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Starting from the QCD Lagrangian and taking into account both perturbative and 
nonperturbative effects, we use the method of vacuum correlators to derive the Dirac equation 
(rigorously for the Coulomb interaction and heuristically for the confining potential) for 
a system consisting of a light quark and heavy antiquark. As a result the confining potential is 
a Lorentz scalar, and the Coulomb part the fourth component of a 4-vector. The energy 
spectrum of the Dirac equation is considered for these potentials. Numerical calculations of 
energy eigenvalues E=E,,, are performed, and some exact solutions of the Dirac 
equation in the case E=O are found. An effective-potential method convenient for qualitative 
study of the solutions of the Dirac equation is developed. The connection with 
experimental spectra of D- and B-mesons is briefly discussed. 

1. INTRODUCTION 

The quark-antiquark systems consisting of one heavy 
quark (antiquark) Q and one light antiquark (quark) q are 
QCD analogs of the hydrogen atom and thus are of fun- 
damental importance. 

Recently the issue of the heavy-light bosons has be- 
come a topic of vivid interest in both analytic and Monte 
Carlo QCD studies.' 

From the theoretical viewpoint the interest in heavy- 
light systems stems from several considerations. First, in 
the limit of one infinitely heavy quark, one hopes to get the 
dynamics of a light quark in the external field of a heavy 
one. That would be similar to the picture of the hydrogen 
atom. 

Second, since the external field is time-independent, 
one may hope to obtain a static potential in QCD together 
with spin-dependent forces, as has been done for heavy 
quarkonia.2 

An important issue in this connection is the Lorentz 
nature of the confining part of the potential. Arguments in 
favor of a scalar nature are found in the form of 
inequalities3 and also in the form of spin-dependent 
 term^.^'^ 

Third, in the heavy-light system one may study how 
the chiral symmetry breaking (CSB) affects the spectrum. 
When one quark mass is vanishing, in the chiral symmetric 
case the spectrum would consist of parity doublets, and the 
CSB would lift the degeneracy. 

Fourth, using the Dirac equation we implement explic- 
itly relativistic dynamics and can study relativistic proper- 
ties of the spectrum, e.g., in the case of a vanishing quark 
mass, and also relativistic spin splittings in the spectrum. 

In particular, in our case the spin symmetry now being 
widely discussed' is present, since the spin of the heavy 
quark is decoupled. Hence every state of the Dirac equa- 
tion with a given j and parity corresponds to two almost 
degenerate states of the (qQ) system with j and the heavy 
quark spin S= 1/2 adding to J= j + 1/2. 

Our final point is that the Dirac equation description 

yields a dynamical framework for the heavy-light mesons 
which can be used to calculate meson matrix elements and 
form factors to compare with experiment and semiphe- 
nomenological approaches now widely used in this 
context. ' s 5  

Here we attempt to derive explicitly the Dirac equation 
for the heavy-light quark system starting from the QCD 
Lagrangian and incorporating both perturbative and non- 
perturbative effects in the framework of the vacuum corr- 
elator method (VCM) 

In the course of the derivation we use some approxi- 
mations, which are clearly stated at each step, e.g., neglect 
of virtual quark pairs (the quenching approximation), 
keeping the lowest (quadratic) cumulant in the cluster 
expansion, and the "limit of local dynamics,"2 T,+O, 
where T, is the gluonic vacuum correlation length. We 
discuss physical implications of these approximations in 
the main text below. 

Even with those approximations we are unable to 
prove rigorously the appearance of a static scalar confining 
potential, but we give strong arguments in favor of it. The 
situation is much better for the perturbative part, and the 
existence of an external vector potential in the limit of one 
heavy quark mass is explicitly shown. 

At this point we start with the Dirac equation contain- 
ing a vector Coulomb part and a scalar confining part, and 
we study properties of its spectrum. For comparison we 
also consider two other cases: i) the equation has a vector 
confining part and a Coulomb part; ii) both parts of the 
potential transform as scalars. We are explicitly interested 
in the limit of a vanishing light quark mass and the spin 
dependence of the energy eigenvalues. 

We show explicitly that a reasonable spectrum occurs 
only for a scalar confining part. In this case the scalar 
potential breaks explicitly chiral symmetry, and states with 
opposite parities are not degenerate. In the case of a vector 
confining part, only quasistationary states are found. 

We write possible general symmetry properties of spec- 
tral states and also the corresponding properties in the 
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with a similar expression for Y (x,Z). Thus we can write 

FIG. 1. Quark-antiquark Green's function describing transition from the 
initial state r(y,y3 to the final state T(x,f). Wavy lines refer to the quark 
(antiquark) Green's function A,(x,y)  [A2(x,y)]. 

particular cases of a zero scalar potential, a zero vector 
potential, and a zero mass. 

We also find some exact analytic solutions of the Dirac 
equation which occur for E=O. This enables us to find an 
equation, which determines that value of the Coulomb con- 
stant ([=c,), for which the ( n j l )  discrete energy level 
reaches the value E=O. We note an analogy of this prob- 
lem with the relativistic Coulomb problem of an electron in 
the field of a heavy supercritical nucleus with Z> 137."" 

The paper is organized as follow. In Sec. 2 we use the 
Feynman-Schwinger representation of the quark-antiquark 
Green function to derive the limit of one infinite mass. 

In Sec. 3 we compare this limit with the Dirac equa- 
tion and discuss the Lorentz nature of the confining inter- 
action. 

In Sec. 4 we discuss the properties of the spectrum of 
the Dirac equation. 

