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In this paper we discuss the problem of stability of quasicrystals, using the icosahedral 
crystal A16CuLi3 as an example. We describe a method developed for calculating the structure 
and electronic properties of sp-quasicrystals on the basis of real decorated models. The 
general expression we obtain for the effective structure factor is convenient for practical 
applications and allows us to include certain (point) imperfections within the decorated 
Amman-Mackey model for both deterministic and randomized decorations. We have 
calculated the electronic properties of A16CuLi3, based on the most likely structural 
model, within the weak-binding approximation, and found that the Fermi energy is located in 
the neighborhood of a local minimum of the electronic density of states. 

Among the most intensely studied problems in the 
physics of quasicrystals is the stability of series of quasic- 
rystalline phases. Many investigators are inclined to as- 
sume that quasicrystals are stable because the Fermi en- 
ergy is located in a pseudogap (i.e., a local minimum in the 
electronic density of states'-3). Up to now, confirmation of 
this assertion has been sketchy, coming either from a hy- 
pothetical model of icosahedral aluminum2 or from models 
that make use of crystalline analogs of such  crystal^.^ In 
this paper we attempt to increase this information and to 
place conclusions regarding the stability mechanism of a 
quasicrystal and the large anomalies in its electronic prop- 
erties on a more general footing. To this end we have de- 
veloped a method for determining the structure of a qua- 
sicrystal with defects and calculating its electronic 
properties within the weak-binding approximation. We 
chose the stable icosahedral quasicrystal A16CuLi3 as the 
object of our investigations. 

This paper is constructed in the following way: in the 
first section various structural models of A16CuLi3 are dis- 
cussed; in the second the results of our calculations of the 
electronic properties of this quasicrystal are presented for 
the most probable structural model; and in the third part 
we present our conclusions. 

1. DETERMINING THE STRUCTURE OF THE STABLE 
ICOSAHEDRAL QUASICRYSTAL A16CuL13 

One approach to describing quasicrystalline structures 
is to use three-dimensional Penrose packing (otherwise re- 
ferred to as the Amman-Mackey network) to determine 
exactly the atomic positions in three-dimensional 
The elements of this packing are two types of 
rhombohedra-sharp and blunt. If we fill these rhombohe- 
dra with atoms, we obtain a decorated Penrose packing for 
which every position need not be occupied by an atom. The 
scale of the packing is characterized by the length of a 
rhombohedron a ~ ,  which for this phase of A16CuLi3 is 
approximately equal to 5.039 A (Ref. 6). We can obtain 
the structure by using the projection method.' For a three- 
dimensional icosahedral quasicrystal we project from a six- 

dimensional space to the three-dimensional "physical" sub- 
space. The projection bands that correspond to various 
decorated positions of the decorated Penrose packing 
"taper down" as the number of dimensions of the struc- 
tural building blocks increases. It can be shown that the 
polyhedra described by projection bands for positions at 
vertices, edges, two-dimensional and three-dimensional 
facets of a six-dimensional hyperlattice are triakontahedra, 
rhombic icosahedra, rhombic dodecahedra, and rhombo- 
hedra (sharp or blunt), respectively.8 

The expression for the structure factor in the case of 
decorated Penrose packing with randomly distributed 
structural vacancies is written as follows 

where 

k is the type of "sublattice" of the decorated Amman- 
Mackey network (i.e., vertices, edges, faces, or posi- 
tions within the rhombohedra); 
yk is a renormalization coefficient for the contribution 
to the structure factor from each "sublattice" of the 
decorated Amman-Mackey network, arising from the 
presence of randomly distributed vacancies (yk= 1 if 
there is no vacancy in the k-th sublattice, and yk < 1 if 
there is); 
pk is the density of atoms in the kth "sublattice"; 

qll is a reciprocal lattice vector for the quasicrystal 
that corresponds to the "physical" parallel subspace; 
rll is a vector in the direct lattice of the quasicrystal in 
the "physical" parallel subspace. 

Noting that a point of type k in the six-dimensional space 
is present in the "physical" three-dimensional subspace 
only when the perpendicular component of its coordinate 
vector lies in the projection band described by a function of 
the form nk(rl - rkl ), we can write 
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where pk(r) is the density of atoms in the kth sublattice of 
the six-dimensional space; rkl is the perpendicular compo- 
nent of the basis radius vector for a position of type k in the 
six-dimensional hyperlattice. 

Taking into account the orthogonality of the parallel 
and perpendicular subspaces along with (2), we are led to 
the following expression for S*(qll ) (the asterisk denotes 
complex conjugation) 

Equation (3) expresses the relation between the six- 
dimensional density of positions of type k and S*(qll ). 

