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We consider the trapping of electrons by electronegative impurities from the conduction band 
for condensed systems of highly excited atoms (Rydberg matter). The trapping can 
occur both with photon emission and through a nonradiative mechanism. In both cases the 
transition of electrons from the conduction band of the condensate to impurity orbitals 
is possible in practice only in the regions where the electron motion is classically admissible. 
We show that the rate of radiative processes increases with an increase in the quantum- 
mechanical level of excitation of the atoms, whereas the rate of the nonradiative processes 
decreases rapidly. When the impurity density is comparable to the skeleton density of 
the Rydberg matter, the trapping of electrons by impurities leads to a fast decay of the 
condensate. At the same time, for low densities of the impurities, after electron 
trapping they will be incorporated into the structure of the Rydberg matter; as a result, the 
recombination of excitations is improbable. 

1. INTRODUCTION 

One can invoke condensed excited states (CES) to de- 
scribe dense systems of excited centers (atoms, molecules, 
impurities in solids).'.' The well known electron-hole 
state, which occurs as the result of the condensation of 
excitons-elementary excitations in semiconductors-is an 
example of CES.~ The interaction between separate excita- 
tions becomes more and more important as the density of 
excited centers increases. While for low densities the inter- 
action leads merely to a renormalization of their spectrum, 
for sufficiently dense systems a qualitative change in the 
structure of the medium becomes possible, and the result of 
this is the formation of energetically more favorable con- 
densates from the set of excited centers. The strong inter- 
action between the electrons in the resulting condensate is 
conserved, but it is no longer related to the effective life- 
time of the excited medium. Moreover, for highly excited 
atoms, the lifetime of the CES turns out to be macroscop- 
ically long.' A CES formed as the result of condensation of 
highly excited atoms or molecules is called a Rydberg sub- 
stance, or Rydberg matter (RM).5,6 If the density of the 
excitations is low, they can be considered an almost perfect 
gas, and renormalization of their spectrum reduces to a 
change in both the energy and the lifetime. As the density 
is increased, the damping of the excitations may become so 
large that the concept of an elementary excitation loses its 
meaning. The system of excitations must be considered a 
Fermi liquid, and the strong damping means only that we 
must look for elementary excitations near the limiting 
Fermi momentum, in complete accordance with Landau's 
theory of a Fermi liquid.4 As regards the lifetime of the 
condensate (the excited medium), there is no reason what- 
ever why it should necessarily always decrease. 

In RM the external electrons form a Fermi liquid with 
the neutralizing ions immersed in it. Notwithstanding its 
low density-gaseous according to its parameters-RM is a 
solid metallic state of matter. It is possible to calculate the 

equilibrium parameters of RM in the framework of a den- 
sity functional theory using the concept of the pseudopo- 
tential of excited atoms from which the CES is formed.' 
For definiteness, we give briefly the numerical parameters 
of RM formed as the result of the condensation of cesium 
atoms excited in an s state. The spectrum of the excited 
states is well known for cesium atoms, which makes it 
possible to obtain estimates quantitatively, albeit with a 
certain amount of crudeness. The CES formed when ex- 
cited cesium atoms condense were observed in Refs. 6-8. 
We restrict ourselves to excited states with principal quan- 
tum numbers n = 12, 13, and 14, which are of most interest 
to us. For smaller quantum numbers, the lifetime of the 
CES is less than a second, and for n > 14 the binding en- 
ergy is already comparable with room temperature. 

In Table I we give the skeleton density of the RM of 
excited cesium atoms, the interionic distances, the binding 
energies (sublimation energies at zero temperature) per 
excited atom in the condensate, and an estimate of the 
lifetime. The lifetime of RM is calculated assuming it to be 
due to radiative recombination and nonradiative (Auger) 
processes.9 At a low skeleton density, the collectivized va- 
lence electrons guarantee a sufficiently high binding energy 
for stability.2 

At present, the theory of RM has been developed for 
the ideal case of zero temperature, assuming that there are 
no other recombination channels apart from just radiative 
recombination and Auger processes. The behavior of RM 
at a finite temperature and in the presence of impurities 
which can trap electrons from the CES requires a special 
analysis. 

All the RM parameters given above were estimated 
neglecting temperature effects. The justification for normal 
metals is provided by the high Fermi energy of the elec- 
trons. However, in our case the electron density is too low 
to be a straightforward basis for neglecting the tempera- 
ture. Moreover, if we start with a perfect Fermi gas model, 
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TABLE I. 

