spin degrees of freedom are taken into account, 
an interference of semiclassical states of conduction elec- 
trons with different spin directions in the course of coher- 
ent magnetic breakthrough can substantially change the 
amplitudes of the oscillations in thermodynamic proper- 
ties. 

To conclude this section of the paper, we note that 
expression ( 1 1 ) ignores dissipative processes in the elec- 
tron system. The decrease in oscillation amplitude due to 
the scattering of conduction electrons is taken into account 
through the introduction of a Dingle factor. As was shown 
in Ref. 13, the incorporation of a Dingle factor under mag- 
netic breakthrough conditions gives rise to an additional 
factor R in expression ( 11 ) (see also Sec. 4). 

Let us use the theory derived above to calculate abso- 
lute values of the amplitudes for the de Haas-van Alphen 
effect from four basic orbits which arise in a hexagonal 
magnetic breakthrough network in Zn (Fig. 2). In expres- 
sion ( 1 1 ), for r of order unity, the magnetic breakthrough 
factor Rb(rj) can be calculated in a combinatorial fashion 
as a sum over j-orbits. A method of this sort was proposed 
in Ref. 5 for calculating Rb(rj) without consideration of 
the spin-orbit interaction, as we have already mentioned. 
A simple illustration of this method is given in Ref. 1 for 
several important orbits which arise in the course of mag- 
netic breakthrough in Mg. At large values of r, a combi- 
natorial calculation of Rb(rj) becomes very complicated, 
even if the spin-orbit interaction is ignored. In this case it 
is more convenient to use an integral representation for 
Rb(rj) (Ref. 4). 

For our main problem-calculating the effect of the 
spin-orbit interaction on the amplitude for the de Haas- 
van Alphen effect under magnetic breakthrough 
conditions-we can use a more graphic combinatorial 
method with r= 1. It thus becomes possible to find the 
magnetic breakthrough factor Rb( r j )  in a comparatively 
simple way and to carry out the summation over spin in 
(11). 

Working from ( 1 1 ) for the main harmonic, r=  1, and 
ignoring the Dingle factor, we find the following expression 
for the susceptibility dM/dH of thejth orbit4): 

where ~ , = c ~ $ ( ~ , ~ , ) / 2 r d i  is the frequency of the de 
Haas-van Alphen oscillations, ' 
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and q, is a constant phase shift which is unimportant here. 
The mass ratio (mdm,) in (13) follows from the factor 

1 # S , / ~ ~ I  I in expression ( 11 ) for circular orbits and for 
orbits formed from circular arcs (see, for example, p. 413 
in Ref. 1 for Mg), as in Zn. In deriving (13) we ignored 
the spin difference5) in all composite magnetic break- 
through quantities except the spin contribution to the 
phase, 6, and the magnetic breakthrough factor Rb(j),  
which determines the amplitude a. We also omitted the 
vector notation for the index j ;  i.e., we replaced these 
quantities by corresponding semiclassical quantities. 

The scalar symbol j in (13) refers to a set of j-orbits 
of a common type which envelop a common "spinless" 
area but which differ in spin direction (i.e., in the sign of 
1/S) in at least one of the regions. Within these sets, we need 
to carry out a partial summation over j; such a summation 
is essentially an average over the spin. 

Since a semiclassical packet splits into three parts as it 
passes through magnetic breakthrough sites [see (4)], the 
quantity Rb(Tj) for a closed j-orbit is given by the follow- 
ing formula according to the structure of the s-matrix in 
(5), in which we must set A=O (Refs. 4 and 13): 

where n,, is the number of breakthroughs without spin flip, 
n,, is the number of reflections, n3! is the number of break- 
downs with spin flip on the j-orbit, and the sign for each 
magnetic breakthrough site is determined in accordance 
with the discussion of expressions (5) and (5b). We as- 
sume for simplicity that all magnetic breakthrough sites 
are equivalent. 