In Sec. 5 we discuss symmetry properties of the spec- 
trum, in particular chiral properties. 

In Sec. 6 we discuss numerical results for the spectrum 
of the Dirac equation in the limit of a vanishing small 
quark mass. 

In Sec. 7 we investigate the exact analytic solutions of 
the Dirac equation which occur for E=O. 

In Sec. 8 we summarize our results and compare the 
Dirac spectrum obtained here with experiment and other 
approaches. This enables us to also discuss large-mass cor- 
rections. 

2. FEYNMANSCHWINGER REPRESENTATION FOR THE 
HEAVY-LIGHT GREEN'S FUNCTION 

Consider the quark-antiquark system of one heavy an- 
tiquark (with mass m2) and a light quark of much smaller 
mass ml, which we neglect in some cases below. 

The Green's function G of such a system, with the 
quarks initially at points y,J and finally at points x,Z, is 
given by the path integral over fermionic and gluonic fields 
A in Ref. 8. Evaluating the fermionic integrals and neglect- 
ing the fermionic determinants (the quenching approxima- 
tion) for simplicity, one arrives at the amplitude depicted 
graphically in Fig. 1, where A; is the quark Green's func- 
tion with quark mass mi, and the r's belong to the initial 
and final wave functions: 

The angular brackets here denote the integration over glu- 
onic fields. This integration we perform using the cluster 
expansion.697 We arrive at the following expression involv- 
ing proper-time and path integrals for the quark (s,z) and 
the antiquark ($3: 

where 

In (2), r, ,  ry refer to the Lorentz structures in the initial 
and final states, and D(') and y, are given in Ref. 7. We 
rewrite the latter here in the following form (in the lowest 
order of a cluster expansion, where perturbative and non- 
perturbative contributions factorizes) : 

X (Fpv(u)Fp~(ul))  , 

where 

I 

and ( F  F )  is the gluonic correlator. The latter can be split 
into perturbative and nonperturbative parts as in Ref. 7. 

Now we discuss the limit of one heavy mass, m2+ a. 
In this case, when m2 is much larger than the interaction 
strength, particle 2 is moving along the straight-line trajec- 
tory 

Zi=&.=Ri is the position in space of particle 2. 
One can see that in this limit Xhe spin interaction of 

particle 2 (terms d2)d7)  is -Q(l/m2) and can be ne- 
glected. 

The perturbative part of the cumulant ( ( F  (x) F (y  ) ) ) 
can be written as6,' 
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where C2 is the quadratic Casimir operator, 
C2(Nc=3) =4/3, and C is the closed contour depicted in 
Fig. 1. The integral in (6) is divergent and is regularized 
by inserting a Z factor in front of the exponential in (3) 
and introducing the minimal distance 6 of the points Fand 
z' in (6) (for details see Ref. 12). 

Therefore we can now study the situation when only 
the perturbative interaction is present, and the Green's 
function looks like 

x ry(m2( 1 -y4) , I (7) 

where we have neglected terms representing the self- 
interaction of 1. 

Our goal now is to rewrite the exponential function in 
(7) in the form 

(a similar derivation for QED was done in Ref. 13), where 
we have defined (following Ref. 6) 

Similarly, 
- - - 
F,,=d, A,-a, A,. (10) 

One can also verify that the explicit expression for ( ( F  
F))*, which one obtains from the Feynman gauge 
propagator,6 leads to 

Hence we can write the qq Green's function, keeping only 
the perturbative interaction: 

~ ( x ~ l y y 3  =tr [ rx~(x,y)rym2(l  -y,) I,  (12) 

where we have defined 

= ( X I  [ml+b(d)]- ' ly) .  (13) 

We observe that G(x,y) satisfies the Dirac equation 

[ ~ , + ~ ( A ) I G ( x , ~ )  = s ( ~ ) ( x - ~ ) .  (14) 

In the next section we study the effect of the nonper- 
turbative interaction. 

3. CONFINING FORCE AND THE DlRAC EQUATION 

We now turn to the nonperturbative interaction, which 
provides confinement due to the presence of the special 
(Kronecker) structure in the quadratic ~urnulant.~ Again 
neglecting the self-interaction of light particle, we find an 
equation of the same form as (7) ,  but we should add ( ( F  
F )  )* also the nonperturbative part ( (FF) ) ,,,,,,, , which 
can be written as6 

x Dl(u-u'). (15) 

It has been shown6*' that only D (and not Dl) yields 
confinement (the area law of the Wilson loop). We con- 
centrate first on this term, disregarding also the spin term 
u:t) in (7). We have 

Jdsp(u) J~S~(U')((F,,(~)F~A(~'))) 

- I ds,,(u)ds,,(u') ~ ( u - u t )  +... . (16) 

Using the same arguments as in Ref. 6, one can see that we 
get the area-law exponential function in Ref. (7). Namely, 
for large area we have 

where S- is the minimal area inside the contour formed 
by the straight-line trajectory of the heavy particle and the 
path z(r )  of the light one. 

We are now facing some fundamental questions: i) 
Can the term (17) be associated with a local potential V, 

3 JETP 78 (I), January 1994 Mur et a/. 3 



FIG. 2. Trajectory corresponding to virtual pair creation. 
a-Scalar case; b-vector case. 

acting on particle l? ii) What are the Lorentz properties of 
this potential--does it transform as a scalar or as a vector? 

To answer question i) we follow the arguments given 
in Ref. 2. We must therefore return to the exponential 
function in (3), defining the dynamics of the system. The 
integral in the exponential function in (3) is over the sur- 
face inside the quark and antiquark trajectories; the char- 
acteristic length of these trajectories is T,, a period of 
quark orbiting. 