Excitation Skeleton Interionic Fermi 
level density distance Binding energy Lifetime energy 
Il p, 11crn3 L, A B, K T,S  E F , K  

12 1.1. 1018 120 1590 25 1700 
13 5.3. 10'' 153 1310 5 1370 
14 2.8.10" 189 1120 3 . 1 0 ~  1110 

we see easily that the electron density below which they 
behave classically, 

is, at room temperature, lower than the electron density in 
the RM considered.') However, it was already noted in 
Ref. 2 that the free electron model is too crude for a CES 
of excited atoms, and it ceases to operate even for excita- 
tion levels only a few units above the ground state. This is 
connected with the strong inhomogeneity of the electron 
liquid of a CES, genetically connected with the sharply 
inhomogeneous electron distribution in a highly excited 
atom. In Table I we give estimates of the Fermi energy EF 
of the electrons in the conduction band of RM. Since under 
normal conditions EF is, as before, higher than kBT, we 
shall no longer consider here temperature corrections, as- 
suming that the electron liquid of the RM is degenerate. 

2. IMPURITY RECOMBINATION 

The decay of RM may be related not only to radiative 
and Auger transitions to low-lying and unoccupied levels 
of the ions of the intrinsic skeleton (intrinsic recombina- 
tion), but also to the presence of molecules which have a 
high electron affinity. Electronegative molecules can trap 
electrons from RM states, forming negative ions. These can 
recombine when colliding with positive ions from the skel- 
eton. As a result, the RM decays, and it turns out that the 
rate of such a process may be very high. 

Electron affinity is observed in many molecules.1091' 
The 6 i t y  energy is small-of the order of 1 e ~ . ~ '  The 
size of negative ions is a few angstroms. At the same time, 
the sue of the elementary cells of RM, which is of the same 
order of magnitude as the size of highly excited atoms, is 
several hundred times larger. Comparing the affinity en- 
ergy and the sue of the negative ions with the RM param- 
eters, we conclude that for a model of electronegative mol- 
ecules, we can use local potential wells against a 
background of a slowly changing total electron potential 
for the electron. We show in Fig. 1 the interaction potential 
of a valence electron of RM inside an elementary cell of a 
condensate of cesium atoms excited to the 12-S state, con- 
taining a single electronegative water molecule. We model 
the potential of the latter by a well 3 A in size with an 
electron binding energy of (Eel =0.9 eV. As long as the 
electronegative molecule is far from the high electron den- 
sity region, we can neglect screening effects. 

The trapping of an electron by an electronegative cen- 
ter takes place through radiative and Auger processes. If 

FIG. 1. 1) Effective single-electron potential W( r). 2) Final energy Ef of 
an electron trapped by an impurity at different points of the elementary 
cells of a condensate of cesium atoms excited in tke 12s state. The model 
of the electronegative impurity is a well of size 3 A with a binding energy 
1 Eel =0.9 eV for the electron. 

the electronegative molecule is in the Wigner-Seitz cell at 
a distance r < r, from the central ion, where r, determines 
the boundary of the region where the RM electrons are 
classically allowed to move, the trapping of an electron 
takes place when it tunnels through a potential bamer. 
This classically allowed region for the motion is for RM 
situated in a thin layer near the boundary of the elementary 
cell where the total potential has a local minimum (see Fig. 
1). The probability for such a process is strongly sup- 
pressed due to the large width of the bamer. Direct cap- 
ture processes are thus dominant when an electron is inci- 
dent on an impurity in the region where the electron 
motion is classically allowed. It is therefore sufficient, when 
estimating the rate of decay of the RM due to electroneg- 
ative components, to evaluate the electron trapping in that 
region. Generally speaking, screening effects, taking into 
account the relatively low binding energy of the electron in 
a negative ion, may play an important role in that region. 
For instance, the bound state of an electronegative mole- 
cule may completely disappear. Nonetheless, we shall ne- 
glect screening here. It is clear that this makes it possible to 
obtain only an upper limit for the decay rate. 

