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A method is proposed for calculating the light-induced drift velocity, as well as the diffusive 
and thermal fluxes in a channel, treating both bulk and wall effects using a general 
kinetic approach. The light-induced drift velocity in a channel is calculated by means of a 
variational approach using the Barnett approximation for the distribution function. 
This is compared with the experimentally observed light-induced drift velocity as a function 
of pressure in the intermediate Knudsen-number range for ' 2 ~ ~ 3 ~  molecules that 
absorb radiation at several distinct rotational-vibrational transitions. 

1. INTRODUCTION 

The phenomenon of light-induced drift and related ef- 
fects due to laser-induced nonequilibrium in the velocity 
distribution function in a gas has received detailed scrutiny 
in previous publications.I4 This is true mainly of the so- 
called "bulk" light-induced drift,3 where a necessary con- 
dition for the light-absorbing particles to drift is that the 
mixture contain a buffer gas such that the cross sections 
(frequencies) for collisions of the excited and unexcited 
gas with buffer particles are different (veb#vgb). Directed 
particle transport can also occur in a one-component ab- 
sorbent gas due to the surfaces bounding the gas (the chan- 
nel walls). The theoretical analysis of this effect given in 
Refs. 5-7 only relates the motion of the gas in the channel 
to the difference in the accommodation rates of the tangen- 
tial momentum on the channel wall for the excited and 
unexcited particles (K,#K,). 

There a method of calculation is used which is based 
on using a Maxwell distribution in the shifted velocities as 
the zeroth-order approximation. This approach, which is 
quite suitable for free-molecular gas flow in a channel (Kn 
=A/d)l) turns out to be far from adequate for treating 
the other limiting regime (Kn(1 ), which corresponds to 
no-slip gasdynamic flow. As shown in Refs. 8-10, the use 
of more rigorous methods for solving the kinetic equation, 
which allow one to take into account the change in the 
distribution function of the Knudsen layer, implies that 
there is a slip velocity at the wall (and the related effect of 
"wall" light-induced drift) even when K,=K,, provided 
that v,&v,. Another reason for drift, noted by Hoo- 
geveen et a ~ , "  may be variation in the light intensity over 
the channel cross section, whose influence is only mani- 
fested if v,&v, holds. 

In the present work a theoretical treatment of light- 
induced drift is proposed in which bulk and wall effects are 
treated simultaneously by means of a general kinetic ap- 
proach involving an average of the system of linearized 
kinetic equations over the channel cross section. This en- 
ables us to express the mass flow velocity and the diffusive 
and thermal fluxes of interest averaged over the cross sec- 

tion in terms of a few moments of the distribution function 
at the walls of the channel. The latter can be evaluated 
using familiar variational t e~hn i~ues . '~ . '~  By applying the 
Barnett approximation to the distribution function we can 
take into account the next-higher-order terms in the Knud- 
sen number in the corresponding macroscopic fluxes, along 
with the slip effect. New terms related to wall effects also 
occur in the expression for the drift velocity of the excited 
gas when a buffer component is present. We conclude by 
comparing the calculated values of the drift velocity (or 
the related pressure drop in the channel) with the experi- 
mentally observed dependence of the light-induced drift on 
the pressure (Knudsen number) for 1 2 ~ ~ 3 ~  molecules 
when light is absorbed at several distinct rotational- 
vibrational transitions. " 

2. BASIC EQUATIONS 

The system of equations describing light-induced drift 
in a system close to equilibrium excited by laser radiation 
whose intensity is uniform over the channel cross section 
was treated by Gel'mukhanov et al. 3914 A system is close to 
equilibrium when the homogeneous half-width of an ab- 
sorption line is much larger than the Doppler broadening 
( F%kFa). 

For a gaseous mixture consisting of an excited gas of 
two-level particles and a buffer gas, the relevant equations 
take the form 

Here the subscript e indicates the excited component, g 
indicates the component in the ground state, and b indi- 
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cates the buffer component; re is the radiative decay con- 
stant of the excited state; and Ji is the Boltzmann collision 
integral. 

The quantity ~ ( v )  is defined by 

where Em is the electromagnetic wave amplitude, w is the 
frequency, k is the wave vector, d is the dipole moment of 

eg. 
the e-g transition, wo is the transition frequency, r is the 
homogeneous radiation line width, and v is the particle 
velocity. 

