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We consider the generation of quasistatic fields when a strong laser pulse propagates in a 
rarefied plasma. We show that the propagation of a circularly polarized pulse is accompanied 
by the emission of a low-frequency electromagnetic field. We determine the structure of 
the field and the energy losses connected with the radiative deceleration of the pulse. We 
compare the magnitudes of the quasistatic electromagnetic fields and the electrostatic 
wake field. 

1. INTRODUCTION 

The availability of sources of radiation of subpicosec- 
ond length and high power'.2 has stimulated the study of 
the interaction between such radiation and matter. In par- 
ticular, in connection with research on particle accelera- 
tion by lasers and on x-ray lasers, great interest has been 
shown in the study of the passage of short laser pulses 
through a plasma. So far, most investigations have been 
connected with a study of the electrostatic wake field re- 
sulting from the displacement of plasma electrons from the 
region occupied by the laser pulse under the action of the 
ponderomotive force (see, e.g., Ref. 3 and the literature 
cited there). In the present paper we would like to draw 
attention to the possibility of generating low-frequency 
(i.e., with frequencies below the plasma frequency) sole- 
noidal electromagnetic fields by ultrashort laser pulses and 
indicate the conditions under which this effect may be sig- 
nificant. This effect is connected with the excitation of drag 
currents in a plasma under the action of the laser field. The 
drag current leads in the case of a circularly polarized 
pulse to the generation of electromagnetic fields thanks to 
the inverse Faraday effect. 

The generation of a magnetic field by a long laser pulse 
(the stationary inverse Faraday effect) has been studied 
rather completely (see, e. g., Refs. 4 and 5). However, in a 
sufficiently rarefied plasma, the length of subpicosecond 
laser pulses may turn out to be less than the time for es- 
tablishing the electromagnetic field, and its structure will 
therefore differ from the stationary one. Moreover, if the 
characteristic time scale of the pulse turns out to be less 
than the period of the plasma oscillations, there arises to- 
gether with the quasistatic wake field which appears be- 
hind the pulse a radiation field similar to the Cherenkov 
radiation field of a laser pulse in a diele~tric.~" One should, 
however, emphasize that such an analogy is to a significant 
extent formal in character, since the phase velocity of the 
electromagnetic waves in a plasma is always larger than the 
velocity of light. 

The basic equations of the electrodynamics of an ul- 
trashort laser pulse are formulated in the second section, 
and we also obtain there a general solution for the quasis- 
tatic electromagnetic field in the fixed momentum aproxi- 
mation. In the third section we analyze a rectangular laser 

pulse. The fourth section is devoted to a study of the gen- 
eration of an electromagnetic field by a focused Gaussian 
laser pulse. In the fifth and last section, we compare the 
amplitudes of the electrostatic and electromagnetic fields, 
and discuss the possibilities for their application. 

2. BASIC EQUATIONS 

We consider the propagation of an electromagnetic 
pulse of frequency wo and wave vector ko (ko=wdc) in a 
uniform rarefied plasma, assuming that the electron 
plasma frequency w, is appreciably lower than wo. Being 
interested in short pulses, we shall assume the ions to be 
fixed, playing the role of a neutralizing, uniform back- 
ground, and the electrons to be cold. We describe their 
motion by the equations of hydrodynamics, which together 
with the Maxwell equations have the form: 

Here d/dt=d/at+ (vV) is the total time derivative; n, p, 
and v are the electron density, momentum, and velocity, 
with v = pc(m2c2 +p2) - 'I2; e and m are the electron charge 
and mass, and c is the speed of light. 

We shall consider Eq. ( 1) assuming that the oscilla- 
tory velocity of the electrons in the electric field Eo of the 
laser pulse is small compared to the speed of light: 

This weak-relativity condition makes it possible to write all 
hydrodynamic quantities and fields as a sum of three har- 
monics: at the fundamental frequency wo, at the doubled 
frequency 2w0, and at "zero" frequency (quasistatic quan- 
tities changing over times considerably longer than the pe- 
riod of the laser radiation). This corresponds to the qua- 
dratic approximation in the amplitude of the 
electromagnetic field and takes into account such effects as 
strictional nonlinearity, relativistic nonlinearity, generation 
of the second harmonic of the frequency of the laser pulse, 
and quasistatic drag current. Eliminating quantities at the 
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second harmonic, we arrive at a system of equations for the 
scalar (Y) and vector (A) potentials and the amplitude Eo 
of the laser pulse: 

#A eco2 

--$iT- c 2 ~ ~ + o s = i +  (Eo div Et-c.c.), (4) 
moo 

We assume Y, A, and Eo to be slowly changing in 
comparison with the period 2?r/oo of the laser pulse and its 
wavelength 27r/k0. In Eq. ( 5 ) ,  A, is the transverse La- 
placian with respect to the direction of propagation (k,,), 
and the potential and nonpotential components of the elec- 
tron velocity V are respectively determined by the conti- 
nuity equation and the equation of conservation of gener- 
alized vorticity: 

1 a ~ n  eA 
div v+- -=o, V+-=O, 

no dt mc 

while the perturbation of the electron density, Sn = -AT/ 
4?re and the quasistatic magnetic field B=curl A can be 
expressed in terms of the slowly varying potentials. 