Being at some point Z ( T ~ )  on the trajectory, a quark is 
influenced by the fields and through them by its partner. 
The radius of nonlocality of the fields is given by the cor- 
relation length Tg, defining behavior of (F (u )F(ur  ) ), i.e., 
by the functions D[(u-ur)/Tg], D1[(u -ul)/Tg]. 

Therefore the criterion of local dynamics is T,) T , . ~ , ' ~  
In the opposite case, T,<Tg, the quark "feels" all the 

fields and also the motion of the antiquark during all its 
history. This is the nonlocal dynamics, which can be 
treated by the QCD sum rules.15 Lattice calculations yield 
Tg-0.24.3 fm,16 while Tq for both the light and heavy 
quarks is T,> 1 fm. Therefore the actual situation is close 
to the local dynamics. 

Regarding the first point, we proceed as in Refs. 8, 17, 
forming the minimal surface via the connection of y=?/F 
=~ / s= t /T ,  where t=Z4-J,. 

In this case, combining all exponential functions in 
(13) and (17), we obtain 

where we have defined, as in Refs. 8, 18, 

a 
w,(t) =z,(t)P+z,(t) (1 -P), w =- w , at @ ?  

r,(t) =z,(t) -G(t),  2p1 = T/s. (19) 

Taking ( 5 )  into account, we have 

w;(t) =zi(t>B+Rj(l -P), Ri=const, 

w4(t) =z4(t)P+ (J4+t) (1 -PI, 

w;(t) =ii(t)P=ii(t)P, w4=i4(t)P+ 1 -fl. (20) 
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Following the same procedure as in Refs. 8, 18, we 
obtain from B (considered as an action) the proper-time 
Hamiltonian, which depends on the dynamical mass p1 : 

The eigenvalue of H(pl) is to be minimized with re- 
spect to p l ;  the final value of p1 is determined in this 
manner. 

Thus we see that the nonperturbative correlator 
((FF)),,on,, does indeed yield a potential-type term in the 
proper-time Hamiltonian, provided Tg is small2 and the 
expansion of the square-root term in fl is done as in Ref. 18 
(the corresponding error is - 10% ). 

It is more difficult to answer the other question-about 
the Lorentz nature of this potential-since Eq. (21) is 
written in the c.m. system, and we do not know how this 
expression transforms under Lorentz boosts. To get a par- 
tial understanding of this point, let us compare how the 
vector and scalar potentials enter the Feynman-Schwinger 
representation for the Green's function of a scalar quark 
[i.e., neglecting a spin term -a(') in (13)l. 

For the scalar case we can write 

while for the vector case we have 

The main difference lies in the fact that trajectories of 
the Z-type depicted in Fig. 2 (virtual pair creation) give 
different contributions in the scalar and vector case. For 
the scalar case the proper time intervals  AT^, AT2, and  AT^ 
are positive and add together, thereby suppressing the pair 
creation, while in the vector case h i 1 ) ,  A.zl2), and hi3) 
strongly cancel each other, making pair creation easy. In 
other words, for the scalar potential all parts of a trajectory 
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add arithmetically, while for the vector potential should 
take a vector sum of all intervals along the trajectory. 

Looking at our prototype of the potential, the last term 
in (18), one can see that in this case one actually adds a 
scalar quantity bdt $ (we recall that dt is not the fourth 
component of a vector, but rather the proper time dr, 
which is scalar). Thus we seem to be justified in treating 
the confining force as a scalar and not a vector. 

There are additional arguments in favor of this conclu- 
sion. 

First of all, in the nonrelativistic derivation of spin- 
dependent forces in nonperturbative QCD,~ the sign and 
magnitude of the spin-orbit term depend on whether the 
confining potential is chosen as a scalar or a ~ e c t o r . ~  In 
Appendix B we reproduce the spin-dependent terms ob- 
tained in Ref. 2, for the case of two nonrelativistic quarks. 
One can notice that the asymptotically dominant contribu- 
tion comes from Vi , which contains only a scalar contri- 
bution and yields the negative coefficient of the spin-orbit 
term LS, characteristic of Thomas precession. 

Results obtained in Ref. 2 through the use of the clus- 
ter expansion and the area law unambigiously predict the 
spin-orbit force corresponding to the Thomas precession 
term, which was also introduce a previously using the 
string picture.19 All that corresponds to scalar confine- 
ment. 

Second, there are independent arguments in Ref. 3 
which lead to inequalities which are satisfied for the scalar 
confining potential, and not satisfied for the vector case. 
Finally, the vector confining potential is believed to cause 
the Klein paradox.'0," In Secs. 4 and 6 we study both 
scalar and vector confining potentials and show analyti- 
cally and numerically that, indeed, only in the first case 
does one obtain a physically consistent spectrum, corre- 
sponding to confinement while in the second case one has 
only quasistationary states. This situation is related to the 
Klein paradox.'O*l' Thus we give strong arguments in favor 
of the scalar confining potential. Unfortunately at the mo- 
ment we are still unable to derive from the Feynman- 
Schwinger representation the Dirac equation with the sca- 
lar potential, in the way we have done for a perturbative 
Coulomb interaction. 

Therefore in the next sections we simply postulate the 
Dirac equation with a confining potential of the scalar type 
(or vector type-to check its inconsistency). 

