
Probe-field spectroscopy in atomic media optically oriented in the ground state 
A. V. Bezverbnyi and V. S. Smirnov 

Far East State Maritime Academy, 690055 Vladiuostok, Russia 

A. M. Tumaikin 

Novosibirsk State University. 630090 Nouosibirsk, Russia 
(Submitted 20 August 1993) 
Zh. Eksp. Teor. Fiz. 105, 62-78 (January 1994) 

The propagation of a probe light beam in an atomic medium (an atomic beam or a low- 
density gas) is analyzed for the case in which the atoms are optically oriented in their ground 
state by a "strong" light wave. The polarization state of the atoms is determined under 
these conditions by the local value of the polarization vector in a given region. It is independent 
of the intensity of the strong field. The problem in which the strong field is at resonance 
with a transition Jo+Jo+AJo and generally has a (spatial) polarization gradient, while the 
probe field is at resonance with another transition, Jo+Jo+AJ, is analyzed. The 
structure of the electric susceptibility tensor is analyzed. The problem of normal waves in a 
low-density gas optically oriented in the ground state by a field with a uniform 
polarization is solved. The problem of Bragg scattering of a probe wave by an atomic beam is 
analyzed in two models, used as examples: the 1 +2 transition in a a + 4  configuration 
of the strong field and the 1/2+ 1/2 transition in a lin 1 lin configuration of the strong field. 

I. INTRODUCTION 

The propagation of an optical field in an optically ori- 
ented atomic medium was studied first in a series of 
papers.'.2 The polarization characteristics of the transmit- 
ted optical field were analyzed as a function of the polar- 
ization of atoms in their ground state. The effect of a po- 
larization of the atoms on light propagation in optically 
dense media was analyzed in Ref. 3 by a Keldysh-diagram 
technique. 

It is worthwhile to formulate this problem for specific 
topics in polarization spectroscopy of the ground state of 
atoms which are degenerate with respect to projections of 
the angular momentum Jo. In the conventional formula- 
tion of problems in nonlinear polarization spectroscopy, 
one studies those anisotropic properties of atomic ensem- 
bles (gases or atomic beams) at the frequency of a weak 
(probe) field which stems from saturation in terms of a 
strong field in excited statesM The discussion is also re- 
stricted to the case in which the optical anisotropy of the 
atomic ensemble in the ground state arises in the course of 
optical pumping by a steady-state "strong" laser field. The 
probe (readout) wave can, in general, have a different fre- 
quency, a different direction, and a different polarization. 
Ground-state laser spectroscopy is attractive for the fol- 
lowing reasons: 

1. It is always possible to choose parameters of the 
strong field such that ordinary saturation effects can be 
ignored (in this sense, the "strong" field is weak). The 
formation of multipole moments of rank K (in general, 
~ g 2 . l ~ )  in the ground state is governed exclusively by the 
polarization of the strong field in this 

2. For ultradeep cooling of atoms in laser fields,10311 
there are some necessary conditions: there must be (spa- 
tial) gradients in the polarization of the optical field, the 

field intensities must be low, and the atomic ground state 
must have a degenerate structure. Polarization ground- 
state laser spectroscopy would clearly be a reliable method 
for the diagnostics of atomic ensembles, because of the 
high measurement accuracy in terms of a large number of 
parameters. The information obtained as a result would be 
important for clarifying the mechanisms and dynamics of 
atomic cooling. 

With regard to the first of these points we note that 
optical orientation of atoms in the ground state tends to 
build up over time because of the low depolarization rates 
yf. Depolarization of multipole moments of rank K > 0 in 
the ground state stems primarily from collisions between 
atoms, and it occurs only slowly in low-density gases or 
atomic beams. The intensity of the strong field, 
I = (c/87r) I Eo 1 2, must therefore satisfy the rather obvious 
conditions 

where lo= (c/87r) I +iy/dl is the saturation intensity, t is 
the duration of the interaction of the atoms with the field 
(in most cases the duration is given by t=  D/(v), where D 
is the size of the light beam, and (v) is the directed velocity 
of the atoms), y is the rate of radiative relaxation of the 
excited state of the atom, and d is the transition dipole 
moment. For the Dl line of Na, for example, typical values 
are I0=64 p ~ / m m 2  and (yt)-l-- The intensity 
range of the strong fields is thus fairly broad and can easily 
be reached with existing dye lasers. Conditions ( 1) can be 
formulated in a different way by introducing as a charac- 
teristic parameter the duration of the optical pumping of 
the ground state,"' top. 
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where the parameter Go characterizes the saturation of the 
strong field. 