The generation of the quasistatic magnetic field is, ac- 
cording to Eq. (4), determined by the nonlinear drag 
~ur ren t :~  

If we understand by r and L the characteristic time and 
length scales for changes in the magnetic field, the use of 
Eq. (7) for describing magnetic field generation assumes, 
in accordance with Ref. 5, that 

where VT is the electron thermal velocity. 
Condition (8) determines the boundary of applicabil- 

ity of the hydrodynamic description for slow motions re- 
sulting from the time- and coordinate-dependence of the 
field amplitude Eo. Moreover, the longitudinal spatial 
(LII ) and time (7) scales are correlated, LII -CT, for a 
pulse propagating in a rarefied plasma. This makes it pos- 
sible to verify the validity of (8) for V&C, if by L we mean 
the longitudinal size LII of the pulse, which corresponds to 
electromagnetic beams of a rather large transverse size 
with a radius R larger than the pulse length. In the oppo- 
site case, R < LII , (8) constrains the pulse length, which 
must be small compared to R/vT. In practice this con- 
straint is not overly stringent. For instance, in the case of a 

laser pulse with R - 10 pm, propagating in a plasma with a 
temperature of a few hundred eV, (8) is satisfied for pulse 
lengths less than 1 ps. 

Equations (3)-(5) enables us to study the self- 
consistent evolution of a laser pulse and of the quasistatic 
rotational electromagnetic field and longitudinal wake field 
generated by it.3 We restrict ourselves here to using Eq. 
(4) to study the excitation of a magnetic field and a rota- 
tional electric field in the approximation where the inten- 
sity distribution of the laser pulse is fixed. 

The physical reason for the generation of a magnetic 
field is the inverse Faraday effect, which appears in the case 
of an elliptically polarized pulse and which produces the 
nonvanishing nonlinear current (7). The latter occurs due 
to the spatial inhomogeneity of the pulse,1) which is of 
limited extent in the longitudinal and transverse directions. 
We shall restrict ourselves below to considering axisym- 
metric electromagnetic pulses propagating along the z axis. 
Equation (4) then determines one component, Aq=A, of 
the vector potential and, correspondingly, two compo- 
nents, B,= - aA/az and B,= ( l/r) (a(rA)/ar), of the 
magnetic field. Writing the field of the laser pulse in the 
form Eo= (e,+iAe,,)Eo(r,z- v&t) +c.c., we have the fol- 
lowing equation for the vector potential: 

where Bo= ( e A o ~ 4 m w & ) ~ ~ ( r , z - v ~ , t )  is the characteris- 
tic magnitude of the magnetic field, A is the degree of 
ellipticity of the radiation ( I A 1 ( 1 ,A = 0: plane polariza- 
tion, A =  1: circular polarization), and ug is the group ve- 
locity of the laser pulse. It is convenient to change in what 
follows to a frame of reference moving with the pulse, 
introducing the variable (=z-vg. Moreover, it is natural 
to assume that the pulse length is appreciably longer than 
the wavelength, L,2?rc/wo, and that its shape changes 
slowly compared to its length r= L/c. Equation (9) for A 
can then be simplified: 

where kp=o/c .  Equation (10) is linear and its solution 
can be written in general form. To do this we take the 
Fourier-Bessel transform8 with respect to the radial vari- 
able, 

where J1 is a Bessel function, and the two-sided Laplace 
transform with respect to time. As a result we obtain a 
first-order equation in the axial variable {, the solution of 
which, with the boundary condition that there is no field in 
front of the pulse, has the form: 
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where Bo(s,(,p) = $dt$drrJo(sr) Bo(r,(,t). 
Taking the inverse transform with respect to the radial 

variable and time, we get the following expression, which 
describes the space and time dependence of the vector po- 
tential of the quasistatic field: 

where the integration contour for the variable p passes in 
the complex p plane vertically upwards to the right of all 
singularities of the integrand (o > 0). 

Equation (12) describes the nonlocal relationship of 
the electromagnetic field (A) to its source ( Bo). A local 
relationship between A and Bo arises for smoothly inho- 
mogeneous beams, kd() 1, over sufficiently long times and 
distances from the leading front of the beam, $(ct) 1. Un- 
der those conditions, Eq. (12) becomes the well-known 
expression for the stationary inverse Faraday effect: 
A = - $a ~ d a r .  

