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A modification of perturbation theory is proposed for problems involving resonant diffraction 
in impedance gratings. The solution is constructed in the form of a ratio of series in 
powers of the grating amplitudes, and other small parameters are treated exactly. The structure 
of the general solution in the presence of multiple resonances is analyzed. It is shown 
that the presence of gratings that rescatter resonant fields back and forth can give rise to high- 
order resonant fields. The amplitudes of the latter are determined by the lowest-order 
resonance. The conditions are studied under which the lowest-order resonances can be treated 
independently. The energy conservation law is analyzed. Conditions are found under 
which specular reflection is totally suppressed. 

The scattering of radiation by an optically irregular 
surface of a medium with high conductivity exhibits peaks 
when the period of the grating is on the order of the wave- 
length of the incident radiation.14 These peaks (which are 
of the same nature as the well known Wood anomalies) are 
due to a spatial resonance between the wave diffracted at a 
grazing angle and a surface electromagnetic wave. In con- 
sequence, the specular reflection of the medium may be 
suppressed and the absorptivity of the surface enhanced. 
Interest in these questions is related to the production of 
surface periodic structures by laser Until re- 
cently, attention has been devoted mainly to the study of 
resonant diffraction by gratings having a surface profile, 
although anomalous phenomena may be associated also 
with resonant diffraction by gratings with variable permit- 
tivity (impedance gratings). This problem has been stud- 
ied, e.g., by Kapave et 01. in connection with the produc- 
tion of surface structures using radiation. Kats et al.1° 
treated the general problem of refraction by profile and 
impedance gratings. The procedure proposed in Ref. 10 
allows solutions to be obtained for the fields in the form of 
a ratio of power series in small parameters: the impedance, 
the grating amplitudes, and the small normal components 
of the wave vectors of the resonant spectra. 

The present work carries out a detailed treatment of 
the problem of diffraction by impedance gratings. The gen- 
eral solution method'' has been improved, as a result of 
which the series of the modified perturbation theory are 
expansions only in the grating amplitudes, with the other 
small parameters being taken into account exactly. This 
makes it easier to ascertain the accuracy of the approxima- 
tion, and also yields the exact solution in the limiting case 
of an unmodulated surface. We treat the problem of the 
suppression of specular reflection as an application. 

1. FORMULATION OF THE PROBLEM AND GENERAL 

c=go+ C cg exp(igr), (1.1) 
g 

I f 1 (1, 5' > 0, c" < 0 is subjected to an incident plane elec- 
tromagnetic wave 

Here and in what follows the subscript t indicates the tan- 
gential component. We choose a system of coordinates in 
which the z axis is in the inward direction normal to the 
surface and the x axis lies in the plane of incidence. The 
electromagnetic field $, X on the surface of the highly 
conductive medium satisfies the Leontovich boundary con- 
dition 

where e, is the unit vector in the z direction (the inward 
normal). We seek an electric field $ in the half-space z < 0 
in the form of a superposition of the incident wave and the 
diffraction spectrum: 

where 

with Re pq,  Im B,)O, and q = 0 corresponds to the specu- 
larly reflected wave. The magnetic field can be expressed in 
terms of the electric field by means of the relation 
X= -ik-' rot 8. We substitute expressions ( 1.1 ) and 
( 1.4) in ( 1.3) and identify terms with the same spatial 
structure aexp(ikag). As a result we find a system of 
linear equations for the amplitudes of the diffracted waves: 

SOLUTION 
C [ TqqfEqtt+ Vqq~Eq~,l = - TqEt- VP,, (1.5) 

We assume that a highly conducting medium with a q' 
- - 

modulated impedance,') where 
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In addition to Eqs. ( 1.5) the amplitudes E, must also sat- 
isfy the transverse wave condition div =0, from which 
we have 

Since the matrix Twt contains the nonsingular diagonal 
part tfi(q-q' ), we can eliminate the tangential field com- 
ponents E from Eqs. (1.5) and (1.7), using a regular 

?? expansion m the grating amplitudes gg. Note that in con- 
trast to Ref. 10, the main part tfi(q-q') of the matrix 
Tqqt includes a constant impedance component go, so that 
when the matrix T,,, (and similar matrices) is inverted go 
is treated exactly and the expansion is camed out only in 
powers of the amplitudes cg of the impedance gratings. 