3. RADIATIVE ELECTRON TRAPPING BY IMPURITIES 

We consider the radiative trapping of an electron from 
the conduction band of RM. In that case, one of the RM 
electrons is trapped in an energetically more favorable state 
of a negative ion, which remains in the total field produced 
by all other electrons and the ions of the RM skeleton, and 
a photon is emitted with an energy 

where Ei is the initial and Ef the final energy of the elec- 
tron trapped by the impurity. Let the electronegative cen- 
ter be in a fixed Wiper-Seitz cell at the point rf. The 
probability of this event is p(rf)d3rf. It is clear that 
p(rf) =N, where N is the number density of electronega- 
tive molecules. Since we agreed to neglect the effects of the 
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redistribution of the charges in the RM associated with the 
presence of the electronegative molecules, and if we take 
into account the small size of the negative ion, we can take 
the electron energy in the final state to be approximately 

where Ee is the energy of an electron in an isolated negative 
ion and ( W(rf) ) the average value of the effective single- 
electron intracell potential'2 in the region where the elec- 
tron is localized on the impurity. The probability oEa ra- 
diative transition is given by the well known formula from 
time-dependent perturbation theory, 

where the transition matrix element for spontaneous decay 
has the form 

Here ep and k are the polarization vector and the wave 
vector of the emitted photon, P is the momentum oprator, 
1 i )  is the electron wave function in the RM conduction 
band, and If) is the wave function of the electron trapped 
by an electronegative impurity. For the latter we can use 
various approximations of the wave function in a negative 
ion," although in our case, where the electron trapped by 
the impurity is strongly localized (compared to its RM 
state), the actual form of this function is unimportant. 

In the dipole approximation, using the identity 

we can rewrite the transition matrix element in the form 

After summing over all possible states of the photon field, 
we find for the transition probability from the RM state I i) 
to the impurity state If) 

We now consider the integral 

Since the electronegative impurity is at the point rf,  the 
electron wave function $7 ( r )  at the impurity is localized 
close to that point. To high accuracy, we can thus write 

We can now simplify Eq. (6), assuming that the volume of 
the impurity equals V: 

We thus see that the capture probability for an electron 
of energy Ei from the RM conduction band is directly 
proportional to the square of the modulus of the wave 
function, i.e., to the charge density of the electron at the 
point where the impurity is localized. This is just the rea- 
son why the capture is practically impossible if the impu- 
rity is far from the region where electron motion is classi- 
cally allowed. 

For the number of transitions per unit volume and unit 
time, 

where the summation is over all RM states (we assume the 
If) state to be nondegenerate). We find 

( 8 )  

where N(Ei) is the density of states in the RM conduction 
band and f (Ei) is the Fermi distribution function. 

The electron wave functions I i) in the RM conduction 
band can be written in the form of Bloch functions. How- 
ever, such a representation is not altogether convenient for 
the calculations. The fact is that RM is made up of highly 
excited atoms, in which the electrons are predominantly at 
a distance of the Bohr radius from the ion. In RM there 
occurs an additional collapse of the electrons to the regions 
farthest from the ions-to the boundaries of the elemen- 
tary cells of the condensate which was formed. For the 
calculations it is thus advisable to use Wannier functions 
localized at the sites. 

We expand the wave function I i) of an electron with 
wavevector k in the conduction band in the lattice vectors 
a j  of the RM, 

where R is the volume of an elementary cell of the RM. We 
assume the volume of the RM to be equal to unity, so that 
the total number of elementary cells is equal to 1/R. The 
Wannier functions q ( r  - aj) pertaining to different sites 
are orthogonal, and they are, moreover, normalized to 
unity. For the square of the modulus of the RM electron 
wave function, we find 

The density of the RM electron liquid n(r)  can also be 
written in the site representation: 
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The second term in Eq. ( 11) is equal to zero, since 

n x exp(ik(aj-al))=Sjl. 
k 

On the other hand, the RM electron liquid density can be 
written as a sum of nonintersecting cell densities: 

The electron liquid density at each site (in each elementary 
cell) can, in the approximation of spherical Wigner-Seitz 
cells of radius Rws be defined by the functions 

p(r )  = 
 PO exp(- (r-Rwsl2/&) for r <  Rws 

0 

The variational parameter D mimimizes the energy of the 
system fo2 D z  1 . 8 ~ : ~  where R, is the radius of the Ash- 
croft pseudopotential of the excited atom in atomic units. 
The coefficient po must be determined from the condition 
that the cell is electrically neutral, 

Ja drp(r) = 1. 