3. DYNAMICS OF ELECTROMAGNETIC FIELD GENERATION 
BYASHORTRECTANGULARLASERPULSE 

We can see the basic features of the dynamics of the 
electromagnetic field from the example of a uniform pulse 
of length L and radius R appearing in the plasma at time 
t=O. The source then takes the form 

where 8(x) is the Heaviside step function. The field in the 
plasma can be written as a superposition of the fields of two 
pulses of "positive" ( B1 = Bo) and "negative" ( B2 = - Bo) 
polarity, shifted along the ( axis by a distance L with 
respect to one another: 

where A. is the field of an infinitely long pulse: 

Here a = ,/-, and A. is nonzero only for (< 0. We 
note that the dependence on the longitudinal coordinate 
occurs in (14) solely in the form of the product (t. The 
potential A. thus reaches for large times, k p )  1, a station- 
ary expression which depends only on the radial coordi- 
nate: 

=* IT Ji dq cos qKo(kPp), 

where p = J ? + ~ ~ - 2 r ~ c o s q .  In the steady state, only 
the axial component of the magnetic field B,(r) remains, 
which is localized along the length of the pulse: - L < ( 
< 0. 

It follows from ( 15) that for a broad pulse, k p )  1, the 
vector potential is nonvanishing only in a ring of width - k;' near the edge of the beam. The magnetic fields in- 
side the beam and outside it are then in opposite directions. 
Such a configuration corresponds to the magnetic field of a 
solenoid which has the surrounding plasma at its surface 
(Fig. la). The jump in the field at r=R is connected with 
the step form of the pulse, due to which the drag current 
turns out to be localized on its surface. 

It follows from Eq. (15) that for a narrow pulse, 
kd(( 1, the field B,( r) is nonvanishing and essentially uni- 
form [B,(r) s Bo] inside the pulse ( r < R ), and vanishes 
outside it. B,(r) varies appreciably only near the beam 
(Fig. lb). We note that in this case the magnetic field 
outside the beam also changes sign, but that its magnitude 
is smaller by a factor (kd( ) 2  than the field inside the beam. 

The field dynamics are described by the second term in 
Eq. (14); it is convenient to write it in the form: 

The potential AO,N, together with the quasistatic field B,, 
also determines the radiation field B,= -aA/a( and 
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FIG. 2. 

One can see from this last Eq. (17) that the fields B, 
and Ep are nonvanishing only inside a conical layer of 
width 2R with its center at the leading edge of the beam 
(Fig. 2): 

For a broad beam, k$)1, these fields are also, like the 
field B,, localized near the edge of the beam in a ring of 
width ~r-k;'. These fields therefore turn out to be neg- 
ligible at distances A(-R from the head of the beam. 

A qualitatively different situation is realized for a nar- 
row beam, k F ' ~ ( 1 .  The radiation field occupies here a 
considerable volume of plasma outside the beam r< l/@. 
In that case in the region ( 18) we have %(a2- p2) (1, and 
for aAo,N/aa we obtain 

whence it follows that B, and E, reach a maximum for 
?=a2- R ~ ,  with aAo,,,/aa given by Eq. ( 19). 

In contrast to B,, the B, and Ep fields transfer 
energy. The associated Poynting vector S ,=(C/~T)  
( a ~ / d a ) ~ [ l -  (ct/C)] describes energy losses from the la- 

ser pulse to radiation of the electromagnetic field. The total 
radiative energy flux Q= S2?rrSZ(r) dr  l: (~aI#R~/47?,$~) 
increases for a )  R with time and reaches a maximum value 
Qmax=c $d8?kz, for a)rma,= l/@. It is easy to show 
that radiative losses from a laser pulse are always small in 
a rarefied plasma: Q,,(E~~, which corresponds to the 
fact that the radiation fields are small compared to the field 
of the laser pulse itself. 

We note that although the characteristic frequency of 
the radiation field is small compared to the laser frequency, 
it is nonetheless large compared to the electron plasma 
frequency, and it decreases with distance from the leading 
edge of the pulse. At distances r-r,,,, this frequency is 
comparable to the plasma frequency, and as a result the 
radiation field is screened at distances r > r,,, . 

According to Eq. (13), at the trailing edge of the laser 
pulse there arises yet another radiation cone in which the 
fields B, and Ew have opposite signs, but the Poynting 

vector turns out to be the same as in the cone arising from 
the leading edge of the pulse. The cones from the leading 
and trailing edges do not overlap if the pulse length is 
greater than its radius, L > R. In the opposite case, L gR,  
the radiation field is weakened due to the interference of 
the radiation fields produced by the leading and trailing 
edges. The attenuation coefficient of the fields (16) in a 
short pulse has the form (L/r) m. 