In this case the atomic ensemble is optically aniso- 
tropic with an electric susceptibility independent of the 
intensity of the strong field. This is the primary distinction 
between the problem discussed below and problems of non- 
linear polarization spectroscopy. A problem similar to the 
one we are discussing here was studied in Refs. 7 and 8 for 
an angular momentum Jo= 1/2. There the interaction was 
labeled "quasilinear" for propagation in an optically or- 
dered medium of this sort. We will use that word in the 
discussion below. In this paper we leave the angular mo- 
mentum Jo arbitrary; Jo could also be understood to be the 
total angular momentum of a hyperfine component, &. 

For the problem of the optical orientation of ground- 
state atoms in fields with a polarization gradient, satisfying 
the condition for quasilinear interaction (2) requires that 
the interaction time t be so short that an atom does not 
have time to undergo a displacement significant in compar- 
ison with the length scales of the variations in the polar- 
ization of the field. For the field configurations used in 
experiments on ultradeep cooling (a helically polarized 
wave1' or the lin 1 lin configuration1071'), these length 
scales are of the order of the wavelength of the light, A. The 
condition (2) for a quasilinear interaction is then satisfied 
for atoms whose velocities vll along the field 

The contribution of this group of atoms to the electric 
susceptibility is then determined exclusively by the local 
values of the field polarization. In gases, the relative num- 
ber of atoms which have velocities vll satisfying (3) is very 
small: vll /(v) z y G d n D <  1, where RD is the width of the 
Doppler absorption line. In gases, effects stemming from 
optical order in fields with polarization gradients are there- 
fore weak. 

On the other hand, (3) is a necessary condition for 
those atoms which are subjected to the ultradeep cooling 
(below the Doppler limit kBTD=fiy/2) in an optical 
field. lo This condition usually holds in atomic beams which 
have been collimated beforehand. 

In accordance with the discussion above, the analysis 
below takes the following directions: 

1. analysis of the tensor structure of the electric sus- 
ceptibility of an atomic medium which is optically oriented 
in its ground state in the course of a "quasilinear" interac- 
tion with a "strong" field which in general has a polariza- 
tion gradient, 

2. analysis of birefringence in a gas which is optically 
oriented in the course of a quasilinear interaction with a 
strong field which is uniform in terms of polarizations, and 

3. analysis of Bragg scattering by spatial gratings of 
multipole moments of ranks K = 0, 1, and 2 which arise in 
atomic beams in optical fields with polarization gradients. 

2. ELECTRIC SUSCEPTIBILITY TENSOR OF AN ATOMIC 
ENSEMBLE ORIENTED IN THE GROUND STATE 

Let us formulate a problem of the propagation of a 
probe wave E in an optically oriented atomic ensemble. 
This probe wave does not alter the deviation from equilib- 
rium in the ground state created by the strong field. We 
assume that the probe wave, of frequency w, is at resonance 
with the transition Jo+ Jo+ A J  (AJ=O, * 1) with a reso- 
nant frequency wo, while the strong field, Eo, causes a 
redistribution of the populations of the Zeeman sublevels 
of the ground state as it interacts in a resonant fashion 
with, in general, another transition Jo+Jo+AJo 
(AJo=O,k 1). 