In order to introduce positional disorder caused by 
random displacements of atoms from their point positions 
in the six-dimensional hyperlattice into the structure, we 
will use the following representation of the modulated den- 
sity: 

where t is a translation of the six-dimensional hyperlattice; 
Uk( t+ rk) is the displacement for a position of type k in 
the six-dimensional space. 

By using this representation of the modulated density, we 
bring out the fact that the projection band remains un- 
changed compared to the ideal case while the six- 
dimensional density is modulated. Then we can write 

The parallel component of the displacement vector 
Uk (t  + rk) corresponds to the usual phonon displace- 

I1 
ment in the "physical" subspace, while the perpendicular 
component Ukl ( t  + rk) is the phason displacement. The 
phonon displacement is small at room temperature, so that 
the scalar product qll Uk ( t  + rk) is small. Our estimates 

I1 
show that the primary contribution to the structure factor 
comes from vectors of the reciprocal lattice that have small 
components Ql (Ref. 9). Of course, the value of 
Q Ukl ( t  + rk) could be small as well. 

After expanding the exponential (5) in a series and 
averaging over the phason and phonon displacements, we 
find 

where a is the length of an edge of the six-dimensional 
hypercube; q is a vector of the six-dimensional reciprocal 
lattice; Q is a reciprocal lattice vector from the six- 
dimensional reciprocal lattice. Taking into account (6) 
and (7) we obtain 

where 

xexp -,Q: G) n t ( ~ 1 ) ;  ( 
here U: and ui1 ,Ql are the mean-square projections 

11. ' II 
of the displacements for atoms located in a sublattice of 
type k at QII and Qi respectively. It is clear that including 
the random displacements of atoms in the six-dimensional 
hyperlattice leads to the appearance of an additional pha- 
son Debye-Waller factor, analogous to the usual phonon 
Debye-Waller factor. 

In general, we will assume the presence of site disorder 
in each of the "sublattices" of the Amman-Mackey net- 
work. If amk is the probability of observing an atom of type 
m in a sublattice of type k, then assuming the mean-square 
displacement projections for atoms of type m are the same 
for different k, we can write the effective structure factor 
for atoms of type m in the following way: 

Equation (8) contains the quantities nk(QI ), which are 
form factors (i.e., Fourier transforms of the shape func- 
tions) for the various types of positions ("sublattices"). 
These form factors may be calculated by summing the 
form factors for the displaced and mutually contacting 
rhombohedra that make up the polyhedra of the shape 
function for a given type of position ("sublattice"). It is 
not difficult to show that the form factor of a rhombohe- 
dron that "extends" along the edges apl , ail , and akl and 
is displaced from the coordinate origin by Rol (at which 
point we locate the vertex of the rhombohedron) equals 

- (6) 1 - e - i Q ~  81, 

According to the properties of lattice sums, we have p j Q p j ' Q  n i e - ~ l a , l  . 
I=p, j,k 

(9) 

(7 )  There is special interest in the average atomic density 
of a decorated quasicrystal. It follows from the projection 
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TABLE I. Parameters for the deterministic decorated models of the structure A16CuLi,. 
B-vertices of the rhombohedra; sr-middle of a rhombohedra1 edge, sg-facets of the rhom- 
bohedra, csr--centers of sharp rhombohedra. 

formalism that the average atomic density for a position of 
type k (i.e., the number of points of type k per unit volume 
of the "physical" subspace) equals 

where pk is the number of polyhedra of type k that fit into 
an elementary unit cell of the six-dimensional hyperlattice; 
Vk is the volume of the polyhedron for the shape function 
of a "sublattice" of type k. 

Since the average atomic density is an additive quantity, in 
general it equals 

where Lk is a decoration position of type k (0 or 1 ). 
The weighted-mean density of the quasicrystal can eas- 

ily be obtained from Eq. ( 11 ), i.e., 

where Mm is the mass of an atom of type m. 
All the decorations of the Amman-Mackey network 

can be conventionally divided into deterministic (with at- 
oms of the same kind located within each sublattice of the 
Amman-Mackey network) and randomized (with atoms 
of different types located within each sublattice with vari- 
ous probabilities). 

Three possible deterministic decorated models are 
shown in Table I. The first two models in Table I corre- 
spond to the stoichiometry of A16CuLi3, while the third 
corresponds to that of A14,85C~Li1,62, which is rather close 
to A16CuLi3. 