4. PROPERTIES OF THE SPECTRUM OF THE DlRAC 
EQUATION 

As we showed in the previous sections, the color Cou- 
lomb interaction between quarks is of a vector nature. We 
have argued that the confining interaction is a scalar. It is 
instructive, nevertheless, to consider both possibilities for 
the interactions, scalar U and vector V, and to study the 
properties of solutions of the Dirac equation in these cases. 

Assuming spherical symmetry, we look for solutions of 
the Dirac equation in the form 

where I+ 1' = 2 j, and the a ' s  are spherical spin or^.^^ 
Equations for radial wave functions are 

where E and m are the energy and mass of the light particle 
(m=ml in the notation of Sec. 2), and 

- ( l+ l ) ,  if j=1+1/2, 
I= [ I, if j=l- 112, (26) 

so that I K I = j + 1/2= 1,2, ... . We consider three choices. 
a)  Assume 

g 4 
~ ( r )  = ~ ~ r ,  V(r) = -- , M ~ = D ;  c=- a,. (27) 

r 3 

Putting m =O and introducing the dimensionless vari- 
ables x zz Mr and E = E/M, we arrive at 

(hereafter the prime denotes the derivative with respect to 
XI .  

Let us find the asymptotics of the radial functions at 
zero and infinity. For x- 0, inserting the expansions 

into (28), we obtain 

The wave function is regular at zero for 5 < I K I  = j 
+ 1/2 while for { > j + 1/2 there occurs a "collapse to the 
center" (well known in quantum mechanics) .21,22 The dif- 
ficulty is actually of a formal character and can be removed 
by introducing a cutoff of the Coulomb potential at small 
distances, r <  ro-in the same way as in QED with the 
charge Z >  a-'= 137 (see Refs. 9-11, 23, 24). 

The behavior of the wave functions at infinity is more 
complicated. From (28) it follows that G,F-exp(*x2/2) 
as x-. co, and the solution with a positive exponent is 
clearly not admissible. 

We accordingly write G,F as 

Inserting these expansions into (28) we find, after 
some elementary but cumbersome calculations, 
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FIG. 3. Nonrelativistic potential Vm(r) (a) and effec- 
tive potential U,,(r) (b) for various Lorentz structures 
of the interaction. Curves 1-3 correspond to the three 
choices in Sec. 4. 

The following coefficients, c2,c;, ..., can be calculated by 
means of recurrence relations1). 

Thus the wave functions fall off at infinity mostly in 
the same way as in the case of the harmonic oscillator in 
nonrelativistic quantum mechanics. The solution satisfying 
the conditions obtained above, (29) and (30), exists only 
for certain values of E=E,(~,K) ,  and the wave function is 
normalizable. Therefore, for the Dirac equation only a dis- 
crete spectrum exists. 

This conclusion holds for any scalar potential which 
grows at infinity, 

Even for the logarithmic potential the wave functions 
decrease asymptotically faster than exponentially: 

G,F(,, ,, -exp( -gr ln r) for U(r) =g ln r. 

b) When both interactions are of a vector type, i.e., 

the system of radial equations is 

In this case, at x-0 we have 

while the parameters in Eq. (30) assume the values 

A1=iB', a= -i/2, b = i ~ ,  B= -ic. 

determines the probability of spontaneous pair creation in 
potential (33). This phenomenon is closely connected with 
the Klein paradox.'0111 Physically it means that the prob- 
lem is now of the many-particle type, but actually the 
Dirac equation is still applicable. 

c) For completeness, consider also the case of purely 
scalar interactions, 

In this case we have at r-0, instead of (29), 

Thus the "collapse to the center" does not occur for 
arbitrary large values of the Coulomb parameter 6. At in- 
finity we obtain a behavior which is analogous to (30): 

therefore the spectrum is discrete. 
Hence the character of the energy spectrum depends 

crucially on the assumption about the nature of the con- 
fining interaction M2r (scalar or vector). 

The reason can be understood qualitatively by using 
the method of an effective 

System (25) corresponds in the quasiclassical approx- 
imation (neglecting spin-orbit and spin-spin forces) to the 
following relation between energy and momentum 

~ ' ( r )  = [E- V(r)12- [m+ U(r)12+2r-' 
- 

~ 2 m ( E -  Ueff), (37) 

where E and Ueff are the effective energy and potential in 
the nonrelativistic Schrodinger equation: 

Here we chose a solution satisfying the Sommerfeld 
radiation condition, i.e., having an outgoing wave at r- m . In the nonrelativistic limit ( E z m  and U, I VI (m) we 

Thus for interaction (33) the discrete spectrum is absent have 

(see also curve 2 in Fig. 3 ), and all solutions of the Dirac Ueffz U+ V +  (I+ 1/2)'/2m?. 
equation, if any, are quasistationary. In the special case of 
a square well one can obtain an exact analytic equation for Therefore, all three cases, a)+) correspond to the tunnel 
the spectrum.25 The width of these quasistationary states potential 
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U,(r) = --c/r+ur, 

which is often used in QCD. 
However, for large U and V, the situation is drastically 

different for our cases a)+). This can be understood from 
Fig. 3, where the qualitative behavior of Uef(r) is shown. 
Using the effective-potential method, one can also perform 
a quantitative study of the problem (for details see Appen- 
dix A). Applying the WKB method and taking into ac- 
count Eq. (37), one can easily determine the asymptotics 
of the wave functions at infinity. 

For example, in case a)  we get 

If U(x) =gxa,a > 0, and V(x) = - c/x, then at x + oo 
we find 

exp{- [gx2/2+mx- (2g)-1~2 ln XI}, a= 1, - [  e x p { - [ g ( a + l ) - ' x a + ' + m x ] } ,  a > l .  