The deviation from equilibrium caused in the ground 
state is determined by the steady-state density matrix of the 

0 ground state, p,,,(r,v), which depends on only the polar- 
ization of the strong field in the case of a quasilinear inter- 

0 action. In this paper we assume that the form of p,,, is 
0 known. A method for calculating p,,, for gases in a case 

of a pump field of uniform polarization was presented in 
0 Refs. 8, 12, and 9. The density matrix p,,,(r,v) for atomic 

beams has been determined for certain field configurations 
and optical transitions Jo+ Jo+ AJo in fields with polariza- 
tion gradients. lop' 

The electrodynamic part of the problem is to calculate 
the susceptibility tensor 2 at the frequency w. Since we are 
taking the medium to be a low-density gas or an atomic 
beam, in calculating the resonant part of i ( o )  it is suffi- 
cient to use a linear approximation in the density of atoms, 
N. Using the standard calculation methods, we find 

Here 

is the matrix element of the projection of the dipole mo- 
ment operator d onto the unit vector e' (i= 1,2,3) of a 
Cartesian coordinate system, y is the rate of radiative re- 
laxation of the excited state with angular momentum 
Jo+AJ, Aw=w--wo is the offset of the field frequency 
from resonance, and k is the wave vector of the field. The 
density matrix p0 is normalized: 

When the spatial variation of p0 in strong fields with a 
polarization gradient is taken into account, the polarizabil- 
ity of the atomic ensemble is found from 
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This expression is similar to that for the polarizability of a 
crystal in an external electromagnetic field. Here Ej(kl,w) 
is a Fourier component of this field. 

To put (4) in invariant form, we expand the density 
matrix in terms of the polarization operators p:q (in the ~q 
representation) ,I3 

and we sum (5) over matrix sublevels, using the Wigner- 
Eckart theorem. We find 

Here we are using the standard notation for the 3 jn  
symbols and irreducible tensors: {ei e ei), is an irreducible 
tensor product of rank K of the first-rank tensors ei, (... . ...) 
is the scalar product of tensors,13 the Hermitian tensor 
x'~*=xJ' incorporates all of the information on the an- 
isotropy of the medium, and d is a reduced dipole moment. 

For certain models of the interaction of atoms with a 
pump field, it is possible to choose a local basis of unit 
vectors which move with an atom (an internal coordinate 
system). In this basis we can choose a quantization axis 
v(r) such that 

For example, v is parallel to the polarization in the case of 
a linearly polarized field Eo, and it is parallel to the wave 
vector ko in the case of a circularly polarized field. For 
certain bleaching transitions (AJo=-1) it is also possible 
to choose the quantization axis along the axis of a cylinder 
constructed on the polarization ellipse for an elliptically 
polarized and otherwise arbitrary field. l4 

The scalar product of tensors in (9) can be simplified 
in these cases, since the product {e'e e'), is projected 
onto the quantization axis v(r). In terms of Cartesian 
components we have 

Sij i 
{e'e dld= --a,+;? 3 

Here and below, a repeated index implies summation. 
Tensor (9) can thus be decomposed into irreducible 

components, which are scalar, antisymmetric, and sym- 
metric: 

where 

The quantities C1,,, which stem from the orientation, 
and C2,ij, which stem from the alignment of the atoms in 
the ground state, determine, in particular, the degree of 
natural optical activity and elliptical birefringence for a 
signal propagating through such a medium (these effects 
were analyzed in Refs. 7, 8, and 15) with k=k' in (14) 
and ( 15). In the limiting case of a quasilinear interaction, 
p: is independent of the intensity of the pump field, being 
determined exclusively by the polarization, as we men- 
tioned above. 

3. BIREFRINGENCE IN AN OPTICALLY ORDERED GAS 

For the reasons set forth in the Introduction, the spec- 
troscopy of a low-density gas which is optically oriented in 
its ground state is of interest in the case of a spatially 
uniform polarization of the strong field. In this case the 
quantization axis v in ( 11 ) is independent of r, and we also 
have 

where fo(v) is a Maxwellian velocity distribution in the 
gas. In other words, the gas as a whole is at equilibrium if 
we ignore recoil effects in the interaction of the atoms with 
the strong field, but in terms of internal degrees of freedom 
the deviation from equilibrium is substantial: 

The calculation of susceptibility tensor (5) then sim- 
plifies considerably: 

where 

is the ordinary linear electric susceptibility, while the ten- 
sor 

determines the anisotropic properties of the gas. In an or- 
dinary gas we would have f'j=Sii. The explicit expression 
for the constants in (20) is 
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TABLE I. Expressions for the constant of the anisotropy tensor 5'1 for various transitions as a function 
of the angular momentum of the ground state and the polarization of the orienting field. 