In calculating the randomized decorations of the 
Amman-Mackey network it is necessary to compute the 
quantities a , k .  Under the assumption of a definite stoichi- 
ometry and absence of vacancies in the "sublattices" of a 
decorated Amman-Mackey network, we can write the fol- 
lowing systems of equations for amk: 

In Eq. ( 13) c, is the atomic fraction of the components of 
the quasicrystal. For practical calculations it is necessary 
to add "bare" probabilities for a given type of atom to be 
located in each sublattice of the decorated Amman- 
Mackey network to system ( 13), which are chosen from 
crystal-chemical considerations. The most successful ran- 
domized decorated model is described in Table 11. The 
calculated amk for this model were compared with the re- 
sults of Ref. 6. 

Of all the decorated models of A16CuLi3 list here, only 
the randomized model gives satisfactory agreement with 
the experimental results. lo The calculated diffraction spec- 
trum of "polyquasicrystalline" A16CuLi3 for Co radiation 
is shown in Fig. 1 for this model. It should be noted that 
we did not include the diffuse background in calculating 
the diffraction spectrum. The optimizations for the quan- 
tities U: (Ref. 3) and u:~ ,QL at room temperature 

II , Q l l  
are shown m Table 111. 

Table IV is made up of the experimental data from 
Ref. 1 1, which were obtained for single-crystal A16CuLi3, 
and the results of the calculations in this paper for the 
randomized decorated A16CuLi3 model. Based on these re- 
sults the R-factor for agreement between the experimental 
and theoretical values of the structural amplitudes is found 
to be 0.09. 

Computed electron diffraction patterns with fifth, 
third, and second order axes of symmetry are shown in 
Fig. 2 for the randomized decorated model of A16CuLi3. 

TABLE 11. Parameters of a randomized decorated model of 
A16CuLi,. The positions for the long diagonals of sharp rhombohe- 
dra are found by displacing a rhombohedron from its center along 
the long diagonal by a distance equal to x= *0.118034. I d ,  where Id 
is the length of the long diagonal of the sharp rhombohedron. 

 h he positions for the long diagonals of sharp rhombohedra are 
found by displacing a rhombohedron from its center along the long 
diagonal by a distance equal to x= * 0.11 8034. Id, where Id is the 
length of the long diagonal of the sharp rhombohedron. 

Atom 

Al 
Cu 
Li 
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Probability of Location 

vertices 

0,69 
0,22 
0,09 

Centers of Edges 

0,75 
0,lO 
0,15 

Long Diagonals of Sharp 
Rhombohedra* 

0,17 
0,Oo 
0,83 



For the randomized model adopted in this paper as a 
basis, calculations based on Eqs. ( 1 1 ) and ( 12) show that 
the average atomic density of A16CuLi3 equals 5.55 - loZ2 
atoms/cm3, while the average weighted density is 2.56 
g/cm3. The experimental value of the average weighted 
density equals 2.40 g/cm3 (Ref. 12). In view of the rather 
good agreement between the calculated and experimental 
diffraction spectra of A16CuLi3, we can say that the value 
of the experimental average weighted density, which is 
smaller than the theoretical value, may indicate the pres- 
ence of randomly distributed vacancies in the sublattices of 
the Amman-Mackey network. Among the possible reasons 
for generation of these vacancies is internal pressure, 
whose existence is easily demonstrated within the frame- 
work of a model of "hard spheres." An estimate of the 
average number of vacancies capable of explaining the ex- 
perimental weighted-average density of A16CuLi3 gives six 
unoccupied locations per 100 atomic positions. 

TABLE 111. Mean-square projection of 
phonon and phason displacements for var- 
ious types of atoms. 

FIG. 1 .  Diffraction spectrum for Co radiation calculated for a random- 
ized decorated model of poly-quasicrystalline A16CuLi3, without struc- 
tural vacancies. Broadening of the line is computed usin a model with 
parameter equal to the diameter of a block D (D=300 1 ). 

2. CALCULATION OF THE ELECTRONIC PROPERTIES OF 
STABLE ICOSAHEDRAL QUASICRYSTAL AI,CuLI, 

Since the components of the A16CuLi3 phase are simple 
metals, we will use the method of pseudopotentials to cal- 
culate the electronic properties. 

The Schroedinger equation for an electron in a quasi- 
crystal can be written in the following form: 

where m is the mass of an electron, V(rll ) is the quasipe- 
riodic potential, Y (rll  ) and p are the eigenfunctions and 
eigenvalues of the operator 

Let us carry out a factorization procedure for the qua- 
sicrystal. At the beginning we take the deterministic deco- 
rated model. Then 

where v is the pseudopotential of an individual ion, RWk is 
the radius vector of the wth site in a "sublattice" of type k. 