If we now compare ( 11) and ( 12), we get as the zeroth 
approximation for the Wannier functions, apart from the 
phase, 

and for the square of the modulus of the wavefunction, 
which occurs in (8), we find 

where out of the whole sum, only the density of the elec- 
trons in the cell containing the impurity remains. Notwith- 
standing the rather artificial form of our approximation of 
the Wannier functions, they are orthonormal, and give the 
correct form for the expression for the electron density. It 
is possible in this approximation to estimate the character- 
istic time for the intrinsic RM recombination due to tran- 
sitions to low-lying unoccupied orbitals of the RM 
It is useful to bear in mind that Wannier functions are used 
precisely for computational purposes, although they are 
not always suitable for a direct interpretation of physical 
phenomena. l3 

Substituting (14) into (8) and summing over all pos- 
sible positions of the impurity inside the elementary cell, 
taking into account that the total number of cells is equal 
to 1/n, we find for the probability Wr=a W of radiative 
electron capture 

We can further simplify the problem using the fact that the 
RM electrons are localized near the boundaries of the cells, 
i.e., the steep behavior of p(r) .  Indeed, the first integral in 

( 15 ) is concentrated practically completely on r z Rws . 
However, in that region the effective cell potential changes 
slowly, ( W(rf) ) z W(Rws). Moreover, the electron en- 
ergy Ei runs through values from the bottom of the con- 
duction band to the limiting value of the Fermi energy Ef. 
Since the RM conduction band is relatively narrow, we can 
reasonably accurately replace the frequency ( 1) of the 
emitted photons by an average quantity 

We assume here that 1 Eel is much larger than the RM 
conduction band width. 

Using the sum rule 

we finally obtain for the decay probability 

For numerical estimates it is convenient to make this 
formula dimensionless, using atomic units (the Bohr ra- 
dius a. and the atomic frequency w,=me4/ii3), 

For n = 12 we have for the cell radius Rws= 1 13.4.12 If the 
impurity parameters are such that fi(w) = 1 eV, 
V=3. ~ m - ~ ,  N =  10'' cmp3 (roughly a 10% con- 
tent of impurities in relation to the skeleton density), the 
probability for the trapping of a RM electron is 

This means that after a time of the order of 2.5 lop5 s-I, 
electronegative molecules with an electron affinity energy 
of 1 eV are changed to negative ions, absorbing electrons 
from the RM conduction band in the process. This is sev- 
eral orders of magnitude shorter than the time for intrinsic 
recombination (see Table I )  due to transitions to low-lying 
unoccupied orbitals of the RM ions.9 

The trapping of RM electrons by electronegative im- 
purities is thus, indeed, an extremely efficient channel for 
the transition of electrons from the RM to an energetically 
more favorable state, with the formation of negative ions. 

4. IMPACT IMPURITY RECOMBINATION OF RM 

We turn to a consideration of impurity recombination 
of RM due to Auger processes. In impact recombination, 
one of the RM electrons ( 1 ) collides with another electron 
(2) and makes a transition to an impurity orbital 1 f ) ,  
transferring the excess energy to the second electron. We 
shall assume that the second electron does not flip into 
another band as a result of this transition. The transition 
probability is 
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It is convenient to write the matrix element of the per- 
turbed screened Coulomb potential using the Bloch com- 
ponents of the wave functions Uk(r). To simplify the cal- 
culations, we assume that the electronegative molecules 
form an unfilled impurity band. The behavior of an elec- 
tron in this band can be described using a linear combina- 
tion of impurity orbitals. The matrix element takes the 
form 

Mf,3,2,1 = vk3- k!lr26k, + kZ,k3+ k;' 

where the Fourier component of the screened Coulomb 
potential with a screening constant A= 1/D is 

while the overlap integrals of the Bloch factors of the wave 
functions are evaluated inside a single elementary cell 

The number of transitions per unit time and unit volume is 
determined by summing ( 19) over all possible states of the 
system, 

We give an upper estimate of the probability Wo= f2 W 
for nonradiative trapping. To do this, we replace the form 
factor (21 ) by its maximum value, 

and we simplify the square of the moduli of the overlap 
integrals (22), using the fact that the modulus of the inte- 
gral of any function is no greater than the integral of the 
modulus of that function, 

We then put the electron energies close to the Fermi en- 
ergy, El =; E2 = E3 = EF, thereby obtaining an estimate for 
the probability of impact trapping of a RM electron: 

The density of states near the Fermi level can be estimated 
to be 

Hence, the probability of trapping an RM electron through 
the nonradiative mechanism is estimated by the expression 

As in the case of radiative transitions, the trapping of elec- 
trons from the RM conduction band through the nonradi- 
ative mechanism is thus possible only in spatial regions 
where the electron liquid is localized. 