We assume that the radiation is in the z direction, 
parallel to the surfaces bounding the gas. The gas is as- 
sumed to be in steady state and the radiation intensity to be 
low ( K ( v ) ( ~ )  and uniform in the interior of the channel. 
In this case the distribution functions f ,, fg, and f vary 
only over the channel cross sections (in the x direction). 
Making use of these assumptions, we look for f e,g,b in the 
form f i= f j0)[l + ai(x,v)], where f jo) is a Maxwellian dis- 
tribution function and ai are small corrections to it. For 
the latter we have the following system of equations in 
vector notation (the ith component of the mixture corre- 
sponds to the ith element of the vector) 

where ni is the number density of the ith component, is 
the linearized Boltzmann collision operator, and Il  is the 
field term 

In addition to Eqs. (3) we must apply boundary con- 
ditions at the channel walls. For simplicity, we assume that 
the excitation of the gas particles does not quench at the 
walls, but the excited, unexcited, and buffer particles are 
scattered from the surface with different accommodation 
coefficients. The boundary conditions can then be written 
in the form 

Here the kernel R(v,vl) of the scattering operator is a 
diagonal matrix and its elements satisfy the usual reciproc- 
ity relations." 

3. MEAN GAS FLOW VELOCITY 

We are interested in the mass-averaged flow velocity 
(u,) of the mixture averaged over the channel cross sec- 
tion, defined by the expression 

where p is the mass density of the mixture, 
F(v) =d-'J'?$2 @dx is the spatially averaged distribu- 
tion function, and the double angle brackets indicate an 
average over the channel cross section of a scalar product 
in the form 

The average of Eqs. (3) over the transverse spatial 
coordinate yields 

where 

d/2 
p=d-'  J- dl2 

ndx. 

We will find F(v) in the form Fo(v)+$(v), where 
Fo(v) is defined by 

Let v , @ ~  be a solution of Eq. (9) such that (m~,,v,@~) =O; 
then 

We will now show that the desired quantity p(u,) can 
be expressed through some simple transformations in 
terms of certain scalar products of the auxiliary functions 
v,af and moments of the distribution function @ at the 
channel wall. Note that v ,@~ represents a bulk solution, in 
the sense of being a correction to the distribution function 
which develops in the gas outside the Knudsen layers. The 
form of v,af can be found if we solve Eq. (9) by one of the 
usual techniques (the Chapman-Enskog technique15 or the 
Grad technique16). The structure of v,af was examined in 
Refs. 3 and 14 for special cases; consequently, we will as- 
sume that the solution v,(Df is known. 

Substituting F(v) =Fo(v) +$(v) into (81, we find 

We use the well-known integral  relation^'^"^ 

where q is the viscosity of the mixture, V,V,@~ is an analog 
of the familiar Chapman-Enskog solution for the shear 
viscosity of a gas,15 and v,@ is the Barnett correction to 
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the distribution function. Note that A* is an operator ad- 
joint to A with respect to the scalar product (7). 

Taking the scalar product of Eq. ( 11 ) with v,aB, we 
find 

Because the operators A and A* are adjoint we have 
(@,Aq) = (q ,A*@),  so the right-hand side of ( 14) can be 
written as ( ~ , A * { v , @ ~ } ) .  AS a result we can use (13) to 
write Eq. ( 14) in the form 

in terms of which (u,) can be expressed. To find the last 
term in (15) we use Eq. (3). We multiply this by mu, and 
integrate with a Maxwellian weighting function. Using the 
conservation of momentum when molecules collide with 
one another and when they interact with the resonant ra- 
diation, we find 

(mv,v,@) = const. (16) 

The left-hand side of (16) contains the momentum flux 
density mu, transported by the molecules in the x direction. 
Taking into account the symmetry of the channel and the 
symmetric radiation intensity profile over the channel cross 
section, we can show that this quantity vanishes at the 
center of the channel, so that the constant can be set equal 
to zero. 

Now we take the scalar product of Eq. (3) with 
V,V,@~. Noting the form of the field (4), we find 

This enables us to obtain for the last term in (15) the 
relation 

Using ( 15) and ( 18), we can express the average gas 
flow velocity in the channel in terms of moments of the 
distribution function at the wall: 

[ 2 p f ( 2  ( f l ) )  (74,) =- (v,v,@ ,@ ) - U , V , @ ~ , @  -- 
11 

4. HEAT FLOW AND DIFFUSION VELOCITIES 

We now show that expressions similar to ( 19) may be 
obtained for the heat flow and diffusive velocities of the 
components of the mixture averaged over the cross section. 
We use the equation 

where v,@, is an analog of the well-known Chapman- 
Enskog solution for the thermal conductivity of a gas.15 
Taking the scalar product of Eq. ( 11) and v,@, we find 

= (*,A*{v,@J). (21) 

Using (20) and the definitions of F(v) and + we can re- 
write the right-hand side of Eq. (21) in the form 

where (9,) is the heat flux averaged over the cross section. 
When we make use of the symmetry of the distribution 
function @ ( v , x ) ,  we obtain for (9,) the representation 

To find a similar relation for the diffusion velocities we 
use the relation19 

where Sik is the Kronecker tensor with i, k=e,g,b; pi is the 
density of a component of the mixture; and v,@: is the 
analog of the familiar solution for ordinary diffusion in a 
mixture. l9 

