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We study instabilities, bistabilities, and jump-like changes in the orientation states of nematic 
liquid crystals for smooth variation of such external parameters as fields, the pitch of 
the cholesteric helix, chiral additives, etc. Considering these processes with the help of the 
conservation laws and integrals of the equilibrium equations for liquid crystals in 
terms of the theory of bifurcations and catastrophes made it possible to find specific results 
for several problems: a cell with a twisted nematic, a planar-oriented cholesteric, and 
a homeotropic nematic in the presence of chiral molecules. Numerical estimates show that 
the predicted instabilities and hysteresis can be observed experimentally. 

2. EQUILIBRIUM EQUATIONS IN A PLANE-PARALLEL CELL 
WITH AN LC 

The interaction of a liquid crystal (LC) director with 
static electric and magnetic fields has a special feature 
which creates difficulties in LC physics. The problem is 
that the stable equilibrium state of the LC director orien- 
tation under continuous variation of external parameters 
(e.g., field intensities) can become unstable, and the 
smooth behavior of the system can suffer discontinuities. In 
cholesteric liquid crystals (CLC), temperature can also be 
such a parameter, since the pitch of the cholesteric helix is 
temperature-dependent. Studies of bistable states in chiral 
and twisted LC are therefore very promising. For example, 
threshold and hysteresis effects in reorientation of homeo- 
tropically oriented CLC in external static electric and mag- 
netic fields and also under changes in temperature have 
been investigated both theoretically and experimentally.14 

It has recently been shown5s6 that the theory of bifur- 
cations and catastrophes relating possible types of instabil- 
ities to the number of control parameters makes it possible 
to predict and interpret new instabilities in light-induced 
orientational processes in nematic LC (NLC). A similar 
approach was used when the interaction of static fields and 
nematics was investigated.'" In the present study, on the 
basis of conservation laws and integrals of the LC equilib- 
rium equations,9 a generalized theoretical approach to LC 
instabilities is developed, and it is shown that all of the 
studies of threshold and hysteresis phenomena carried out 
so far are in fact special cases of the theory of bifurcations 
and catastrophes. It is also shown that the latter enables 
one to predict new types of instabilities. 

The orientational effects of LC interaction with exter- 
nal fields are characterized by a large number of parame- 
ters: the magnitude and direction of quasistatic fields, the 
concentration of chiral additives, temperature, material LC 
parameters, the initial orientation of molecules, etc. This 
circumstance leads us to expect various types of discontin- 
uous and hysteresis behavior of the LC director orienta- 
tion. 

According to Noether's theorem, invariance of the LC 
free energy under translations results in the conservation of 
the flux of momentum p, while invariance under the rota- 
tion group leads to conservation of the flux of angular 
momentum m. Applying these conservation laws to a 
plane-parallel cell with an LC, we can find the equilibrium 
equations in their most general form:9 

We have restricted ourselves to the case when the LC de- 
formed state is homogeneous under translations in the xy 
plane of the cell, i.e. the director is the unit vector in the 
direction of the dominant orientation of molecules, 
n = n (z). The z axis is normal to the cell walls correspond- 
ing to the planes z=0 and z= L. The function q(z) is the 
angle between the director and the x axis. Here we have 
assumed that the cell is subject to an external magnetic 
field directed, for the sake of simplicity, along the z axis, 
and an electric field E directed along the z axis, with 
D=cJ?. In (1) and (2) we have used the following no- 
tation: X, is the anisotropy of the LC magnetic polarizabil- 
ity per unit volume, E ; ~ = E ~  6ik+~,ni nk is the tensor of the 
static dielectric constant, E,= E,,  - E~ , q is the "wave num- 
ber" of the free CLC twisting, q=2.rr/h, and h is the pitch 
of a free cholesteric helix. Note that due to the smallness of 
xo ( ~ ~ 5  lop5), the magnetic field H can be considered 
uniform even after LC deformation. For brevity, we have 
also introduced the notation K32 = K3 - K2 and 
K3,=K3-K,. 
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It is clear that the parameters p and m in ( 1 ) and (2) 
are to be found from the boundary conditions at z=0 and 
z= L. 