The identical magnetic breakthrough factors in ( 15) 
and the different signs of fl in phase ( 13) give us, after an 
averaging over the spin, the factor Rs( j ) = cos (7~g'/ ) from 
any pair of j-orbits which are of? common type. The field 
dependence of the amplitude dM,/dH of the jth orbit is 
determined by the sum over all orbits which belong to a 
common type, with the difference in spin directions being 
taken into account. Each term of the sum must be multi- 
plied by a corresponding magnetic breakthrough factor 
(15) and by a factor R,( j ) ,  which arises after the average 
is taken over the spin. In addition, another weight factor 
Cj will correspond to some of the paths. This factor arises 
from the symmetry and is equal to the number of ways in 
which orbit j can be ~onstructed."~ 

We now consider the hexagonal magnetic break- 
through network of Zn, allowing for the doubling of the 
number of regions due to spin-orbit interaction (Fig. 2). 
From this network we single out four main orbits (Fig. 3): 
a gigantic circular orbit Q, which arises because of the 
magnetic breakthrough; a triangular orbit 8, from the 
"needles"; a lune-shaped orbit A, which combines large 
regions from a "monster" with small regions from needles; 
and a hexagonal orbit x from the monster, whose area is 
negative. In this manner we incorporate a traversal of this 
hole orbit by a conduction electron in the direction oppo- 
site the rotation along electron orbits 0, 8, and A. Table I 
lists certain characteristics of these orbits. 

FIG. 3. Basic feasible orbits in the hexagonal magnetic breakthrough 
lattice of Zn, incorporating the spin degree of freedom. Points denote 
conduction electron reflection sites at breakthrough vertices, and cuts are 
breakthrough sites. Conduction electron motion with no spin flip yields 
the orbit characteristics listed in Table I. 

The circular orbit @ has 12 magnetic breakthrough 
sites, and it breaks up into six pairs of large regions and six 
pairs of small ones, designated L and S,  respectively, in 
Fig. 3. Clearly, the other orbits can be constructed from 
the L and S regions. This partitioning makes it possible to 
determine the spin contributions fl of all possible orbits in 
Fig. 3 and to directly calculate the product of factors 

in accordance with the procedure described above. 
There is no difficulty in calculating the resultant am- 

plitudes ( 16) for the triangular and hexagonal orbits, since 
there is no spin flip on these orbits. The phase shifts in ( 13) 
corresponding to such trajectories with opposite spins thus 
take different forms: yo+ 3 ys and yx r 6yL. Here 
y j = 2 ~ F j / H + p  is the phase shift acquired by a conduc- 
tion electron when spin is ignored ( j  = e , ~ ) ,  and yL and y, 
are the spin contributions to the phase shift in large and 
small regions, respectively. Using these phase shifts and the 
data from Table I, and summing over the spin, we find 

CxRb(x)Rs(x) .=r6 cos 6yL, 

for triangular and hexagonal orbits, respectively. 
To determine the resultant amplitude consisting of the 

contributions in ( 16) for a lune-shaped A orbit, we need to 
take account of the spin direction in each region (Fig. 3). 
In this case there are five pairs of orbits which belong to 
the lune class. For example, the motion of a conduction 
electron without spin flip corresponds to the pair of phase 
shifts y~ 2(yL+ 21/~) .  A phase shift with spin up, t (the 
+), is acquired as a conduction electron moves without 
spin flip through outer regions. A phase shift with spin 
down, 1 , is acquired in internal regions. For this pair, 
expression ( 16) becomes 3 ( p / ~ )  472 cos 2 ( yL + 2 ys) . 

Incorporating other orbits of this type, and incorporat- 
ing spin-orbit interaction (a#O) and the spin contribu- 
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TABLE I. Orbit Characters (Fig. 3). 

tions to the phase shift, we find the following result for the 
resultant magnetic breakthrough amplitude in (13): 

For circular orbit a ,  with spin flip at each of 12 mag- 
netic breakthrough sites (Fig. 3), we find that 25 pairs of 
orbits corresponding to the spin directions in the large and 
small regions arise. Taking account of the symmetry of 
these orbits, we find 57 products of the type in (16) with 
different values of Cg, with even powers of the numbers 
n10 and nw and with combinations of the phase shifts ys 
and YL. 

As an example, we show how to derive some of these 
products. In the motion of a conduction electron without 
spin flip along circular orbit (Fig. 3), for example, the 
phase shifts in (13) corresponding to trajectories with op- 
posite spins are yo* ?r&= yo& 6( yL+ ys), where & is the 
spin-splitting parameter of a circular orbit. Corresponding 

and 

The weighting factor is only given for one orbit (ny = 0). 