Taking the scalar product of Eq. ( 11) and v,@:, we 
find 

Equation (24) and the relation between F(v) and J, 
enable us to rewrite the right-hand side of (25) in the form 

where ( Vh) is the velocity of the kth component averaged 
over the cross section of the channel and ( v L )  is the ve- 
locity of the kth component due to the bulk distribution 
function v,@f. 
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We thus arrive at the following representation of the 
diffusive velocity: 

Here we have again made use of the symmetry of the 
distribution function and have replaced @(-d/2) by 
@(d/2) with a change of sign. Note that the use of (19) 
and (23) enables us to calculate the drift velocity of the 
excited component in the channel when a buffer gas is 
present. In what follows we only calculate the mass- 
averaged velocity of the mixture, since it determines the 
pressure drop across the ends of a capillary due to the 
action of the resonant radiation, which is what is measured 
in experiments. ' 

5. CALCULATION OF THE GAS FLOW VELOCITY 

In order to calculate the average gas flow velocity in 
the channel we use a variational principle developed for 
nonself-adjoint  erato tors.'^^'^ The basic idea of this 
method is that for a system of equations 

where the operators w and are adjoint to one another 
with respect to the scalar product ((f,g)) and B and B* 
are arbitrary source terms, the functional 

takes its stationary value at solutions of (28); that value is 

Because of the arbitrariness permitted in the choice of B*, 
this variational method can be used to ascertain various gas 
characteristics. 

Thus, for B* in the form 

where S(x)  is the Dirac delta function,and the gas flow 
velocity is determined in accordance with (19) by the ex- 
pression 

The solutions of Eqs. (28) must satisfy the boundary 
conditions. For these we can construct a functional whose 
constant values correspond to the boundary condition (5)  
for the distribution function of Ref. 12. For this reason it is 
convenient to represent J as a sum of two terms, an interior 
term and a wall term. For the former we can write 

where we have set b=v2/ax,  $ is the inversion operator 
in velocity space [Pq(v) =q(-v)], and B = n .  By intro- 
ducing the scalar products 

where aR is the surface bounding the gas and n is the 
inward-pointing unit normal to this surface, we can repre- 
sent the wall part of the functional as 

Here we have assumed that the solution of the adjoint 
equation also satisfies the boundary condition (5).  

Finally, the functional can be represented in the form 

Since the original equation for q, is inhomogeneous, it is 
convenient to take as a test function the solution of the 
equation 

i.e., to include the corresponding solution of the inhomo- 
geneous equation in it ahead of time. The simplest choice 
of a test function, in analogy with the solution for the gas 
flow in a channel when no radiation is present,17 is to write 
it in the form 

By using these expressions in (36) and varying with re- 
spect to the parameters a and a l  we can find a closed 
system for a and a l .  Substituting these values of a and a l  
into (38) and the functions h and h* into the functional 
(36) yields the following expression for the average gas 
flow velocity in the channel: 

We can find expressions for the heat flux and diffusive 
velocities in the channel similarly. 

Further calculations require knowledge of the func- 
tions @', @', and @f. The Appendix gives a calculation of 
aP and a' for components with identical masses 
(me= m,= mb) ; the method of calculation and specific 
form of af for various special cases are given in Refs. 8 
and 14. Using these results and adopting the well-known 
specular diffusion model for particle scattering at a wa11,12 
we arrive at the following expression for the gas flow ve- 
locity: 
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Here we have written vo=2Rkkb~/R2+ r2 )m,  
R =  w = WO; k is the wave number, K,, K ~ ,  and K~ are the 
accommodation coefficients of the molecules (excited, un- 
excited, and buffer gas), and v(')=nXL:)/m, 
A d i )  = n (X(i) eg --xi) )/m, X $  are the familiar functions of 
kinetic theory, expressed in terms of R, the Chapman- 
Cowling integral.I5 The v(') are analogs of the collision 
frequencies, Y =  v(') + d 6 ) ,  r] = 2p/3v, 

and Rd,Rb,Rs are defined in the Appendix. 
For a pure gas (nb=O), expression (40) can be written 

in the form 

where Kn = (TD) -'/'r] (pd) - = A/d is the Knudsen num- 
ber (here A is the mean free path). 

Note that for Kn =0, the result (41 ) is the same as the 
expression for the slip velocity obtained by Roldugin using 
an integral variational technique.' The quantity (u,) de- 
pends both on the difference in the accommodation coeffi- 
cients and on the relative difference in the collision fre- 
quencies of the excited and unexcited particles. This 
conclusion differs sharply from the results of Ref. 11, 
which disregarded the presence of slipping at the wall, and 
the dependence of (u,) on Av/v is seen only when we 
retain the variation of the radiation intensity over the chan- 
nel cross section. 