Thus, from ( 1.5) we have 

where 

Then using the transverse-wave condition (1.7) we obtain 
a system of equations for the z components Eqz=Eq of the 
diffracted wave amplitudes: 

where 

As before in the case of the matrix Tqqr, in Dqql we 
identify the portion dfi(q-q') which does not depend on 
the amplitudes of the impedance gratisgs and can then be 
treated exactly. The matrix elements dqq* are expressed in 
the form of series in gg and are small by virtue of the 
smallness of the grating amplitudes: I dqqt 1 (1, SO that all 
off-diagonal elements of the matrix Dqq* are small. The 
diagonal elements Dqq will be small, however, only if 

1 8, 1 ( 1. The corresponding diffracted waves consist of a 
set of resonant denoted in what follows by the 
subscript r. In contrast, the nonresonant waves (subscript 
n )  include fields for which (P, ( - I ,  and consequently 
I DqqI - 1. As a result, the system of equations ( 1.10) 
breaks up into two subsystems. Since the diagonal elements 

of the nonresonant subsystem matrix satisfy I Dnn I - 1, the 
matrix Dnn. can be inverted by means of a regular proce- 
dure: 

m 

DL',= 2 ( -  l) '{d-'(~d-')~,,, .  (1.12) 
I=O 

We use (1.12) to express the nonresonant fields in 
terms of the resonant fields: 

Then substituting En into the resonant subsystem we ob- 
tain a finite system of equations for the z components of the 
resonant field amplitudes: 

2 Grrt Err = Pr 
r ' 

where 

The elements Grr~ and the column vector on the right- 
hand side of ( 1.14) take the form of power series in the 
grating amplitudes gg, and solutions of the system ( 1.14) 
are given in the form of a ratio of the corresponding power 
series. The coefficients of these series are functions of the 
small parameters go and pr, treated exactly in Eqs. ( 1.14) 
and ( 1.15). In contrast to the previous approach,1° where 
the expansion was carried out with respect to all the small 
parameters, this result corresponds to partial summation of 
the power series in Ref. 10 over the small parameters Pr 
and go. 

The approximate solution of the system corresponds to 
retaining a finite number of terms of the series in the nu- 
merator and denominator. This makes it possible to go 
correctly to the limit of scattering by a plane unmodulated 
boundary with finite conductivity (C= go, gg= 0), unlike 
Ref. 10, where the limiting solution (gg-+O) corresponds to 
a perfectly conducting material (g0=O). 

2. STRUCTURE OF THE GENERAL SOLUTION: THE ROLE 
OFTHERESONANTANDNONRESONANTGRATINGS 

Assume that the system contains n different resonant 
 field^.^) The expression for the resonant field with index m 
takes the form 

where A and A, are the determinant of the matrix Grrt and 
the auxiliary determinants of the system ( 1.14), found by 
replacing the m-th column with the column of free terms 
Prk. The denominator A determines the general resonant 
dependence of the fields (2.1 ) on the amplitudes and di- 
rections of the gratings, and the condition A =O determines 
the number of eigenmodes when periodic structures are 
present on the boundary. The numerator A, describes the 
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FIG. 1. Regions of strong (sharp) and weak resonance and different 
strengths are interrelated, depending on the grating amplitudes (for me- 
tallic media, (; ( ) 6: 1 ): I)  the region of small grating amplitudes 
( 1 (,I ( (&)lt2, 1 JF-,I 4 (A), where perturbation theory is applicable 
and the resonances are weak; 11) the region of strong resonances 
( 16,) - (6;)'") and weak coupling between them ( 1 tfl-,1 4 6;); 111) 
the region of sharp ( 1 {,I - ((A)'") strongly coupled ( ] (,-,I - (6) 
resonances; IV) the region of strongly coupled ( I & - , I  - 6;) but weak 
(ltrl  ( ((;)"2) resonances; V, VI) regions of strong internode 
( 1 g,-,1 > C) and intramode ( I (,I > ((;)It2) nonlinearity, respec- 
tively, which give rise to broadening and weakening of the resonances. 
The amplitudes of the gratings that are not shown are assumed to be 
vanishingly small. 