Weighting 
factor C, 

1' 
2 
3* 
1 

TY pe of 
orbit 

1) 0 
2) B 
3) X 
4) X 

respectively, for these pairs of orbits. 
In a similar way, we find the contributions from the 

other orbits. Here is the final expression for the resultant 
magnetic breakthrough amplitude of a circular orbit, 
which appears in ( 13) after an average is taken over the 
spin: 

Frequency of de 
Haas-van Alphen 

effect F,  (MHz) 

831.26 (141 
0.0158 [IS] 
47.179 [16] 
543.31 [16J 

mo 

1 
0.0075 [14] 
0.337 [I] 
0.986 [I] 

%;ziP I ~ ~ A b e r  of 
reflections b'akthroughs 

For simplicity we have introduced the following notation 
here: 

n ~ j  + ny 

12 
0 
4 
0 

to the pair of phase shifts yo& (6ys-2yL) is a single pair 
of orbits, which differ in spin direction in a symmetric way. Z(2) =cos(4y+) [30 cos(2y-) +24] -48 cos(y-) 

n2j 

0 
3 
2 
6 

The sign in the phase shift in front of YL(is) determines X [2 cos(3y+)+3 C O S ( ~ + ) ] + ~ ~ ~ O S ( ~ Y + )  
the spin direction in a large region L (in a small region S). 
Clearly, the replacement t 4 S sends one orbit into the x [2 cos(2y-)+3] +27 c 0 ~ ( 2 ~ - ) + 9 6 ,  
other. In this case we have n3@=8. Taking into account 
the number of possible orbits tn which a conduction 2 (3)  =18 cos(3y+) [cos(3y-) +4 cos(y-)] 
electron would acquire such a phase shift, and taking an 
average over the spin, we find 1 5 ( p / ~ ) ~ ( a p / f l ) ~  
X c0s(2ys-6yL). 

Corresponding to the other pair of phase shifts 
yg&4(ys+ yL) are two pairs of orbits with different num- 
bers of magnetic breakthroughs with spin flip. In this case 
the directions of the spins in one small region S and in one 
large one L are opposite the spin direction in the other 
regions. Taking into account all possible orbits and the 
order in which the conduction electron passes through all 
the magnetic breakthrough sites, and taking an average 
over the spin, we find 

The replacements y++y-,  y-+y+ lead to 8 (2)+2(4)  
and 2(1)+Z(5) .  

To determine the spin increments yL and ys, it is nat- 
ural to assume that the cyclotron mass mg and the g-factor 
g a  of circular orbit @ are equal to the cyclotron mass mo 
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FIG. 4. Field dependence of Ig 1 dM/dHI for Zn at 1 K; basic orbits in the 
presence and absence (dashed curves) of spin degrees of freedom. These 
plots were constructed with no account taken of the Dingle factor. The 
parameters corresponing to these curves appear in Table I. 

and the g-factor go=2 of a free electron, since this orbit 
corresponds to a cross section of the Fermi sphere in the 
model of nearly free electrons. The spin-splitting parameter 
g", for a circular orbit is then equal to one; i.e., we have 
6(yL+ ys) = T. In a previous study8 of galvanomagnetic 
properties of Z n  we obtained the parameter of the spin 
splitting at a needle, gS, which turned out to be 0.41. As- 
suming that the spin contribution 3ys in (17) of a trian- 
gular orbit is equal to T& we find 

Substituting (21) into ( 17)-(20), and using the values 
of the cyclotron masses and de Haas-van Alphen frequen- 
cies from Table I, along with the parameter values Ho=3.0 
kG and a=0.75, found-in Ref. 8, we find the resultant 
oscillation amplitudes dMj/dH for each orbit. Figures 4-6 
show the calculated behavior of the amplitudes I dMj/dH ( 
as a function of the field for the four orbits which we 
considered. To bring this illustration closer to the actual 
situation, we have incorporated a thermal factor RT [see 
( 12)], in which we have set T = 1 K. 

I I - 
0 100 200 

H, kHz 

FIG. 5. Field dependence of I dM/dH( for Zn at 1 K, circular orbit in the 
presence and absence (dashed curves) of spin degrees of freedom. Param- 
eter values used to construct this curve as in Fig. 4. 

0 .1s  I ~ M / ~ M  1 0 Hllc 
, . , . 8 .  ; : ----.-- a=O.O, gS=O.O 
; :, - 
I *  a=0.75, g'=0.41 : '-, . . i r 

i 
0 2 4 6 

H, kHz 

FIG. 6. Field dependence of I d k / d ~ ~  for Zn at 1 K; triangular orbit in 
the presence and absence (dashed curves) of spin degrees of freedom. 
Parameter values used to construct this curve as in Fig. 4. 