(40) 

The first formula (with g= 1 and m=O) explains the 
structure of asymptotic expansion (30). 

5. SYMMETRY PROPERTIES OF THE SPECTRUM OF THE 
DIRAC EQUATION 

Here we discuss symmetries of solutions of the Dirac 
equation for particles of zero mass. 

It is clear that when both m and U are zero the Dirac 
equation (and the corresponding term in the Lagrangian) 
is chirally symmetric, i.e., does not change under a global 
transformation: 

From the point of view of the spectrum the chiral sym- 
etry means that all states are parity degenerate; i.e., the 
masses of the states 0+ and 0- (or 1+ and I - )  are the 
same. 

It is easy to demonstrate that system (25) with m=O 
is invariant under even more general transformations when 
U#O: 

E+E, K+ -K, U+ - U, V+ V, 

It follows from (42) that for U=O the spectrum is 
degenerate with respect to the sign of the Dirac quantum 
number K; i.e., it depends on only the total momentum j, 
not on the way I and s are coupled (chiral degeneracy). 

Another symmetry of the Dirac equation is 

E+ -E, K +  -K, U+ U, 

FIG. 4. Energy spectrum for the Dirac equation with potential (27). The 
solid curves correspond to the n= 1 states, the dashed ones to n=2. The 
curves are labeled with the values of K. 

which in contrast to (42) connects states with positive and 
negative energy. In particular, for VrO (scalar interac- 
tion) there is a doubling of states with a given 

I En I ,En= & I En I, and we can always consider En > 0. In 
the specific case E=O (zero modes) there is, at first sight, 
a chiral degeneracy of states. However, it is easy to show 
that the degenerate states with E=O do not exist at all. 
Multiplying the first equation in (25) by G, multiplying 
the second by F,  and integrating the difference from r=O 
to r= oo, we obtain an identity: 

~ o w ( ~ 2 + ~ 2 ) T = ~ ~ - 1  dr I," (E-V)GFdr (44) 

(we have used in the derivation the circumstanse that G 
and F vanish at both r=O and r=  oo ). From Eq. (44) one 
can see that for the purely scalar interaction there are no 
solutions with zero energy. 

Note that the symmetry transformation, Eq. (42), can 
be also presented in an operator form. For a zero-mass 
particle the Hamiltonian H and the Dirac operator K are 

(the quantum number K is the eigenvalue of the operator 
K). It can be easily seen that in this case we have 

which are the same as Eqs. (42). 

6. RESULTS OF NUMERICAL CALCULATIONS 

Here we report results of our numerical calculations. 
In Fig. 4 is shown the dependence of the eigenvalues 
&,,=En,JM on the ratio {/I K J  for potential (27) (the 
solid lines correspond to the lowest states for a given value 
of K, n = 1; the dashed lines are for the first excited states, 
n = 2). The energy eigenvalues decrease monotonically 
with growing Coulomb parameter {, and for c+ I K I they 
have a square-root singularity. The latter is characteristic 
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FIG. 5. The eigenvalues E,, (c ) ,  n= 1, of the Dirac equation with poten- 
tial (27) in the vicinity of c= -K. The solid curves correspond to the 
K= - 1 states, the dotted ones to K =  -2. The curves are labeled with the 
values of p = m/M. 

of potentials with a Coulombic behavior at r-0 and is 
connected to the phenomenon of the collapse to the 
center. lo"' 

In Fig. 4 one can see that the levels with K > 0 lie much 
higher than those with K <O (for a given n). The physical 
meaning of this effect becomes clear when one recalls that 
the centrifugal barrier is proportional to K(K+ 1) and is 
absent for K =  - 1 (for example), in contrast to the case of 
K=+1. 

Note that the energies of the lowest ( n  = 1 ) states with 
K < 0 reach the value e=O at the maximal possible value of 
the Coulomb coupling constant [ = -K (Fig. 5). All the 
other states also have square-root singularities at f =  I K I, 
but their energies are positive (Fig. 6). The numerical val- 
ues of e,,([) in the two extreme cases [=0 and [= I K I  are 
given in Table I, where the dependence of E,, on the quark 

FIG. 6. The same as in the preceding figure, for excited states (K= - 1, 
n=2 and ~ = l ,  n=2) .  

mass is also illustrated. Figure 7 shows the energies of 
several lowest levels within the interval 0.3 < f < 0.8, which 
is of practical interest for the u6 system2). 

We note that the singularity at f =  I K I can be removed 
when one introduces a cutoff of the Coulomb potential 
V(r) = - f/r at small distances3): 

where ro is the cutoff radius, and f (0) < W .  

In the case r 0 < ~ - '  the influence of the cutoff on the 
energy levels is important only in the immediate vicinity of 
the point [= I K I .  Here the level sinks to the boundary E=O 
(it corresponds to a boundary e= -m for m#O) at some 
value [=f,,> I KI, which depends both on ro and on the 
concrete form of the cutoff function f (r/ro) in Eq. (47). 

With a further increase of f the level goes on down to 
the region of negative values of energy, but the spectrum 
stays discrete (this is in contrast to the Coulombic problem 
with a vector Thus pair creation does not 
take place. 