contribution of the different scattering channels to the 
specified resonant field Erm (through the factors P,,). In 
the general case it followsfrom (1.11), (1.12), (1.14), and 
( 1.15) that Am takes the form 

where the coefficients satisfy r, , J?m;ll ,,,,, Is - 1. Here the 
first term corresponds to the occurrence of the field Erm in 
the first diffraction order, and each successive term corre- 
sponds to the sth order, s=2, 3, ... . 

We begin by noting the characteristic scales of the pa- 
rameters that enter into the problems. The magnitude of 
the resonant denominator largely depends on their relative 
size. By definition, the resonant field corresponds to 

I /3,1( 1. Specifically, for vanishingly small modulation am- 
plitudes, the resonances correspond to minima in lp,, 

... + fo  1 : min 1 ISrrn + fo 1 = {A. To study the resonances in the 
small-amplitude limits 1 fg 1, 1 fg .,1 4 1 8,+ fo 1 , the general 
perturbation theory suffices. Strong resonant effects like 
total suppression of specula reflection, however, appear 
only for relatively large grating amplitudes: the contribu- 
tion of the corresponding terns ( -fg,gi,...) to the coeffi- 
cients G, and Gd (given explicitly below) must be com- 
parable with the parameter &+to, which is independent of 
the modulation amplitudes. Such values of the grating am- 
plitudes correspond to sharp strongly coupled resonances 
(see Fig. 1 ), and the modified perturbation theory pre- 
sented here serves to describe the fields in this range of 
amplitudes. 

Note that by virtue of the conditions f '  > 0 and 6" < 0 
(the first of which corresponds to the physical requirement 

that the medium be passive and the second to the require- 
ment that the magnetic dispersion be small), the grating 
amplitudes must satisfy the conditions 

In the case C-,=fg, [which corresponds to the real and 
imaginary parts of the impedance being in phase, 
f = fo + Z(8os (gr )I, these inequalities go over to the form 

If we have 5; ;, >( 5; 1, which usually holds for insulators, 
then the general perturbation theory usually suffices to de- 
scribe resonant diffraction, since the contribution of the 
terms due to intermode nonlinearity (the term -#,,-,I in 
G,,,) and intramode nonlinearity (the terms -fi in G,! 
and G,) is small compared with the main terms 
G,-B,+fo in the diagonal matrix elements. 

The contribution of these terms can, however, be large 
in the special case of grazing incidence, when by virtue of 
the other resonant structure (due to inclusion of the reso- 
nant fields of the specular component), anomalous phe- 
nomena occur at much smaller modulation amplitudes (a 
similar situation arises also for grazing incidence on a relief 
grating11 ) . 

In the opposite limiting case I f; ';;I $ f; (metals, semi- 
conductors), to which special attention will be devoted, we 
should expect anomalous resonant diffraction only under 
the condition3) I (f')gl 4 I ( r ) g l ,  i.e., for media in which 
the imaginary part of the impedance varies. This follows 
from the form of the matrix elements G,! and G,,. 

Specifically, when the parameter 8, is real we have 
1 8, + go I > I 6; I, and consequently it is large in compar- 
ison with the terms that are nonlinear in fg, which in turn 
implies that general perturbation theory is applicable. In 
the most interesting case of imaginary p,, when we have 
minl8,+ fol = g;<(g;I (since8: > Oandfg < O),the 
sharp anomalously strong resonances correspond to ampli- 
tudes I fg(  - ((;)'I2 of the resonance gratings and ampli- 
tudes 1 6,-,, 1 < 6; of the gratings between resonances. 
Because I (('),I < (A, these conditions can be satisfied 
only when the amplitude of the variation in the imaginary 
part of the impedance is large: I (S'' )g I % 1 1 . 