Equations ( 1 ) and (2) are the most general ones de- 
termining the equilibrium configuration of the deformed 
LC state in a plane-parallel cell. These conservation laws 
can be applied to find analytic solutions of some problems 
related to the equilibrium of LCs with essentially nonpla- 
nar director distribution: CLCs in longitudinal electric and 
magnetic fields with homeotropic orientation at the walls, a 
planar-homeotropic CLC-cell, a cell with a twisted nem- 
atic, etc. Below we consider threshold processes for which 
external effects (e.g., quasistatic fields) can be either sta- 
bilizing or destabilizing for the initial equilibrium LC state. 

As is well known,9 whenever the unperturbed state of 
the LC director corresponds to molecules parallel to the 
cell walls and external destabilizing parameters tend to 
force the molecules out of the planes where they lie, the 
threshold is given by the condition 

Here Aq = q (  L )  -q(O), and U is the potential difference 
between the walls of the LC cell. In the particular cases of 
a twisted nematic in electric (H=q=O) and magnetic ( D  
= q = 0) fields, Eq. (3) coincides with the expressions well 
known from the literature (see Refs. 10 and 11). For a 
small excess above the threshold, i.e., for 
0 < I A I L ' /K,~(  1, we can find a stationary structure for a 
small deviation Sn = n- n,, of the director from the unper- 
turbed equilibrium state n,,: 

Equations (3) and (5) will be used below to investigate the 
equilibrium states of a twisted nematic and a planar cho- 
lesteric. 

When the walls of the LC cell produce a homeotropic 
orientation of the director, n,,= e,, the angular momentum 
is identically zero, m = 0. Here e, is the unit vector in the z 
direction. Expanding Eq. ( 1 ) for the momentum flux in a 
small perturbation Sn= [ne,], we find for A and B, 

Thus, when the parameter A decreases, a second-order 
phase transition of the Frkedericksz type takes place from 

a stable equilibrium unperturbed state with q = 0  (for 
A> 0) to a bistable state (for A <O), either with 
q =  ( -A/B) 'I2, or with q =  - ( -A/B) 'I2. 

Expressions (5) and (7) for the coefficient B can be- 
come negative for some values of LC and field parameters. 
Then, to find the reorientation q, it is necessary to retain 
higher-order terms in the expansion of Eqs. ( 1 ) and (2). 
Retaining sixth-order terms in q, we find the LC equilib- 
rium equation in the form 

For the most frequently used LCs, the coefficient C is pos- 
itive, and in the absence of fields is about 0.1. 

We have considered one-dimensional deformations. In- 
stability thresholds with respect to two-dimensional defor- 
mations can be estimated by adding the terms K,P and 
K112 to Eqs. (3) and (6), respectively. Here 1 is the mean 
"wave vector" of the deformation in the plane of the LC 
layer. These thresholds are therefore much higher than the 
thresholds of one-dimensional deformations. This means 
that the present approximation is valid if we are slightly 
higher than the thresholds of one-dimensional instabilities 
( I A I  ~ ~ / ~ ? 4 1 ) .  

3. FREE ENERGY AND EQUILIBRIUM SURFACE 

In terms of free energy, we can derive the LC equilib- 
rium equation using the Euler-Lagrange equations and de- 
manding that the energy be stationary under small varia- 
tions in q.12 A simplified expression for the free energy of 
an LC state has the form 

From the extremum condition d@/dq=O, we find the 
equation of equilibrium LC states which is equivalent to 
Eq. (6). In Fig. la  we have shown the q and A dependence 
of the free energy @ in three dimensions, for B > 0. For 
A > 0, i.e., below the threshold of external destabilizing 
influence, it clearly has a minimum for qO=O, which cor- 
responds to the stable equilibrium unperturbed state of the 
LC director orientation. Above the threshold (A < O), the 
free energy as a function of q has a local maximum at 
qO=O, and the unperturbed state becomes unstable. It can 
also be seen in Fig. la  that the states with antisymmetric 
reorientations 

which coincide with (4) in the approximation of small 
perturbations can be stable. 