7. EXACT SOLUTION FOR E=O 

In QED the solutions of the Dirac equation simplify 
considerably for E= *m, which corresponds in our case 
(m=O) to E=O. Equations (28) in terms of linear com- 
binations u = G+ F,  U= G- F assume the form (E=O) 

At f =  -K the first equation can be solved explicitly: 

which yields C=O and hence G= -F=v/2. The normal- 
ized wave functions are4) 

Using the perturbation theory in the parameter 
(~ ' -$ ) l /~ ( l ,  one can determine the behavior of the en- 
ergy near [= -K: 

(for details see Appendix A). Computations confirm this 
asymptotic expansion; see Fig. 5. 

Note that the solution of the type in (49) exists only 
for the states with K < 0. In the case [=K, Eqs. (48) have 
a nonzero solution 

which is not admissible because of the exponential growth 
at infinity. 

These results can be generalized to arbitrary values of 
f and K. Solving (48) for one of functions u,v, we come to 
the equation 
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TABLE I. The eigenvalues E,, of the Dirac equation with 5=0 and c= I K I .  

where the upper (lower) sign corresponds to the function 
u(v). We consider the case 5 > 1 K 1 ,  when the cutoff of the 
Coulomb part is essential. A solution of these equations for 
r >  ro, decreasing at infinity, can be expressed in terms of 
Whittaker functions, 

U=C,X-' w - ~ / ~ , ~ ( x ~ ) ,  v=C~X-'  ~ 1 , 2 , ~ ( ~ ~ ) ,  (52) 

where g= (g2-d) 'I2 > 0, and C1 ,C2 are constants. 
Insertion of (52) into the first of Eqs. (48) yields the 

connection between C1 ,C2: 

FIG. 7. The energies of the lowest levels, E,,, versus the Coulomb pa- 
rameter [ (for a quark mass m =O). 

In the internal region, 0 < r < ro, the Dirac equation 
should be solved with cutoff potential (47), where one can 
neglect the linear potential because of the relation 
ro( l/M. For the simplest case, f ( x )  = 1 (a square-well 
cutoff), the solution can be found analytically and can be 
expressed in terms of Bessel functions with half-integer 
index. 

The energy spectrum is found from the joining of the 
internal and external solutions at r=ro. In the case of the 
Dirac equation one can join the ratio F/G instead of the 
logarithmic derivative. 

As a result we have 

where c= u (xo)/v(xo) is determined from the interval so- 
lution and depends on K,S and the cutoff model. For the 
states with K =  T 1 in the square-well cutoff case, we have 

Equation (54) can be solved numerically; it determines the 
dependence of the Coulomb constant c,,, which corre- 
sponds to the descent of the n-th level to the boundary 
E=O, on the cutoff radius ro [for a certain choice of the 
cutoff function f (r/ro)]. 
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TABLE 11. Values of the parameter p in Eq. (58). 

c = o  i = 14 
n K p - 0  p = 0.3 p = O  p = 0.3 

Finally, we note that a solution (49) can be general- presented in Fig. 8. Finally, let us note that square-root 
ized to the case of nonzero quark mass and an arbitrary singularities of the type of (57) are directly connected with 
scalar potential U(r). There is an exact solution of the the behavior of the Coulomb potential at r-0 and disap- 
Dirac equation with c= -K and E=O, pear when it is regularized at small distances. 

Go(r) = -Fo(r) = N  exp [ - JOr m(rl)drl ] , (56) 8. DISCUSSION AND CONCLUSION 

where m (r)  = m + U( r)  is a variable quark mass and N is In conclusion we discuss the structure of the resulting 
the normalization constant, [see Eq. (A8)I. Since this wave spectrum, briefly compare it to experiment, and summarize 
function has no nodes, this solution corresponds to the our results5). 
lowest (n = 1 ) level with the fixed K. The energy of the We start with the nonrelativistic spectrum and use the 
state, as well as other physical quantities, has a square-root formulas given in Appendix B, which yield the spectrum 
singularity at c-, -K, characteristic of the relativistic Cou- shown in Fig. 9a. Here the splitting between the S= 1 and 
lomb problem: S = 0 ( L = 0) levels is due to the hyperfine interaction and, 

~ ( f )  =C~S+O(B~),  p= 1 -@+... , (57) 

where B= ( 1 -c2/d) 'I2, and p is the relative weight of the 
lower component of the Dirac bispinor, A 

C : 
1-2- 

p= ~ ~ ( r ) d r  / Iow b ( r ) d r .  (58) 

It can be shown that 

C, = N ~ ,  c2 = 4 ~ ~ ( r )  (59) 

(see Appendix A), where (r) is the mean radius of the 
bound state (56). The effective-potential method given in 
Appendix A is most useful in deriving these formulas, as 
well as for a quantitative analysis of the wave functions 
near c= f K. 

As is seen from Eq. (57), at f z I K I the parameter p is 
0.5 y 

0.0 0.2 0.4 0.6 0.8 1.0 close to one (see also Table 11). This means that the mo- 
P 

tion of a light quark is definitely relativistic. The coeffi- 
cients cl and C2 for a particular Case of m (r )  =m +or are FIG. 8. Dependence of c, and c2 [Eq. (59)] on the quark mass. 
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Fll2, ~ ~ - 2 -  35 MeV 

D; 2 T(2Wl 

J=2 

417 MeV 
i 

s- l 1- I= I 145 MeV 

S=O o- j= IR. K=-I I=0 
D --l0-(1865) 

FIG. 9. Energy spectrum for the heavy quark-light antiquark system 
(qualitative). a-ml , m 2 , ~ = 0 1 " ;  b-ml +0,m2 -+ m ; ~ x p e r i m e n t .  
The energy scale in part a  is much larger then in parts b and c. 

as is seen in Appendix B, is proportional to (mlm2)-'. 
When both masses are large (mi )~=a l " ) ,  all splittings 
are small, including the spin-spin [0((mlm2)-')I and 
spin-orbit splittings, which contains terms 0(mi2) ,  
0(m2*) and 0[(mlm2)-'1, which one can denote as 
(-11, (LSI2 and (LSIl2.--see Appendix B. 