Note. The cells along the diagonal correspond to the case in which the probe and strong fields 
are at resonance with transitions of a common type, AJ=AJo .  The off-diagonal cells corre- 
spond to the case in which the probe field is at resonance with a transition of a different type, 
AJ#hJ,. 

- 1 

0 

+ 1 

3 linear polarization, and q,= 1 in the case of circular po- c -- J2K+1(uO+ i ( - i ) U ~ + A J  
K - ~  

larization). The method for calculating cK and p: is given 

(21) 
in Refs. 12, 8, and 9. 

We turn now to the problem of finding the normal 
Tables I and 11 show the results of a calculation of the waves, their velocities, and their absorption coefficients for 

magnetic dipole constant C1 and the quadrupole constant a medium described by susceptibility tensor ( 18 1, as is 
C2 for various values of AJ, AJo, and qo (this is the polar- typically done in problems in the optics of  crystal^.'^ 
ization of the strong field; we have qo=O in the case of In the linear approximation in terms of the density, the 

TABLE 11. Expressions for the constant C2 of the anisotropy tensor gi for various transitions as a 
function of the angular momentum of the ground state and the polarization of the orienting field. 

3 (2Jo - 1 )  
9" - Jfl 

3 (2Jo - 1 )  
" 4  Jo(J0 + 1 )  

3 (2Jo - 1) 
-go-- 

4 ( J o +  1) 

I I I1 1 Jo is an integer Jo is a half-intege; 
I I 

3 
5 90 

3 90 -- 
2 (Jo + 1) 

3 Jo 
--go- 

2 ( J o + l )  

3 (2Jo - 1)(2Jo - 3 )  3 Jo(2Jo-1)  
4 (Jo + 1)(2Jo + 3)  2 (Jo + 1)(2Jo + 3 )  2 ( J o +  1) (2Jo+3)  

3 
j 90 

3 90 -- 
2 (Jo + 1) 

3 Jo 
--go- 

2 (Jo + 1) 

- 1 

6(Jo + 1)(2 J o  + 1) 2[(2Jo + 2)!12 = 
((2Jo + W4Jo + 3)(1 - a) - 1 (4Jo + 4)! 

Note. The cells along the diagonal correspond to the case in which the probe and strong fields 
are at resonance with transitions of the same type, AJ=AJo . The off-diagonal cells correspnd 
to the case in which the probe field is at resonance with the transition of a different type, A J  
#Uo. 
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longitudinal component of the probe field is small, as is the 
spatial birefringence angle (more on this below). In a cal- 
culation of the normal waves we can thus ignore the lon- 
gitudinal component, and we can project the tensor gJ 
onto the plane perpendicular to the wave vector of the 
probe wave, k: 

The Greek indices a,B= 1,2 refer to the coordinate system 
{xu), moving with the probe wave, while the Latin indices 
(i,j) refer to the Cartesian coordinate system {ei) which 
we defined earlier. We then have 

In a gas with tensor (22), the normal waves are ellip- 
tically polarized orthogonal waves whose complex unit 
vectors 

y2+iy1 tan a Y I + ~ Y Z  t a n a  
e+==3 e-=7i7G'FG" (23) 

diagonalize tensor (22). Here Y is the angle through which 
the polarization ellipse rotates in the {x1,x2} plane, and 
a ( - .n/4(a<.n/4) is the ellipticity angle. These parame- 
@ of the polarization ellipse are related to the constants 
C, and C2, defined earlier, by 

tan a = 2E1 cos 6 ( dGsin46 + 4ccos2 6 + 1 E2 1 sin26) -I. 

(24) 

Here 6(&) is the unit step function, 6 is the angle between 
the quantization axis v and the direction of the probe wave, 
ni,  and q, is the polar angle specifying the orientation of 
the quantization v in the coordinate system {xl ,x2,n,$}. 
Figure 1 shows one of the normal ellipses in the case 
C2 < 0; Fig. 2 shows the relationship between the normal 
ellipses and the angles specifying the quantization axis v. 