The situation is significantly different for negative B 
(see Fig. lb). Above the threshold (A <0) ,  the same pair 
of antisymmetric solutions ( 10) is stable, whereas the un- 
perturbed state is unstable. For B <O and below the 
threshold (A > 0), all five equilibrium states are feasible, as 
long as A<B2/4c. However, among them the state with 
q = 0  and a new pair with antisymmetric reorientations, 
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are stable. The states given by the reorientations ( 10) are 
unstable. Finally, for B<O, below the threshold but for 
A> &/4C, a single state with q = 0  is realized which is 
stable. 

Thus, for smoothly varying parameters A and B, the 
system experiences jumps from one stable equilibrium state 
to another. The jumps occur at the inflection points A=O 
and A = &/4C of the function Q(q,A ), where the first and 
second derivatives of Q vanish simultaneously. The catas- 
trophe described by the free energy shown in Figs. la  and 
lb  is a special case of the "butterfly"-type catastrophe." 

To fully understand all possible transitions, we have 
plotted the equilibrium surface q=q(A,B) in Fig. 2. Note 
that for arbitrary B and above the threshold (A < 0) , the 
state with q =0  is unstable. For B < 0 and 0 <A < &/4C, 
the states with reorientations ( 10) are also unstable (inner 
surface in Fig. 2 adjacent to the plane q =0). Therefore, if 
A decreases, i.e., if the external destabilizing factors grow, 
q jumps at the point A =O from the plane q =O either onto 
the left-hand or the right-hand equilibrium surface come- 
sponding to the reorientations ( 11 ). If the external desta- 
bilizing factors become smaller, the jump from the bistable 
state to the stable one with q=0 occurs for A=&/~c. 
Therefore, along with discontinuities, the reorientation q 
also has a hysteresis for increasing or decreasing "inten- 
sity" of external parameters, such as magnetic and electric 
fields, the concentration of chiral additives, temperature, 
the cell thickness, etc. The hysteresis width is hA = B ~ / ~ c .  

FIG. 2. Equilibrium surface q = q  (A ,B) .  

It is easy to show that the ratio of the "intensities" corre- 
sponding to switching the hysteresis off and on is 1 -AA. 

The growth of the parameter B results in the maxi- 
mum A values coming closer to the local minimum (for 
q=O), until they finally merge at the point B=O (see Fig. 
2). Therefore, for positive B in the transition from the 
unperturbed to the bistable state no jumps or hysteresis of 
the parameter q are observed. 

Thus, consideration of director reorientation for 
twisted nematics and CLCs in static fields in terms of ca- 
tastrophe theory makes it possible to draw generalized con- 
clusions regarding stability and bistability of various states 
of LC orientation. 

4. CELL WITH A TWISTED NEMATIC 

Consider a cell with an NLC whose walls give a planar 
orientation of molecules. In the unperturbed state, we have 
a homogeneous director distribution parallel to the walls: 
n:=0 and Acpf0. The applied static electric field E= Eez 
can either stabilize (for E,  < 0) or destabilize (for E ,  > 0) 
the unperturbed state of molecule orientation. 