In the case m2)m, - M (Fig. 9b), the intervals of 
( LS) become the largest, and the spectrum transforms in 
such a way that the coupling of the spin of particle 2 
becomes very weak. In the limit m2+ oc it finally decou- 
ples, leading to the Isgur-Wise symmetry.5 Namely, the 
states can be classified by the total momentum of the light 
particle j, while the states of total momentum of the sys- 
tem J= j+S2 are degenerate with respect to the direction 
of s,. 

This is what one observes in the Dirac spectrum (see 
Fig. 4 of our numerical calculations and Fig. 9b, which 
give a schematic description of the Dirac spectrum). Here 
the degeneracy (Isgur-Wise symmetry) is complete. 

This should be compared to the experimental picture 
in Fig. 9c, where for the charmed mesons the order of the 
levels is the same as in Fig. 9b, but the splittings are still 
large. For B-mesons the splitting of lowest levels is smaller 
by a factor of 3 (52 MeV), as it should be, since the mass 
of the c quark is z 3 times smaller than that of b quark. We 
also note that the experimental splitting AE-450 MeV 
between j = 1/2 and j=3/2 states is reproducible in our 
reslllts when one takes $0-0.5 GeV and 5-0.6+0.8. 

Thus we can conclude that the Dirac equation yields a 
reasonable qualitative description of the actual spectrum. 
We hope to discuss this point in more detail in future 
publications, where we will also give predictions for the 
D,, B-, and Bxmesons. 

Summarizing our results, we have derived the Dirac 
equation from the Feynman-Schwinger representation of 
the quark-antiquark Green's function in case of the color 
Coulomb interaction. 

Assuming that the confining interaction can be intro- 
duced into the Dirac equation in the sameway as to the 
Coulomb interaction, we have clarified the Lorentz struc- 
ture of the confining interaction connecting a light quark to 

a heavy antiquark. 
The analysis of the solutions of the Dirac equation 

shows that a potential growing at infinity yields confine- 
ment only if it is a scalar, not the time component of a 
4vector. In this aspect there is an essential difference from 
the nonrelativistic case. 

We have also studied the dependence of the charge g in 
the critical region, 5.- I K I, and found its dependence on 
the cutoff of the Coulomb potential. We have computed 
energy eigenvalues for several lowest levels and have com- 
pared them with the nonrelativistic spectrum and experi- 
mental results. 

After this paper had been finished and submitted for 
publication, we learned of several papen2p-30 in which 
analogous problems are discussed6). 

In the paper by 0 n 0 , ~ ~  a relativistic generalization of 
the Richardson potential was considered. The Coulomb 
part of the potential was considered as a &vector compo- 
nent, and its confining part as a relativistic scalar. The 
paper by Dremin and ~ e o n i d o v ~ ~  discusses the properties 
of solutions of the Dirac equation with scalar and vector 
coupling. Using the squared Dirac equation, the authors 
arrived at the conclusion that it is only in the case or a 
scalar potential growing at infinity that bound states can 
exist in the system. That conclusion is in full agreement 
with the results of our Sec. 4, where we study in greater 
detail the asymptotics of the Dirac wave functions at in- 
finity and give a physical explanation of the above results 
using the effective potential method. 

APPENDIX A 

Method of effective potential 

The system of Eqs. (25) can be reduced to an equiv- 
alent Schriidinger equation with a potential depending on 
energy and having, in general, a rather complicated form7). 
There is a considerable simplification if g = I K I = 1,2,. . . . 
This case we shall discuss fh-ther. 

First let c= -K. Proceeding in Eqs. (27) to the linear 
combinations u = G+F, v = G+ F, we obtain equations 
from which the function v is easily excluded. Then we get 

i.e., the Schrginger equation with the effective energy E 
and potential U 

Note that the boundary condition at zero for u ( x )  follows 
from the fact that we have A/B= - 1 in Eq. (29), and the 
normalization condition in (A1 ) corresponds to the usual 
condition 
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for the discrete spectrum. - 
In particular, for E=O we have E= - 1/2, which can- 

not be an eigenvalue for the harmonic oscillator. There- 
fore, we have u (x)  -0 and v' + (x + p )  v=O, from which 
the exact solution (49) follows. 

For the case f = K  the function v, but not-u, satisfies an 
equation of the like (A1 ), and we have E= ( E ~  + 1 )/2. 
Here we have E=1/2 with E=O; therefore we have 
u(x) 10 (with the boundary condition at zero taken into 
account), while all nonzero solutions u (x)  increase expo- 
nentially at infinity. Thus, the Dirac equation has no phys- 
ically acceptable solutions with zero energy if f = K  > 0. 

The following results are obtained from (A2). Let 
En = En (a,p)  be the energy spectrum of the Schrodinger 
equation with the potential 

with 0 < r < co and I=0 [in particular, 
En(O,O) =2(n - 1/4), n = 1,2,3, ...I. Then the eigenvalues 
E:+ )  of the problem considered may be obtained from the 
transcendental equation: 

(the * sign coincides with the sign of the quantum num- 
ber K). Due to the relations 

sometimes called the Hellmann-Feynman theorem, the en- 
ergies En(a,p)  decrease monotonously as the Coulomb pa- 
rameter a goes up and increase with the growing p. Taking 
this into account, we get 

(with fixed I K ( ). The results of the numerical solution are 
given in Table I. 