Finally we have for the probability of nonradiative im- 
purity decay after averaging over the volume of an elemen- 
tary cell 

We emphasize that this formula can be used only for a 
crude estimate of the rate of impurity impact recombina- 
tion. For the impurity and RM parameters given earlier, 
we find with n= 12 

which means that possibly nonradiative processes may 
dominate. 

Comparing (26) with Eq. (18) for the probability of 
radiative recombination, we see that as the level n of exci- 
tation increases, the rate of radiative processes increases 
rapidly (proportional to R&), while the rate of impact 
recombination, in contrast, decreases rapidly (proportional 
to R,;). This means that even if Auger processes dominate 
for low-excitation CES, ultimately radiative recombination 
will become the main mechanism for RM when the level of 
excitation increases. 

5. STRUCTURE OF RM IN THE PRESENCE OF 
ELECTRONEGATIVE IMPURITIES 

We have everywhere assumed implicitly that the elec- 
tronegative molecule abundance was negligible in compar- 
ison with the RM electron density: 

In the opposite case, the structure of RM is fundamentally 
changed, since due to the trapping of electrons the cou- 
pling between excited atoms in the lattice is lost. Therefore, 
if there are many electronegative impurities, ultimately 
they must inevitably lead to a restructuring and a decay of 
the RM. 

Of course, if there are very few electronegative mole- 
cules inside the RM, we can altogether neglect the electron 
trapping processes. We give in Table I the calculated life- 
times T due to intrinsic recombination processes. Since in 
our case nonradiative transitions dominate, the condition 
for neglecting impurities is given by 

whence follows the requirement for the density of the mol- 
ecules: 

For RM of cesium with an excitation level n= 12, we 
find from this for the impurity density No=7 lo9 cmW3. 

Now let only the weaker condition (27) be satisfied. 
Apparently in this case one can easily describe a catalytic 
process for destroying RM when there are electronegative 
gases present: an electronegative atom absorbs an electron, 
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it becomes a mobile negative ion which collides with a 
positive ion in the RM lattice, and neutralizes the latter 
through recombination. The original electronegative atom 
is formed, as well as a new neutral atom which may or may 
not be electronegative. This means that a catalytic process 
is realized or, on the other hand, a process with multipli- 
cation of electronegative centers which may be explosive in 
nature. 

Does this happen? Is a catalytic process realized? Of 
course, electronegative impurities in RM absorb electrons 
and, as one can see from the earlier consideration [see Eqs. 
(7) and (25)], the absorption of electrons occurs predom- 
inantly at the boundaries of the Wigner-Seitz cells. 

We turn now to Eq. (2) for the energy of an electron 
trapped by an electronegative impurity. The dashed curve 
in Fig. 1 shows the position of the energy level of an elec- 
tron trapped by an impurity at different points of the ele- 
mentary cell of RM formed from atoms with n =  12. We 
see that the energy of the electron in the final state, i.e., in 
fact, the energy of the negative ion, has a local minimum 
near the boundary of the Wigner-Seitz cell, exactly like the 
RM electrons. The nature of this minimum is the same as 
for the RM electrons; an effective attraction occurs due to 
exchange-correlation interactions with the RM electrons, 
the density of which is small here.3) Thus, for the resulting 
newly-formed negative ions as well, there is a potential 
barrier which prevents them from penetrating the inner 
regions of the ions of the RM lattice, and which suppresses 
the recombination of ions with the corresponding develop- 
ment of a catalytic process. 

We thus conclude that as long as the abundance of 
electronegative molecules is negligible, effective trapping of 
electrons from RM will occur, but the negative ions formed 

will not recombine with the positive ions in the lattice, 
being incorporated instead into the RM structure. 

This work was performed with the financial support of 
the Russian Fund for Fundamental Research (project No. 
93-02-2542). 

' ) ~ t  room temperature we have no=2.5. l0I9 cm-'. 
2 ) ~ s  an example, we give the electron affinity energies for a few molecules 

(eV): 0 2 :  0.44, H20: 0.9, 0 3 :  2.0, NO: 0.03, NOZ: 2.4, SOz: 1.06. 
3 ) ~ h e  polarization interaction of a charge with its image is a classical 

analog of this interaction. 
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