The wave vectors k, corresponding to the normal po- 
larizations in (23) are 

- 
An, = 1 -fc2(cos2 6-4) A ,/G sin4 6 + 4 G  cos2 6. 

(25) 

In general, an arbitrary probe wave can be decomposed 
into two normal waves: 

FIG. 1 .  Orientation of the quantization axis v and the polarization el- 
lipses of the normal waves with respect to the laboratory coordinate sys- 
tem. 

Solution (26) makes it possible to find the ellipse ro- 
tation angle Y(z) and the ellipticity a ( z )  for an arbitrary 
probe wave which has passed through a medium as a func- 
tion of the geometric path length in the gas, z, under the 
condition NX,Z < 1 : 

tan a (z )+-  =tan a(O)+- exp 2.n- (An, ( 1) ( 1) I :  
We have thus found a complete description of the propa- 
gation of an arbitrary polarized probe wave in an optically 
oriented gas. 

Let us look at some particular cases. 
If a single wave propagates through a gas and creates 

an anisotropy, then this wave is naturally one of the nor- 
mal waves. The anisotropy reduces in this case to dichro- 
ism with the absorption coefficients 

FIG. 2. One of the normal-wave polarization ellipses. a-Ellipticity an- 
gle; \V--ellipse rotation angle. 
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1. For a linearly polarized wave ( e l  =0, 6=?r/2, 
q=O, a=O) we have 

- - - 
~ n ; = l + $ ~ ~ f l c ~ l ,  ( x l e , ) = O ( ~ C 2 ) .  (29) 

In the case C2 > 0, this wave is the nzrmal wave with max- 
imum absorption, Ant = 1 + (2/3) C2 in the case C2 < 0 it 
is the normal- wave with minimum absorption, 
~ n t  = 1 - (2/3) C2. From Tables I and I1 we find that the 
first case holds for transitions with AJo= 1, and the sec- 
ond for transitions with AJo=O,-1. 

2. For a circularly polarized wave ( 6  = 0, qo = * 1 ) we 
find 

For C ~ ~ ~ > O ,  the wave experiences its minimum absorp- 
tion, while for Clqo < 0 it experiences its maximum absorp- 
tion. 

3. For an unpolarized field ( e l  =0,6 =0) we find - 

the absorption is the same for the two normal waves. 
4. We now look at an interesting case which follows 

from Tables I and I1 under the condition 
I C1 I = I C2 I = 3/2. We now have A~!=o, regardless of the 
direction in which the probe wave is propagating. In other 
words, over a sufficiently large propagation distance the 
probe wave becomes completely polarized, with 
polarization-ellipse parameters Y = cp, and tan a = qocos 6. 

Changes occurring in transmission for various transi- 
tions and polarizations because of a redistribution of the 
populations of Zeeman sublevels in the ground state have 
been studied in astrophysical problems17 and also in Ref. 
15. 

The particular cases listed above are simply instructive 
e_xamples. Using Eqs. (26)-(28) and the values of C1 and 
C2 from Tables I and 11, we can study a set of very inter- 
esting combinations for various polarizations of the probe 
field and of the pump field and for various atomic transi- 
tions. 

Let us look at some approximate quantitative estimates 
of the effects which arise. 

For low-density gases with densities N- 1014 cmP3, a 
crude estimate of the linear susceptibility is X- 10-lo. 
Since we have An, - 1, the arguments of the exponential 
functions in (26) are on the order of unity for propagation 
distances 

of the probe field in the gas. 
In other words, the polarization effects described above 

during the propagation of a probe wave are seen most viv- 

idly in astrophysical media and in the upper atmosphere. 
In particular, we can treat solar radiation as the pump field 
here: at the very low spectral intensities of solar radiation, 
the duration of the interaction of the atom with the field is 
long, so we can determine spectral regions in which the 
condition (2) for quasilinear interaction clearly Lolds. A 
method for calculating the quadrupole constant C2 in an 
unpolarized, incoherent, but directed optical pump field is 
described in Refs. 12 and 15. 