The results are easily generalized to the case of an 
arbitrary scalar potential U(r). Instead of ( A l )  we get 

where ~ ( 0 )  =0, and the normalization condition does not 
depend explicitly on the form of U(r): 

[)l= ~ ( r )  for the states with [= -K and x=v(r)  for those 
with f =K]. 

At [= -K there is an exact solution of the Dirac equa- 
tion which corresponds to zero energy [and does not de- 
pend explicitly on K; see Eqs. (54)]; here xo(r) - 0, 

The behavior of the energy of the state at f - ~  -K can 
be also determined. Assuming 

E = C ~ ~ + O ( ~ ~ ) ,  p = ( 1 - f 2 / ~ 2 ) 1 / 2 + ~ ,  

and substituting these expansions into (25), we obtain 

The solution of the first equation which decreases at 
infinity has the form 

while the function vl(r) is calculated by a quadrature; at 
r=O we have ul (0) =cl/N, vo(0) =2N. Let 

{(r) ru/v=pul/vo+0(p2>; 

then it follows from Eq. (28) that 

A+B ( l + p ) 1 2 - ( l - p ) 1 2  1 
{(O) =-= --P+O(P2> 

A-B (l+p)1/2+(l-p)1/2-2 

whence ul/voI ,=o= 1/2, and finally we get Eq. (59) for c,. 
Thus for the states whose energy vanishes at [= -K, 

the coefficient of the square-root singularity in E({) can be 
found explicitly for an arbitrary scalar potential U(r). 
Other physical quantities, such as p, have the same singu- 
larities at f = -K. 

Using Eqs. (25) and (A6), we find for the parameter 
p introduced in (58) that 

1 -s 
p=- 

l + s '  
s=2 Jom uudr / Jom (u2+v2)dr 

[here {= 1 K I  , and in the latter formula ~ ( r )  is normalized 
according to Eq. (A7)]. Hence, expansion (57) for p fol- 
lows, where 

Substituting in the above expressions for ul ,vo, and chang- 
ing the order of integration, we obtain 
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which coincides with Eq. (59). 
Let us consider a few simple dependences m (r). 
1 ) A constant mass m (r)  = m corresponds to QED. At c= - K, we have 

G ~ =  - ~ ~ = m l / ~ e - ~ ~ ,  cl=m, c2=2, (A141 

which corresponds to the Sommerfeld formula for the rel- 
ativistic Coulomb problem, which has the following form 
for the K =  -n states ( j = l +  1/2=n- 1/2): 

The levels with radial quantum numbers nr>O also 
have the Coulomb singularity at c+ / K I, but the corre- 
sponding energies are positive. For example, for the nslI2 
states (k=  - 1, nr=n- 1): 

2 1 /2 ~ h e r e f l = ( l - c ~ ) ~ / ~ ,  f = Z a + l ,  and N=(n  -2n+2) . 
At n)l we find pn= 1/4n2+0, and the bound states 

become nonrelativistic. 
2) At m(r) =m +or, we find 

N= (o / r )  'I4 [exp(p2) * erf ~ ( p )  ] - 'I2, ~ C L = ~ / U ' / ~ ,  

C~=N', c2=4u-'c1(c1-m) (A181 

(note that the dimensionless coefficient c2 depends only on 
p).  In the extreme case at p(1 we obtain 

2~ 
c l = ( ) 1 2 ( l + + . . . ) ,  

(A191 
while at p) 1 we obtain 

Numerical results for cl ,c2 are given in Fig. 9. 

APPENDIX B 

The nonrelativistic spectrum of two particles with all 
spin interactions taken into account can be obtained in the 
perturbative way ( l/m expansion) : 

The contributions of the scalar interaction U(r) =or 
and the vector interaction V(r) = - 4aJ3r to the spin 
splittings are 

I d &  a 4 a ,  1 ---- o 1 4 a s  - v;= -- - V'-- . - +-7, r d r  r 3 r '  r 2-3? '  

The main difference appears in V;, where only the 
scalar interaction enters. Note that the overall signs of the 
spin-orbit terms due to the scalar (or) and vector 
( -4ad3r) potentials are different. 

 hanks are due to D. Popov for the derivation of the relations and for 
verification of Eqs. (29)-(31). 

"AS can be seen from Figs. 5 and 6, the dependence of the energy E,, on 
the light-quark mass is practically linear. This is in agreement with Ref. 
27, where the energy spectrum of Eq. (25) was calculated at C=0.6 
with hypefine splitting taken into account, which is necessary for a 
detailed comparison with the experimental spectrum (the procedure 
was similar to the calculation of the hyperfine structure for relativistic 
Coulomb problem). The value of hyperfine splitting obtained in Ref. 27 
differs from experimental data for charmonium and bottomonium by 
over 30%. 

3 ) ~ n  the case of the lowest levels with K < 0, for which E(K) -0 in the limit 
6- I K I  (see Fig. 4), this singularity can be derived analytically-see Eq. 
( 50) below. 

4 ) ~ h i s  result can be easily generalized to the case m#O and arbitrary 
scalar potential U(r). 

 he main results of this paper were presented in Ref. 8. 
 h he authors are indebted to A. E. Kudryavtsev who pointed out to us 

the above mentioned papers. 
7 ) ~ e e  Refs. [10,24,26] on physical phenomena near the boundary of the 

lower continuum E= - m z  in QED," where the above method was 
successfully applied. 
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