From ( 15) we can obtain after some uncomplicated 
transformations 
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TABLE IV. ~x~erimental" and calculated values of the lengths of reciprocal lattice vectors Q 
and structural amplitudes S(Q) for 14 reflections taken from the diffraction pattern obtained for 
single-crystal AI6CuLi3 (Mo radiation).* 

*When the atomic factors fm(QII) for the mth element are taken into consideration, 
the structural amplitude is S' (QII) =2 f m(~II)Seff(qll) .  

where fl is the volume of the system, Sk(qll ) 
= 2, e-jqll Rwkll is the contribution to the structure factor 
from the kth "sublattice" of the decorated Amman- 
Mackey network, and 

Reflection 
Labels 

11 0 0 0 0  
1 1 1 1 0 0  
2 2 1 0 0 1  
3 3 2 0 0 2  
1 0 0 0 0 0  
11 1 0 0 0  
2 2 2 1 0 0  
332001  
3 1 1 1 1 1  
42221  1 
21 1 1 0 0  
2 1 1 1 1 1  
3 2 2 1 0 1  
3 3 3 1 0 1  

is the form factor of the pseudopotential of an ion located 
in the sublattice of type k. For the case of the randomized 
model, it is natural to replace vk(qII ) in Eq. (16) by the 
average of the form factors of the ionic pseudopotentials 
for ions located in a sublattice of type k, that is 

Calculations for the Randomized model 

Expression (17) implies that we have used the "virtual 
crystal" approximation in each of the sublattices. 

Expression ( 16) can then be rewritten in the following 
fashion: 

-- 
. Experiment 

Q, A-' 
1,061 
1,716 
2,777 
4,493 
0,623 
1,486 
3,150 
4,199 
3,264 
4,810 
2,270 
2,641 
3,832 
4,733 

where s$(qll ) is given by Eq. (8)  when yk= 1 for all k. 
The expression for ) is conveniently rewritten in 

the form 

Q, A-' 
1,059 
1,715 
2,775 
4,487 
0,626 
1,486 
3,145 
4,192 
3,260 
4,804 
2,268 
2,642 
3,828 
4,726 

s(Q)  
0,0609 
0,1034 
0,9956 
1,0000 
0,0349 
0,4278 
0,6855 
0,0687 
0,3152 
0,3667 
0,0425 
0,4959 
0,331 1 
0,2833 

where 

s(Q)  
0,0610 
0,1020 
0,8610 
1,0000 
0,0160 
0,3030 
0,6900 
0,0620 
0,2790 
0,4050 
0,0710 
0,4940 
0,3090 
0,3080 

Let us introduce the operator L (r): 

where U(r) is a periodic function in the six-dimensional 
space with Fourier transform 

Then we can write the following pseudo8chroedinger 
equation in the six-dimensional space: 

where @(r) are eigenfunctions and E the eigenvalues of the 
operator L(r) .  It is easy to show that the dispersion laws 
for p ( k  ) and E(k) are connected by the following 
relation: '/ 3 

Therefore, in order to find the dispersion law for the qua- 
sicrystal it is sufficient to solve the pseudo-Schroedinger 
equation ( 2  1 ) . 

Making use of the standard procedures, in the approx- 
imation of weakly coupled electrons we find in second- 
order perturbation theory that 
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FIG. 2. Electron diffraction pattern for a randomized decorated model of a single quasicrystal of AI,CuLi,, which indicates the presence of (a) 
fifth-order symmetry axes, (b) third-order symmetry axes, and (c) second-order symmetry axes. The areas of the circles are proportional to scattering 
intensities. 

where 

Near the Bragg planes (for which I kll I = I kll -Qll I ) it is 
necessary to use degenerate perturbation theory. For this 
case we may write 

Although we are not allowed to introduce a Brillouin zone 
in quasicrystals, the concept of a pseudo-Brillouin zone, 
which is responsible for the presence of singularities in the 
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electronic properties of a quasicrystal, is widely used in the 
literature. In this paper, in view of the large repetition 
factor for vectors of the reciprocal lattice of the quasicrys- 
tal, we will choose the pseudo-Brillouin zone to be spher- 
ical. 

Within the framework of these approximations, the 
following picture of the dispersion law and density of elec- 
tronic states emerges. At points of osculation of the Fermi 
sphere with the spherical pseudo-Brillouin zone we will 
observe an energy gap in the dispersion curve E(kll ), in 
accordance with (23). Consequently, we will have a series 
of Van Hove singularities in the electronic density of states 
N(E),  connected with each vector of the reciprocal lattice 
of the quasicrystal. 