As in the theory for magnetic breakdown without spin 
flip which has been derived for Mg (Refs. 1 and 5 ) ,  the 
amplitude of the oscillations from x and 8 orbits naturally 
decreases as the field increases, while the oscillations from 
the other orbits (a and A )  become predominant to the 
extent that magnetic breakthrough plays an increasingly 
important role. Incorporating the spin-orbit interaction 
and the spin degrees of freedom of conduction electrons 
leads to a significant decrease in the amplitude of the de 
Haas-van Alphen oscillations from all orbits except the 
circular one. The reason is that the orbit @ passes through 
a large number of magnetic breakthrough sites, and at each 
such site there may be a spin flip of a conduction electron. 
There will be an increase in the number of possible paths, 
each of which is determined by its own magnetic break- 
through amplitude. There is thus an increase in the prob- 
ability for finding conduction electrons with opposite spin 
directions on this orbit. This probability depends in a com- 
plicated way [see (20)] on the spin-orbit parameter a and 
on the g-factors of the various regions. 

The behavior of the oscillations from a 8 orbit passing 
through a needle in Zn served as one of the early pieces of 
evidence for the existence of magnetic breakthrough1 
When the spin is taken into account, the maximum of the 
amplitude (Fig. 6) decreases by a factor of more than 2. 
The addition of a factor R,=cos(~gS) in ( 13) does indeed 
lead to a good explanation of the strong dependence of the 
amplitude of the de Haas-van Alphen oscillations on the 
value of the g-factor at the needles as observed 
e~perimentall~.'~ In addition, the spin properties of con- 
duction electrons substantially alter the nature of these 
oscillations, as follows from the complicated way in which 
the magnetic breakthrough amplitude depends on the 
spin-orbit parameter a and the g-factor. 

4. DE HAASVAN ALPHEN OSCILLATIONS IN THE COURSE 
OF MAGNETIC BREAKDOWN; SPIN-INDUCED 
SPLITTING OF LANDAU LEVELS AT NEEDLES IN Zn 

It is interesting to substitute the characteristics found 
for the magnetic breakthrough of a system (in particular, 
the parameters of the needles) through a comparison of 
theory and experiment on the galvanomagnetic properties 
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H, kHz 

FIG. 7. Oscillations in & k / d ~ '  at "needles** ub Zn;H parallel to hex- 
a g d  axis and T= 12 K. Parameter values corresponding to curve (c) 
given in text. Experimental (a) and theoretical (b) curves reproduced 
fnnn Ref. 10. 

of Zn (Ref. 8) into the theoretical expressions for the de 
Haas-van Alphen effect and to compare them with the 
experimental results available. We know of only one study 
in which spin splitting of energy levels in a magnetic field 
under magnetic breakthrough conditions has been ob- 
served in de Haas-van Alphen oscillations involving nee- 
dles in Zn at a temperature T=1.2 K (Ref. 10). This 
comparison of theory and experiment is basically of an 
illustrative nature, since in this case of a triangular orbit, 
spin-orbit interaction does not play the substantial role 
that it would play in the case of lune-shaped or circular 
orbits. The reason is that there is no spin flip of a conduc- 
tion electron as it moves along this orbit. Figure 7a is a plot 
of the experimental behavior of the second derivative of the 
magnetization with respect to the magnetic field. 

The generalization of the theory for the de Haas-van 
Alphen effect under magnetic breakthrough conditions to 
the case in which there is spin-orbit interaction-i.e., the 
content of the preceding sections of th@ paper-makes it 
possible to derive an expression for d 2 ~ ( ~ , ~ ) / d ~ 2  for a 
triangular orbit of Zn (Fig. 3) in a more systematic way 
than in Ref. 10. Taking yet another derivative of expression 
( 13) with respect to the field, and incorporating the Dingle 
factor, we easily find an expression for the corresponding 
quantity: 

x ?I2 
exp ( - a d H )  

sh(arT/H) 

where x is the Dingle temperature, which is determined by 

the mean scattering time of a conduction electron, 3A is 
the sum of the phase shifts from the three magnetic break- 
down sites [see (5c)], a is given by ( 14), and we have 
gS=0.41 (Ref. 8). The argument of the gamma function in 
(512) can be expressed in terms of simple functions" (Im 
y=O): 

where C is the Euler constant. We restrict the summation 
over r in (22) to ten terms (r= 1-10), which dominate the 
sum. The values of the other parameters in (22) corre- 
spond to the values of Ref. 8, which were used in plotting 
Fig. 6 (Ho= 3 kG, a=0.75, F=0.0158 MG). A theoreti- 
cal curve found for T =  1.2 K, for a Dingle temperaturelo 
x =  1.5, for6) 2=0.41, and for y=0.21 is shown in Fig. 7c. 
It is clear from Figs. 7a and 7c that the theoretical and 
experimental curves agree in terms of their behavior, the 
frequency dependence, and the presence of obvious split 
peaks. We regard all this as demonstrating that the results 
are in qualitative agreement. We thus have more confi- 
dence in the estimates of Ref. 8. 