4. GENERATION OF ELECTROMAGNETIC FIELDS BY A 
FOCUSED GAUSSIAN LASER PULSE 

The time dependence of the fields generated shows a 
different character when a laser pulse is focused in a 
plasma by a lens of optical power l/  f. In that case, the 
pulse appears in the plasma not instantaneously (as was 
assumed in Sec. 3), but propagates in the plasma smoothly, 
changing its characteristics with time. We shall assume 
that the pulse has a Gaussian shape: 

where L is the length of the pulse, Ro= f/ko is the mini- 
mum radius of the laser beam in the focal plane, f is the 
ratio of the focal length of the lens to its diameter, and 
~ ~ ( t )  = R;+ c2?/ f is the instantaneous radius of the 
beam; we take as t=O the moment the pulse passes through 
the middle of the caustic. The potential of the field in the 
plasma then has the form, according to (12), 

Using the fact that the pulse is long compared to its wave- 
length (koL)l), we can drop the term g ' 2 / ~ 2  in the ar- 
gument of the exponential. We then get the simpler expres- 
sion 

where T= (c/Rof ) -' is the time it takes the pulse to pass 
through the Rayleigh length fRo. The assumption that the 
pulse parameters vary slowly with time, used in writing 
down Eq. ( lo), corresponds to the condition L 4 c . r ~  fRo. 
We start the analysis of the nature of the excited fields with 
the case of a dense plasma ( k p o )  1). In that case, the 
potential (23) yields the quasistationary solution for the 
electromagnetic fields 
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FIG. 3. 

The field lines of the excited magnetic field are shown 
in Fig. 3. It is clear that the field lines are closed and the 
maximum magnetic field strength is reached on the beam 
axis (r=O): 

The effect of the excited fields being nonstationary is small 
and reveals itself in higher orders of the small parameter 
( k p )  -I( 1. In the case of a rarefied plasma (kpRo( 1 ), the 
nonstationary corrections are also small with respect to the 
parameter ( kpL ) - ' ( 1 : 

Nonstationary effects may be important outside the caustic 
for I t 1 > f 'L/c. The total energy flux transferred by the B, 
and E, fields is 

Q= - ~ Q o ,  

where 

and Qo is the energy flux of the incident pulse (21). It is 
clear from (26) that the radiative energy losses by the laser 
pulse are always small. The maximum value of Q is 
reached for kp0(1  in the caustic at the leading and trail- 
ing edges of the pulse (Ill - L ) ,  where we have 
a- ( V ~ / C ) ' ( W J W ~ ) ~ .  

5. CONCLUSION 

The analysis given here shows that a laser pulse in a 
plasma is a source not only of an electrostatic field, but of 
a rotational electromagnetic field as well. The latter is lo- 
calized along a length c/op around the laser pulse, and is 
approximately @dop times weaker than the maximum 
electrostatic field. However, the rotational and potential 
fields depend in different ways on the laser pulse parame- 
ters, which makes it possible easily to distinguish one from 
the other. Whereas the wake field is efficiently excited only 
by a short laser pulse of length L<c/op, the magnetic field 
strength on the beam axis is essentially independent of its 
length. 

In the case of a narrow beam, R (c/op, the wake field 
is concentrated within a cylinder with a radius equal to the 
beam radius behind its trailing edge, whereas the electro- 
magnetic field is concentrated in a disk of radius -c/op 
and thickness of the order of the pulse length. 

The electromagnetic field of a laser pulse may turn out 
to be a convenient means of remote detection of the pas- 
sage of ultrashort laser pulses through a plasma. For in- 
stance, a laser pulse of wavelength 0.5 pm, energy - 1 J, 
and length - 1 ps in a plasma of density 1018 cm-3 pro- 
duces an electric pulse of amplitude V/cm, which can 
easily be detected. 

The axial magnetic field produced by a laser pulse may 
turn out to be useful for laser acceleration of electrons, 
confining them to the pulse axis. We note that the depen- 
dence of the magnetic field on the shape of the laser pulse 
makes it possible to produce special magnetic field config- 
urations that provide for particle containment within a re- 
quired region of space for a fairly long time. 

It is clear from Fig. 4 that the maximum of the magnetic 
field, B,,=~B&./R', is then reached on the beam axis. 
The field lines of the magnetic field are not closed (they are 
closed when we take into account higher-order corrections - (kpL)-'(l), and there is a magnetic field outside the 
pulse as well. 

When the pulse passes through the caustic ( I t 1 (7) at 
distances r<k;', the solution (25) is close to stationary. 

 he rotational drag current (7)  also results from plasma density 
irregularities: which, however, we will not consider here. 

FIG. 4. 
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