Thus, the largest resonances of the fields correspond to 
amplitudes ) fg .,) - (6;) I", I fr- ,, I - f; in the impedance 
variations (mainly in the imaginary part of the imped- 
ance). Increasing the amplitudes above these values smears 
out the resonances; reducing the amplitudes reduces the 
resonant fields and weakens the coupling between them 
(Fig. 1, regions V, VI, and I respectively). 

The preceding analysis applies primarily to the case of 
single-resonance scattering. Let us consider the interaction 
between resonances of different order when radiation is 
diffracted from the simplest system consisting of two grat- 
ings 6, and 5,,-, such that scattering by the f, grating gives 
rise to a resonant field E,, which subsequently scatters 
from the g,-,  grating between resonances and gives rise to 
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FIG. 2. Diagram of scattering by the gratings 6, and (+-, with the 
formation of first- and second-order resonant diffraction fields. 

the resonant field Ert in the second diffraction order4) (Fig. 
2). The coefficients of the resonant system are 

where we have retained the leading terms in the grating 
amplitudes (the coefficients A,, C, and C' - 1 are deter- 
mined by the geometry and do not depend on the grating 
amplitudes; we exhibit their explicit form in specific situa- 
tions in Sec. 3). 

The solution of Eqs. ( 1.14) for the amplitudes of the 
resonant fields assumes the form 

where A=GrrGrtrr - Grr,Grt, In (2.5) and (2.6), the first 
terms in the numerator describe the direct channel for scat- 
tering of incident radiation into the given resonant field, 
and the second terms describe the contribution of the 
neighboring resonance as a result of rescattering by the 
inter-resonance grating gr-,t. From (2.6) we see, however, 
that near sharp resonances the effect of the field Ert of the 
second diffraction order on the field Er of the first diffrac- 
tion order is small in comparison with the contribution of 
the direct scattering channel. The contributions of the di- 
rect and indirect scattering channels are comparable only 
when the inter-resonance grating amplitude is large, 

I gr, -r 1 - (CAI 'I2, when the resonances have become 
broader and weaker. Thus, in the most interesting region 

1 grl - (66) 'I2, 1 grt-r 1 - (6 the field Er has the form Er 
z Grtr,PJA - g0g,.E/A. Note that a second-order reso- 
nance affects only the structure of the denominator A. 

In contrast to this, the effect of the first-order reso- 
nance (the field Er) on the second-order resonance (the 
field Erl) is more important and can exceed the contribu- 
tion of the direct channel for scattering of the incident field 
(successive scattering from the gratings 5, and {,-,). In 
fact, in the strong-coupling limit ( I grt -, I - gh), the first 
term in (2.7) is of order ghc&r,-,.E - (gA)2(,.E, signifi- 
cantly smaller than the contribution of the second term: 
gr-,,&.E - gA[,.E. Consequently, the magnitude of the 
resonance of the second-order diffraction Er, z 

- GrI,.PJA is completely determined by the first-order res- 
onance; furthermore, in the strong-coupling limit we are 
considering ( I (,, -, 1 - g;) these resonant fields are found 
to be of the same order of magnitude: Er, - (;(,.E/A 
-Era 

The field amplitudes Er and Erf become equalized due 
to the strong coupling between resonances mediated by the 
inter-resonance grating g,-,t. It is easy to see that a similar 
effect occurs when the resonances are coupled, e.g., by a 
pair of gratings (rt-&g-r with effective amplitude 

I grt-&g-r 1 - {A. This coupling can be treated by going to 
the next term in the expansion of the coefficient Grrt in the 
grating amplitudes; its general form is ZgB&r-&g-rt. 

Thus, strong coupling destroys the hierarchy of reso- 
nances, and in each individual case it is important to spec- 
ify and treat this coupling correctly. From the preceding 
discussion, it is also clear that although the amplitudes of 
the strongly coupled resonances of different orders are sim- 
ilar in magnitude, there is still a difference between them. 
This is because a higher-order diffraction resonance is de- 
termined by the lower-order diffraction resonance, and not 
the other way around. 