On the other hand, it is also possible to observe the 
effects described above in the laboratory, at higher gas den- 
sities. We should point out, however, that the depolariza- 
tion of the multipole moments of rank K > 0 in the ground 
state due to interatomic collisions becomes more substan- 
tial as the density of atoms increases, As a result, the values 
of the m ~ n e t i c  dipole constant C1 and the quadrupole 
constant C2 may be quite different from the values given in 
Tables I and 11. 

To conclude this section of the paper, we take up a 
calculation of the spatial birefringence angle for the normal 
waves found above, in (23). Here we need to consider the 
longitudinal component of the electric field, Ell = (En k). 
This component is evidently proportional to the density of 
atoms; to first order in N it is given by 

where and xo are given by (19) and (20). 
Our calculations show that the birefringence angle A6 

is comparable to the angle of the diffractive divergence of 
the probe light beam, ha0:  

where D is the transverse dimension of the beam. Observ- 
ing a spatial separation of rays is thus problematic in this 
case. 

On the other hand, this spatial birefringence is of fun- 
damental importance for a classification of gases which are 
optically oriented in the ground state in accordance with 
crystal-optics ideas.I6 In particular, it can be shown that if 
optical anisotropy is produced in a gas by an elliptically 
polarized strong wave, then the equivalent "crystal" will be 
biaxial, with gyrotropy and dichroism. 

4. DIFFRACTION OF A PROBE WAVE BY ATOMIC BEAMS 
WHICH ARE OPTICALLY ORIENTED IN THE GROUND 
STATE 

In atomic beams, the transverse velocities of the atoms 
vl are small in comparison with their longitudinal velocity 
vo. For a well-collimated beam (with a divergence angle 
8 = v 1  /v0=: loP3 rad) these velocities are vl - 1 m/s. Ex- 
periments on ultradeep cooling have achieved a record 
atomic-beam collimation v1 -6k/m - 1 cm/s, where 6k is 
the momentum of a photon of the light wave. For an in- 
teraction of an atomic beam with a pump field in the per- 
pendicular geometry, the optical orientation of the atoms 
in the ground state thus becomes substantial in fields with 
polarization gradients in which the length scales of the 
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variations in the polarization are of the order of the wave- 
length of the light. The condition (3) for a quasilinear 
optical orientation, with the electric susceptibility of the 
medium ~ ( r )  being determined by the local value of the 
polarization of the strong field (and independent of the 
intensity of this field), thus holds for pump fields with 
saturation parameters Go- 10-'-10-~ for atomic beams 
with a collimation p- 10-~-10-~. 

In a medium which has an electric susceptibility with 
spatial variations over distances of the order of the wave- 
length of the light, Bragg diffraction becomes possible for a 
probe optical wave. Let us consider the problem of the 
Bragg reflection of a probe wave from an optically oriented 
atomic beam with a 1D variation, ~ ( z ) .  Situations of this 
sort arise in pump fields formed by two counterpropagat- 
ing coherent waves which differ in polarization. Here are 
some familiar examples of such field ~onfi~urations. '~ 

1. The a+<- configuration (i.e., a linearly polarized 
helix with a pitch equal to the wavelength of the field): 

This configuration is formed by counterpropagating fields 
with orthogonal circular polarizations E +  and E-; this z 
axis is parallel to the wave vector b. 

2. The lin 1 lin configuration: 

This configuration is formed by two counterpropagating 
waves with orthogonal linear polarizations ex and e,. 

Configurations (32) and (33) are described in detail in 
Ref. 10. We would like to point out the following distin- 
guishing features of the polarization gradients of these 
fields. If we characterize the polarization ellipse of a field in 
the general case by the ellipticity a(z)  and the ellipse ro- 
tation angle Y (z) (Fig. 2), then the field in (32) describes 
a case in which there is a gradient in the rotation angle but 
no change in the ellipticity (a=O). The field in (33) is a 
clear example of a case in which there is a gradient in the 
ellipticity with no change in rotation angle. 