Analysis of the expressions for the coefficients 
Ru,Rh,Rd,Rb,Rs reveals that (u,) is very sensitive to the 
ratio l ?~v( ' ) .  The quantity re is defined as the reciprocal of 
the lifetime of the excited state, which in turn depends on 
the probabilities for spontaneous, stimulated, and colli- 
sional relaxation. Two cases are of primary interest: 
I',>di) and re-di). It is easy to see that for re>v(') we 
have R,- 1, whereas all other coefficients vanish. Expres- 
sion (41 ) in this case assumes the form 

It is noteworthy that (42) coincides with the expres- 
sion of Ref. 20 to within a factor of order unity; the latter 
expression was obtained in the limit of free molecular gas 
flow (Kn) 1), which occurs at relatively low pressures (for 
the experimental  condition^,'^'^^, e.g., where d -  1 mm 
holds at pressuresp 5 lo-' torr). Although the coefficients 
Ri become comparable to the contribution from R, as the 
pressure rises, this increase in the pressure in experiments 
on light-induced drift is meaningful only up to the point 
where collisional broadening becomes comparable to Dop- 
pler broadening; for a typical rotational-vibrational transi- 
tion resonant with C02 laser radiation, this occurs at pres- 
sures - 1 torr. In principle, this implies that (42) is valid 
in many cases even for intermediate Knudsen numbers. 

6. COMPARISON WITH EXPERIMENT 

Next we make a qualitative comparison of this behav- 
ior with experiments on light-induced drift in a one- 
component gas, performed at intermediate and small 
Knudsen numbers (p= 1-10' Pa) by Hoogeveen et al. 
Under the conditions of Ref. 11, this corresponds to the 
situation in which the primary mechanism for relaxation of 
an excited state is collisional ( r e - d i ) ) .  For estimates we 
use the simplest model of intermolecular interactions (elas- 
tic hard spheres). For this model we have 
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FIG. 1 .  Relative pressure difference across the ends of a capillary as a 
function of the mean pressure for the R(4,3) and Q(12,2) transitions: 
solid trace, calculated; 0-R (4,3); A-Q( 12,2). 

Here it is assumed that the diameters satisfy 
dB- deg- dee= d and that their differences are retained 
only in those terms which vanish when the diameters are 
equal. Setting A = (d:g-d&)/dk for r,-v(l) we find 

As a result, we arrive at the following simple expression for 
the gas flow velocity in a channel: 

In experiments on light-induced the pressure 
drop Sp was measured between the ends of a circular cy- 
lindrical capillary coupled to a flow of resonantly excited 
1 2 ~ ~ , ~  gas. The relative pressure drop as a function of the 
pressure p was found. Figure 1 shows the corresponding 
experimental behavior for different molecular transitions: 
the Q( 12,3) transition1 and the R (4,3) t r a n s i t i ~ n . ~ ~  

Using the properties for the excited gas 
(K,-K g -1.3 - A=1.1. lop2) given in Refs. 11 and 
22 for these transitions and the parameters of the experi- 
mental apparatus, we can find the following expression us- 
ing (43): 

where p is measured in Pa with Kn = 5/p. 

Note that the slip velocity at the wall does not depend 
on the channel geometry, so that a difference in the nu- 
merical coefficient when we go from a planar to a cylindri- 
cal channel occurs only in the second term in parentheses 
in Eq. (44). 

Figure 1 displays the experimental results and the be- 
havior calculated in accordance with (44). It is evident 
that the behavior agrees qualitatively with the experimen- 
tal dependence for the range Kn <, 0.25. More satisfactory 
quantitative agreement in the results can probably be 
achieved by taking into account a correction factor associ- 
ated with the finite ratio of the homogeneous and Doppler 
line broadening,22923 and also the variation in the radiation 
intensity over the channel cross section. 

APPENDIX 

We present the scheme used to calculate the 
Chapman-Enskog fu?ctions for the adjoint operator A*. 
The adjoint operator A* can easily be shown to be have the 
form 

Taking into account the fact that n, is small in comparison 
with n, and nb and the form of the operator A*, we can see 
that the nonself-adjoint character of the operator is mani- 
fested when the functions a: and a! for the excited mol- 
ecules are evaluated, while and @,qb can be taken from 
the classical work of Refs. 15 and 19. 

The functions and a! can be found using the mo- 
ment technique.16 A distinctive aspect of this case is that 
the operator A* is nondegenerate, and there exist eigen- 
functions proportional to v, with nonvanishing eigenvalues. 
For this reason the function is sought in the form 

Simple calculations using the standard moment technique 
yield 
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where fl", A*, and D* correspond to the usual notation of 
kinetic theory. l9 
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