Since there is no spin flip of a conduction electron as it 
moves along a triangular orbit, the curve found here (Fig. 
7c) does not differ in any substantial way from the theo- 
retical curve found in Ref. 10 (Fig. 7b). There is an im- 
portant distinction between the different approaches: our 
results are derived in a systematic way from magnetic 
breakthrough t h e ~ r y , ~  which incorporates the spin degrees 
of freedom (in particular, y, and a) at a microscopic level. 
In Ref. 10, in contrast, parameters describing the spin- 
induced splitting of peaks were introduced in a phenome- 
nological way. They were found by fitting a theoretical 
curve to experimental data. In addition, in order to im- 
prove the agreement with experiment, it was found neces- 
sary in Ref. 10 to use a characteristic breakdown field 
Ho=5 kG in the calculations. That field differs from the 
value Ho-3 kG found from other  experiment^."^'^ The 
present paper, in contrast, uses parameters (the de Haas- 
van Alphen frequency, Ho, a ,  and-most importantly- 
the value of a needle conduction-electron g-factor) found 
independently in a study of galvanomagnetic properties of 
zinc. These values agree well with other values which have 
been reported. 

We also note that A is present in a phase in (22). This 
quantity is a complicated function of H [see (5c)I and of 
the quantity Ho, renormalized for the spin-orbit interac- 
tion. The magnetic breakthrough phase shifi A follows 
from the solution of the quantum Schrodinger equation at 
magnetic breakthrough and is a strong function of 
the ratio Hfl. In the case under discussion here, 3A 
ranges from -0.49 at H= 1.67 kG to -1.02 at H=4 kG for 
a value a=0.75 of the spin-orbit parameter. Only a con- 
stant phase shift of 2n-y was taken into account in Ref. 10, 
and the parameter y had to take on one of the two values 
0.32 or 0.82 for a description of the position of the spin- 
split peaks. Incorporating this difference in phase leads in 
our case (Fig. 7c) to the result that the dips between the 
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peaks corresponding to different spin states are smaller 
than in the old theory (Fig. 7b). We believe that this result 
is in agreement with experiment (Fig. 7a). 

On the other hand, as in Ref. 10, we are left with a 
rather large discrepancy between experiment and theory 
regarding the position of the peak in the oscillation ampli- 
tude, which is shifted toward lower fields on the theoretical 
curve: H',"~=0.75 kG <He,",PX,2.2 kG. Unfortunately, we 
are unable to compare the amplitude characteristics more 
precisely, since the experimental results are expressed in 
arbitrary units, and we do not know the step size of the 
changes in the field H during the measurements. The the- 
oretical curve in Fig. 7c is plotted for a field step size of 2.5 
G. At this step size, it is possible to accurately determine 
the amplitude in low fields. As the step size in the field 
increases in the tabulation of (22), a false pattern emerges: 
the oscillation amplitude decreases in low fields. The rea- 
son for this decrease is that function (22) has some ex- 
tremely sharp peaks at H below 1.5 kG, and the procedure 
by which this function was tabulated, with a large step size, 
simply skips over local extrema in this field range. This 
circumstance may partially explain the discrepancy be- 
tween the experimental and theoretical results. 

Another possible reason for the deviations of our the- 
ory (for the de Haas-van Alphen effect under magnetic 
breakdown conditions, with spin-orbit interaction) from 
experiment is that we have ignored certain effects, such as 
magnetic interactions, many-body interactions, and non- 
uniformity of the sample. 
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"we will also use the common term "magnetic breakthrough 
network.""32s 

2 ' ~ h e  sum of y and Aj constitutes the quantum correction to the Lifshitz- 
Onsager 1/2 formula, which is ordinarily 

 he same can be said of closed loops which belong to a common band 
and which may be part of a j-orbit. 

4 ' ~ e r e  we a_re considering-only the longitudinal component of the suscep- 
tibility dM/dH= - ( 8 R / a ~ ~ ) ,  , where p is the chemical potential. - 

 his is the usual procedure in the derivation of an expression for R, 
since g p f l ( p ,  where g and p ,  are the g-factor and the Bohr magneton, 
respectively. 

6 ' ~ h i s  value of the spin contribution corresponds to a value - 109 for the 
effective g-factor of the conduction electrons of the needles.' 
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