The distribution with respect to Zeeman sublevels of 
the ground state is then 

0 The tensor pmm,(z) here characterizes the deviation from 
equilibrium in terms of internal degrees of freedom. It is 
determined exclusively by the local value of the pump po- 
larization. The complete distribution function f (r,v) de- 
termines the density of the atomic beam, N(r)  
= N  $ f (r,v)dv, and the atomic velocity distribution. In 
general, f (r,v) is quite different from the initial distribu- 
tion function of the beam, fo(r,v). In the interaction of 
atomic beams with optical fields which have polarization 
gradients, cooling and channeling of the atomic beam can 
play an important role along with an optical orientation of 
the atoms in the ground state.10," The channeling consists 
of a spatial modulation of the density N(z) with a modu- 
lation period on the order of the wavelength of the light. 

This effect must obviously be taken into account in an 
analysis of the Bragg scattering of a probe wave. 

To analyze Bragg scattering, we use as examples the 
optical transitions 

1. Jo= 1 +Jo+AJo=2 in field (32) and 
2. Jo=1/2+Jo+AJo=1/2 in field (33). 

Distributions (34) are known for these 
For the first model, the quantization axis v which di- 

0 agonalizes the tensor pmm,(z) in accordance with ( 10) is 
directed along the polarization of field (32): 

Since polarization (32) is linear at each point z, the atoms 
have no magnetic moment in their ground state: p g = ~  for 
K= 1. The quadrupole moment is 

- 

There is no channeling in this model, and the distribution 
function f can be assumed uniform along z over distances 
on the order of the wavelength of the light. 

It follows from ( 12) and ( 15) that in this case there is 
only one contribution to the susceptibility tensor x(k,kl) 
in (4) with k#k'. It describes Bragg reflection and is pro- 
portional to tensor ( 15) : 

+ ( ~ - ) i ( ~ - ) j a ( k - k ' + 2 b )  1, (37) 

where f (v) = $ f (r,v)dr is the velocity distribution of the 
atoms in the beam. 

In the second model, a spatial grating of the magnetic 
moment is formed in the ground state of the atoms: 

where the quantization axis Y is directed along b. An 
important feature of this model is that an atomic beam can 
be channeled if the atoms interact with the pump field for 
a sufficiently long time. When the channeling reaches a 
steady state, the following expression is an accurate ap- 
proximation of the overall distribution function:" 

Here N incorporates a normalization constant, a cut- 
off function in terms of the width of the atomic beam ( D), 
and a functional dependence on the atomic velocities in 
directions perpendicular to ko, i.e., v, . In (39), the quan- 
tity 8 is the offset of the frequency of the strong field from 
resonance. 

Figure 3 shows the results of numerical calculations of 
the atomic density N(z) for certain parameters of the 
pump field. ' 
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Atomic beam 

FIG. 4. Bragg scattering of a probe wave by an atomic beam. k-Wave 
vector of the incident probe wave; k'-wave vector of the reflected wave; 

FIG. 3. Density profile N(z) over distances z=Ad2. Solid curve-The &-wave vector of the strong field; d-period of the spatial grating of 
offset of the strong field is 8= 10% dashed c u r v d -  = ,by.  The vertical multipole moment ( ~ = 0 , 1 , 2 )  in the ground state of the beam atoms. 
scale is in arbitrary units. 

The spatial distribution of (39) along z can be written 
as a Fourier series in spatial harmonics with a maximum 
period d =Ad4: 

m 

f (r,v) = C cos(4nkoz)A,(v). 
n=O 

(40) 

For an offset 8=: 107 of the pump field, for example, 
the coefficients in (40) are in the proportions 
A,-A1-A,-A,...= 1-0.4-0.17-0.08... . 

The existence of spatial harmonics as in (40) has the 
consequence that the diffraction of the probe field (with 
k#kf) in susceptibility tensor (12) is determined by two 
series, according to ( 13) and ( 14): 

For the first model, there is one possible value for this 
angle 

ko A 
c0sa2=-=- A<Ao. 

k A,' 

For the second model, for a given A, there may be several 
of these angles: 

by virtue of reflection from the spatial grating of the mag- 
netic moment, (38), and 

+k-kt)]  + C (An+An+l)[6((2+4n)h by virtue of reflection from the spatial grating of the den- 
n= l sity, (39). 