As control parameters, we choose the field destabiliz- 
ing the initial director orientation and the NLC twist A q .  
The other parameters characterizing the electric field and 
NLC are considered fixed. Then, putting H=O and q=O in 
Eq. (3) and taking A =O and A = B'/~c to determine the 
relation between the voltage U and twist Acp, we find that 
the bifurcation region is bounded by the curves 

for all Acp> Acpk , where 

This region is, in fact, a set of points in the control param- 
eter plane ( U,Acp) with five pre-images on the equilibrium 
surface q =  q (  U,Ap). The quantity Apk, which is the in- 
tersection point of the curves ( 12), determines the value of 
NLC twist above which the reorientation q versus the volt- 
age U exhibits discontinuities and hysteresis. Equation 
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(13) is found by requiring that (5) be negative for the 
coefficient B, which in the case considered takes the form 

Thus, if Aq, > Aqk and is fixed, then as U increases to U1 
defined by Eq. ( 12a), there is a jump from the state q =0 
to the states corresponding to the reorientations q2 and 
7;. When U decreases, a jump into the state q =0  occurs 
for the value U2 defined by Eq. ( 12b), which is smaller 
than U1. 

Apart from the discontinuity and hysteresis of the 
function q = q ( U) for a fixed Aq, described above, another 
type of discontinuity is possible. Here we mean the situa- 
tion when the voltage is fixed and the parameter Aq, is 
varied. In fact, if U( Uk , where 

then by increasing Aq, to the value 

we smoothly reach the state with q=0. If, however, 
U> Uk, then increasing Aq, to the value (Aq,), defined by 
( 12b) yields a discontinuous change in q from the states q2 
either to the state q; or to q=0. For decreasing Aq,, the 
state with q = 0 becomes unstable for ( Aq,) < (Aq,)2. For 
the NLC 5 CB, = 17.3, E, =7.3, K1=6. dyn, 
K2=3. lo-' dyn, K3=8.5 lo-' dyn, and the critical twist 
value is Aq,=2.04 rad. Estimates of the coefficient C (the 
relevant formula is too cumbersome to be given here) yield 
C ~ 0 . 1  for Aq,=2.5 rad. The value of B is about 0.56, the 
hysteresis width AA -0.78, and the voltage ratio for on/off 
hysteresis is 1 - AA ~ 0 . 2 2 .  

To conclude this section, we note that similar jumps 
and hysteresis behavior can be induced by a static magnetic 
field applied normal to the plane of the NLC director ori- 
entation. 

5. PLANAR-ORIENTED CHOLESTERIC 

For a planar-oriented CLC, n:=0. The control param- 
eters in this case are the destabilizing electric field (for 
E, > O), the pitch of a free cholesteric helix, the cell width, 
etc. 

As in the previous section, we find that the bifurcation 
region for the control parameters (U,qL) has the form 

For H=O and Aq,=qL, we find from (5) the following 
expression for the coefficient B: 

It is clear that the condition B< 0 for the onset of hyster- 
esis and a jump with changing electric field holds if 
qL > (qL) k .  The LC parameters must satisfy an additional 
condition, 

This holds, for example, for the NLC 5 CB, and we also 
have (qL)k-3.75. 

As the parameter qL changes (for a fixed U), the 
jumps and hysteresis of q occur if U> Uk, where 

defines, in fact, the threshold voltage of the Friiedericksz 
transition in a planar-oriented CLC with the twist "wave 
number" qk , or in a cell of thickness Lk .lo 

6. HOMEOTROPIC NLC IN THE PRESENCE OF CLC 
MOLECULES 

Consider now an NLC cell whose walls orient the mol- 
ecules strictly along the normal to the boundaries. Then 
the unperturbed director state corresponds to nf= 1 and 
n:= n$ = 0. Assume that a small number of CLC molecules 
is added to the nematic. As shown in Ref. 14, when 
q L > (q L),h, = rK3/K2, the so-called fieldless Friiederickcz 
transition from the stable homogeneous distribution of 
molecules to the stable twisted distribution occurs. Such a 
destabilizing role can be also played by the external static 
electric field E = Ee, for an NLC with E, < 0. For an NLC 
with E,> 0, the electric field, as well as the magnetic field 
H = He,, stabilizes the initial homeotropic orientation of 
the NLC molecules. In this case, the equation of equilib- 
rium states for the perturbation Sn = n - q,= [ne,], 1 Sn 1 
= q sin (.rr z/ L ) has the same form ( 8 ) , with coefficients 
(6) and (7). The coefficient C is given by 
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Consider a situation in which the electric field stabi- 
lizes the initial homeotropic orientation of the director 
(E, > 0). Then the bifurcation region in the control param- 
eter plane ( U,qL) takes the form 