Let us divide the density of electronic states into two 
components: a regular component N,,,(E) and a singular 
part Nsin,(E). For Nre,(E) it is natural to use the free- 
electron approximation. For Nsin,(E), according to Ref. 
14, we can write 

where pq is the repetition factor for the reciprocal lattice 
II 

vector Qll ; 

is a dimensionless factor, which contains the average 
atomic volume R, for the phase under discussion; 
a=[E-Ec]/Ec is the degree of closeness of the Fermi 
sphere to the pseudo-Brillouin zone, where 
Ec= ( # ~ i  /8m); 

The computed curve for the density of electronic states 
N(E), which takes into account the influence of the 251 
strongest diffraction peaks, is shown in Fig. 3 for a ran- 
domized model of A16CuLi3 without vacancies. In calcu- 
lating V(QII ) for aluminum and lithium we used the 
Heine-Abarenkov pseudopotential model, while for copper 
we carried out a cubic spline interpolation of the data given 
by ~ o r i a r t ~ . ' ~  

Estimates of the Fermi energy EF under the assump- 
tion that the mean valence of A16CuLi3 equals 2.2 for the 
randomized model without vacancies gives a value of 0.753 
Ry (the free-electron model gives a Fermi energy of 0.716 
Ry). Including the vacancies decreases the Fermi energy to 
a value of 0.745 Ry. The estimated values of the Fermi 
energy of A16CuLi3 are located in the neighborhood of a 
local minimum of the density of states, that is, in a 
pseudogap. Therefore, we may say that the stability of the 
icosahedral quasicrystal A16CuLi3 is conveniently de- 
scribed by the Hume-Rothery criterion, which has been 
repeatedly pointed out in the The discrepancy be- 
tween the positions of EF and the pseudogap may be the 
cause of metastability of the quasicrystals. According to 
our calculations, the set of vectors of the reciprocal lattice 
with labels (3 1 1 1 1 1 ) are responsible for the appearance of 
a pseudogap at the Fermi level of A16CuLi3 (using Elser's 

O' 0.1 0.2 0.3 0.4 0.5 0.6 OJ 0.8 
I 1 I I I I I I 1  

E, Rydberg 

FIG. 3. Density of electronic states for the randomized decorated model 
of AI,CuLi3 without vacancies. The position of the Fermi energy is indi- 
cated by the dashed curves. 

labeling scheme9), although the set (222100) gives rise to 
a very deep local minimum in the density of states. This 
result confirms the conclusions of ~arlsson" and attests to 
the importance of the shell of vectors (31 1111) for 
A16CuLi3. 

3. CONCLUSIONS 

In this paper we have obtained a general analytic ex- 
pression for the structure factor of a decorated icosahedral 
quasicrystal, including the presence of randomly distrib- 
uted vacancies in sublattices of the Amman-Mackey net- 
work as well as phason and phonon Debye-Waller factors. 
We have made a selection of the various decorated models 
and have calculated the corresponding electronic proper- 
ties for the stable icosahedral quasicrystal A16CuLi3. We 
have shown that the structure of A16CuLi3 is best described 
by a randomized model with a large fraction of structural 
vacancies (on the order of 6 atomic percent). Within the 
framework of the pseudopotential method and the approx- 
imation of a spherical pseudo-Brillouin zone we have cal- 
culated the density of electronic states and estimated the 
Fermi energy EF for the most probable randomized struc- 
tural model. This allows us to state our conclusions about 
the stability mechanism of A16CuLi3 with more conviction 
than in the previous The randomized model of 
A16CuLi3 without structural vacancies leads to a position 
of EF at a local minimum of the density of electronic states 
which is due to the reciprocal lattice vector with labels 
(3 11 1 1 1 ) . The inclusion of vacancies lowers the value of 
EF somewhat; nevertheless, EF remains in the pseudogap 
caused by this set of vectors. Therefore, we may assert that, 
first of all, the stability of the icosahedral quasicrystal 
A16CuLi3 is satisfactorily described by the Hume-Rothery 
criterion; and, secondly, the shell of vectors (3 11 1 11 ) is 
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responsible for the pseudogap at the Fermi level, and not 
(222100) as was assumed previously (see, e.g., Refs. 3, 
16). 

It should be noted that the number of structural va- 
cancies we have obtained, which leads to a contribution on 
the order of 10 pR - cm (293 K) to the specific resistance 
of A1,CuLi3, cannot explain the large value of this quantity 
[on the order of 800 p a .  cm for 270 K (Ref. 12)]. 

The authors are grateful to A. V. Ruban for his atten- 
tion to the work and useful discussions. 
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