3. EXAMPLES 

We will apply these results to the simplest situations 
with a small number of resonances in the first-order dif- 
fraction spectrum. We give explicit expressions for the co- 
efficients of the system ( 1.14), restricting ourselves to the 
treatment of terms up to second order in the grating am- 
plitudes (, in the coefficient Grrf, and the first-order parts of 
the free terms: 

Here, as was stipulated previously, r and n denote respec- 
tively qr and q, . From (3.1) and (3.2), it follows that in 
the coefficients of Eqs. ( 1.14) the factor tr= 1 +DLo can- 
cels out exactly, so that in what follows we can omit it. 
Consequently, as can easily be seen, the solution of the 
resonance system of equations in leading order contains no 
expansions of the form 68, (which appear in higher or- 
ders ). 

The tangential components of the fields (both resonant 
and nonresonant) can be expressed in terms of the z com- 
ponents Eq, using the formula [see ( 1.8)] 
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FIG. 3. Wave vector diagrams for a) 
single-resonance scattering, b) two- 

1.. b 
C grazing incidence. 

As a rough approximation, we can use in place of (3.3) the 
simple expression 

where we have taken into account the contribution of the 
resonant fields while retaining only the leading term from 
the nonresonant fields. An unsatisfactory aspect of this for- 
mula is that in the limiting case cg=O, we find &?= -El 
for the amplitude of the specular wave (q=O). This is 
equivalent to a perfectly conducting surface or to the lead- 
ing term in the expansion for a surface with finite but large 
conductivity ( I go 1 4 1 ) . Let us consider some specific ex- 
amples. 

1. Single-resonance case 

We have a single grating 

such that I kt+g 1 z k (Fig. 3a), and there is one resonant 
field corresponding to it. The system of equations ( 1.14) 
consists of a single equation from which we find 

where 

By direct substitution we see that the energy conservation 
law in this case takes the form (see Appendix) 

@ o ( I E ~ ~ -  I & ~ ~ ) - P : I E ~ I ~ = ~ ~ I H ~ ~ I ~ + R ~ { ( ~ :  

+(-,I ( (  ( ~ + % ) f  ,Hgt) + (H2gtM;t) )I, (3.8) 

where 

Hgt= [agezlE,, 

Hot=Ht+ ( [epgl  +ao(ez[ac~gl) )6-$dPo, 

Hzgt= ( [ w g 1  +azg(ez[a2pg1) )SgEg4P2g- (3.9) 

2. Two-resonance case 

This corresponds to the presence of two resonant 
fields, which may result from having two resonant gratings. 

Two resonant fields also arise from scattering by the single 
grating (3.5) in the degenerate case (gk,) +O, when 
)k t& g ) = k (Fig. 3b). In these cases, the resonances can 
also be coupled directly by the grating 6,-,1 or t2, respec- 
tively. The system of equations (1.14) for these two cases 
is formally the same, but the coefficients are different be- 
cause the set of intermediate nonresonant fields taking part 
in rescattering processes is different. Here we give the so- 
lution for the degenerate case gl kt, P-g=Pg: 

Ejg=26jg[aoH1dD- + 2 j 6 j g [ ~ H l d D + ,  (3.10) 

where j =  * 1, x=g/k, and 

*B;'( + [ ~ o ~ ~ I ~ ) c & - ,  (3.11) 

For a specularly reflected wave, we find from (3.4) using 
(3.10) 

For normal incidence (ao=O, a,g= * xg), it follows from 
(3.10) and (3.12) that 

E*g=26*g[a*$ldD, 

&t= -Et-46&-pg[a$ldD, (3.13) 

where D = P ~ + ~ O - ( ~ P ~ ' + P & ~ ) ~ & - ~ .  

3. Grazing incidence 

This case should actually be regarded as a two- 
resonance case, since one of the first-order diffraction 
waves is resonant with the specularly reflected wave (Fig. 
3c). In this case the coefficients of Eqs. ( 1.14) take the 
form 

Po' - (Po-60) [ a d ] , ,  

Pg=2[a$lXg-6g(aocr,) [a&],. (3.14) 

Consequently, the desired fields are 
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+ (Do-60) (a@,) [aoHIJ ,  (3.15) 

where Do= (Po+fo) (D,+{o) - (a0agl2{&-,. Note that 
the expression for Eo remains valid even in the limiting 
case of an unmodulated surface with finite conductivity. 
The single-resonance case with one resonant grating and 
many nonresonant gratings, the two-resonance case with 
coupling, the case of a single second-order resonance 
[(6r)ef-Z&&r-g], etc., can be treated in a similar fashion. 