In the optical range, Bragg reflection thus occurs at 
-k+kl)  +6((2+4n)h+k--k ')]]  (41) frequencies w)wo only at the grating of the quadrupole 

moment (in the first model) and at the grating of the 
a)  by virtue of the spatial modulation of the magnetic magnetic moment (in the second), when the wave is inci- 

moment, (38), and dent at an angle satisfying 
m 

&-6, C A,[6(4nh-k+k') +6(4nh+k-kt ) ]  I A I n=l cos@=- . 
A0 

(46) 
(42) 

b) by virtue of the spatial modulation of the density, 
(39). 

In the reflected signal, however, we find only waves 
which satisfy the dispersion relation for a free wave in 
vacuum: kf=k=w/c, where w is the frequency of the 
probe field. Taking the 1D nature of these spatial varia- 
tions into account, we see that this result means that for a 
given k of the probe field, only a single reflected wave can 
arise, with k' directed in accordance with the condition for 
specular reflection (Fig. 4). 

The angle of incidence @ at which Bragg reflection of 
the probe wave occurs is determined by the arguments of 
the 6-functions in (37), (41 ), and (42). 

If the wave reflected from the density grating is to be ob- 
served, there must be transitions, Jo+AJ with resonant 
frequencies w>2wo. In this case the angle of incidence, 
found from 

is not the same as that found from (46). 
This result applies directly to our second model. It 

stems from the small period (d=Ad4) of the spatial grat- 
ing of the density, (40). In general, however, channeling is 
also possible in other field configurations, in which the 
period of the spatial grating of the density is d=Ad2. For 
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example, it is possible in the field of a standing optical 
wave. '* In this case one can also observe Bragg reflection in 
the optical range. 

To find the polarization of the reflected wave, we work 
from the condition that electromagnetic waves are trans- 
verse: 

where e(k') is the polarization of the probe wave. 
The densities of atoms in beams are low (N- 1 0 ' ~  

~ m - ~ ) ,  and the region in which the probe field interacts 
with the atomic beam has dimensions L- D, where 
D-0.1 cm is the diameter of the atomic beam. Since the 
components of the electric susceptibility tensor are small, 
X- l0-I4, making the parameter kLxg1 small, we can 
content ourselves with the first order of an expansion in 
this parameter in solving the corresponding Maxwell's 
equation for the probe wave.I9 The reflected wave E(kl)  is 
then related to the incident wave E(k) by 

The operator kprojects onto the plane perpendicular to the 
vector k'. 

According to (49), the polarization of the reflected 
wave is 

a) where B(x) is the unit step function, for the first 
model and 

b) for the second model in the case of reflection from 
a grating of the magnetic moment, (38), or 

for reflection from a density grating, (39). 
The quantity e(k) in (50)-(52) is the polarization of 

the incident probe wave. 
The reflected wave, E(k l )  - 10-"~(k) ,  is very weak 

for the parameters of the atomic beam cited above. How- 
ever, since there is the possibility in principle of arranging 
large diffractive-reflection angles in (46) and (47) for even 
wider and more intense atomic beams, it becomes feasible 
to select a reflected signal in terms of frequency, direction, 
and polarization against the background of thermal radia- 
tion and other noise. We would add that the waves re- 
flected from gratings of the quadrupole moment, the den- 
sity, and the magnetic moment have different polarizations 

[see (50), (52), and (51)], and the wave reflected from a 
density grating also has a reflection angle [see (47)] which 
is not the same as that in (46). 

There is thus the additional possibility of using spec- 
troscopic methods for diagnostics of atomic beams. For 
example, by comparing the intensities of waves reflected 
from different regions of an atomic beam, one can extract 
information on the dynamics of the cooling and channeling 
of beams. One can furthermore estimate the temperature to 
which the atoms are cooled in strong optical fields. In this 
case the temperature determines the velocity at which the 
atoms diffuse along the z axis (6vll ) and thus characterizes 
the extent to which these spatial gratings of the multipole 
moments become smeared as atoms escape from the region 
in which they interact with the pump field. As a result, one 
can work from the extent to which the amplitude of the 
reflected signal falls off in a scan along the atomic beam to 
draw conclusions about the magnitude of 6vll and thus 
about the temperature kBT = m (Svll )2/2. 
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