From (6) and (7) we find the conditions on the parame- 
ters U and qL under which hysteresis and jumps occur, 
with one parameter varying and the other fixed: 

In particular, for U=O we find the condition under which 
the fieldless Friedericksz transition for a given NLC ex- 
hibits hysteresis.14 Thus, the presence of a stabilizing elec- 
tric field increases the hysteresis width for the function 
71 = q(qL) if E,/E,, - 3K32/K3 < 0. This is the case, for ex- 
ample, in the NLC 5 CB. If for a given NLC the fieldless 
Friedericksz transition shows no hysteresis, the electric 
field can induce it. The critical voltage is determined by Eq. 
(20a). If on the contrary E ~ / E , ~  - 3K32/K3 > 0, the electric 
field reduces the hysteresis width to the point of complete 
disappearance. 

When the voltage U is the control parameter, the 
jumps and hysteresis of the dependence 7 = 7 ( U) occur if 
the condition (20b) holds. 

Let us now discuss the case in which the electric field 
destabilizes the initial molecule orientation (E, < 0).  In the 
absence of chiral additives (q=O), an ordinary Frieder- 
icksz transition does not have any hysteresis. The presence 
of right-left asymmetric molecules induces hysteresis in 
the Friedericksz transition in an electric field if 
qL > (qL) k ,  where (qL) is given by Eq. (20b) with 
E, < 0. 

Finally, taking into account Eqs. (6) and (7) for the 
coefficients A and B, one can show that a destabilizing 
electric field and gradual voltage growth result, first, in a 
decreasing and for U >  Uk, a vanishing hysteresis width for 
a fieldless Friedericksz transition. The value of Uk is given 
by (20a), again with E, < 0. 

For the NLC MBBA, with E~~ =4.7, E, =5.4, 
K1=6.  lop7 dyn, K2=4.  lo-' dyn, and K3=7.5. 
dyn, the fieldless Friedericksz transition occurs for 
(qL),,=6, while ( q L ) k ~ 4 . 7 .  For qL=5.4 and voltage 

above the threshold ( E , u ~ / ~ T ~ K ~  = 1.1 ) , the hysteresis 
width AAz0.17 and UoE/Uo,=l-AA~0.83. 

CONCLUSION 

Using Noether's theorem to obtain the equilibrium 
equations and catastrophe theory to analyze them, we can 
better understand qualitatively the stable states of LC di- 
rector deformations. The approach developed above en- 
ables one to predict new discontinuities and hysteresis of 
the director reorientation as the "intensities" of external 
parameters are varied. It is important that with the help of 
stabilizing effects, we can control the hysteresis width and, 
if there is no hysteresis, induce it. The control parameters 
("intensities" of external effects) can include the values 
and directions of external quasistatic fields, the liquid crys- 
tal constants (the Frank elastic constants, the dielectric 
constant anisotropy, etc.), the state of the initial unper- 
turbed director orientation, the cell width, and, in the pres- 
ence of chiral additives, their concentration, the ambient 
temperature, etc. 

The treatment presented above and numerical esti- 
mates allow us to hope that the predicted jumps and hys- 
teresis will be observed in the future. We believe that the 
study of these effects must give important information 
about the molecular dynamics of the liquid crystal me- 
sophase. 

The authors are grateful to B. Ya. Zel'dovich for help- 
ful discussions. 
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