4. SUPPRESSION OF SPECULAR REFLECTION 

As is well resonant profile gratings give rise 
to anomalies in the reflection and absorption of light by the 
surface. This phenomenon is related to resonant diffrac- 
tion, as a result of which the energy of the incident radia- 
tion is channeled into resonant diffraction spectra propa- 
gating at grazing incidence along the surface, and is 
ultimately absorbed by the medium. Here we study the 
suppression of specular reflection12 in connection with dif- 
fraction by impedance gratings. In the single-resonance 
case, we have from (3.4), (3.6), and (3.7) 

+Di'(aoa,) [ao[agEtl1)). (4.1) 

From (4.1) it follows that in order to achieve total 
suppression of specular reflection (Eot=O), the light must 
be linearly polarized with 

agll Et, 

The first condition determines the direction of the grazing 
(resonant) wave, and the second determines the period 
and amplitude of the modulation. 

It follows from the structure of the resonant denomi- 
nator in (3.6) that the resonant field (and hence the spec- 
ularly reflected wave) can undergo a substantial change 
only if I {,',I - ({h) 'I2 ) {A;,. On the other hand, 6' > 0 for 
inactive media, so that we must have 1 ({'),I < 6;. It 
follows that resonant phenomena in the reflection and ab- 
sorption of light are related to the modulation of the imag- 
inary part of the impedance. We will therefore assume that 
I ({'),I 4 I (6"),I and {g=i({")g, {-g z i(Y)g*. Then 
from the second condition in (4.2), it follows that the 
conditions for total suppression of specular reflection re- 
strict the grating period and modulation amplitude accord- 
ing to 

Pi= -{:+(I- [aocr,12) I{,I2/D~,, 

Under these conditions, total suppression of specular re- 
flection can occur, and all of the incident radiation will be 
completely absorbed, as can be seen from the conservation 
law (A3). 

Now let us consider elliptically polarized waves inci- 
dent on a resonant grating: 

where S is the phase shift between the s and p components 
of the incident wave. We assume that the resonance con- 
ditions (4.2) are satisfied. Then from (4.1 ) and (4.3), we 
can find an expression for the amplitude of the specularly 
reflected wave: 

where eo,me,, cop- [e&]/k, and k,, is the wave vector of 
the reflected wave. In the case of linear polarization, as 
noted previously, total suppression of specular reflection 
(Eo=O) results when agll E ~ . ~ )  In the general case of an 
elliptically polarized incident wave the suppression is not 
complete, since the complexity of E implies [a&J#O. 
However, in this case we can suppress either component (s 
or p )  of the reflected wave (for a$ a. or ag(I ao,  respec- 
tively). In addition, we can suppress any linear combina- 
tion of the s andp components. Then the reflected light will 
be linearly polarized with an arbitrarily prescribed direc- 
tion of polarization m=m~s+mpeop (the vector m lies in 
the plane perpendicular to the wave vector k,,). The orien- 
tation of this diffraction grating can be found from the 
condition m&=O, from which by using (4.5) we find 

tg q, = agv/agx = - mr/Bomp, (4.6) 
n 

where q, = a&, It is easy to see that the orientation a, in 
the plane z=0 corresponds to projection of the vector m 
onto this plane. 

Extrema of the reflected-wave amplitude 1 & 1 corre- 
spond to resonant diffraction in the direction q, determined 
by 

tg q,= ( - 1 & ( 1 +cos2 stg2 2$) 1/2/po COS S tg 2$. 
(4.7) 

It can be shown that the directions a, given by the 
conditions (4.5) are the same as the projections of the 
principal axes of the polarization ellipse onto the plane of 
the grating. Then the amplitude of the specularly reflected 
wave is equal to 

where the plus sign obviously corresponds to the mini- 
mum, and the minus sign to the maximum. In the case of 
linear polarization (S=O), we have from (4.7) and (4.8) 

the minimum value is I Eo 1 =O. 

5. CONCLUSION 

In the present work, we have thus used the example of 
an impedance-modulated surface to demonstrate a tech- 
nique for solving the problem of diffraction by surface pe- 
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riodic structures under conditions such that Wood reso- 
nances occur. We have examined the structure of the 
general solution, and studied the simplest particular cases. 
In contrast to our previous work," a modified perturbation 
theory is developed here which expands only in the ampli- 
tudes of the impedance structures, but not in all small 
parameters, which is a more attractive approach. We have 
considered the total suppression of specular reflection, and 
studied the conditions under which it occurs. Finally, we 
have formulated the energy conservation law in a general 
form for resonant diffraction, and have given its particular 
form for the single-resonance case. 

APPENDIX: ENERGY CONSERVATION 

The flux of radiative energy So = c/877) [ g P ] e ,  
through the surface z=0 can be expressed using the Le- 
ontovich boundary condition in terms of the magnetic field 
at the surface: 

This flux is equal to the energy flowing into the metal from 
outside and dissipating in it. On the other hand, the ab- 
sorbed flux can be expressed in terms of the fields in the far 
zone as the difference between the energy fluxes arriving at 
and departing from the surface: 

We show that the fields which solve Eqs. (1.5) satisfy 
a conservation law that follows from (A1 ) and (A2): 

Note that in the special case 5=0, it follows from (A3) 
that energy is conserved in diffraction by a perfectly re- 
flecting surface (cf. Ref. 13). We transform the left side of 
Eq. (A3): 

= (1+1*)/2. (A41 

Using the relation H,=[a,-P8,,Eq] between the ampli- 
tudes of the electric and magnetic fields, we have 

+Pg+q~Eg+q~, t+6(q '+~)A)* ,  (A51 

where A = aoE,-DOEt. 
We pass from summation over g to summation over 

q=q'+g, noting that according to (1.6), 

Then taking into account ( 1.5) and performing some sim- 
ple manipulations, we find 

from which we can show by using (A4) that (A3) is cor- 
rect. 

We emphasize that if solutions for the fields are found 
exactly, then the relation (A3) holds identically. In prac- 
tice, however, we have at our disposal only approximate 
expressions for the fields, determined by the solution of 
Eqs. ( 1.14) for the z component of the resonant fields and 
relations ( 1.8) and ( 1.13 ) . Then the conservation law in 
the form (A3) will hold only approximately, with an error 
that depends on the accuracy of the solutions for the fields. 
Note, however, that in the particular case of single- 
resonance scattering and for the solution in leading order, 
the conservation holds to within terms of order 1 tg'gl * [cf. 
Eq. (3.811. 

 he summation in (1.1) is over different pairs of oppositely directed (g 
and -g) wave vectors, where in the general case we have g.&c-, and 
5-&6:. 

2 ) ~ h i s  condition does not impose any restriction on the number of grat- 
ings gg taking part, and has the following literal meaning: there exist 
exactly n vectors q [cf. Eq. (1.4)] such that (k,+ql = k  holds. Actually, 
however, in view of the assumed smallness of the grating amplitudes, the 
presence of high-order resonances q=Xp,gi with P IpiIpi> 2 is generally 
unimportant (see below). 

3 ' ~ o t e  that, generally speaking, we have (r)&(cg)' ,  ( r )&(gg)" .  
Here and below for estimates it is convenient to use the Fourier ampli- 
tudes of the real part g'(r) and the imaginary part r (r)  of the imped- 
ance. This contrasts with the general representation (1.1), which con- 
tains the complex harmonics c(r)  = r ( r )  + it/ ( r  ). 

4 ' ~ e  assume that the resonant field E,, is absent or small in first-order 
diffraction because the corresponding grating g,~ is absent or small (it is 
not shown in Fig. 2). 

 he analogous condition for relief gratings takes the form glJ H,, where 
H, is the tangential component of the magnetic field in the incident 
wave. 
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