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An antidisk model is proposed. It allows an analytic solution for the spectrum of local 
plasma oscillations in its vicinity. The spectrum of magnetoplasma oscillations obtained in this 
way displays a number of characteristic features that have been seen experimentally. A 
qualitative discussion is given of the change in the magnetoplasmon spectrum between an 
individual antidisk and a periodic lattice of antidisks. 

The different behavior of periodic systems of disks and 
antidisks in a uniform high-frequency electric field parallel 
to the plane of the disks (antidisks) is an interesting ex- 
perimental result which has recently been established. In 
the former case, the system is excited at frequencies whose 
dependence on the magnetic field perpendicular to the 
plane of the system is shown schematically in Fig. 1 (Refs. 
1-4). In the latter case, the system is excited at the fre- 
quencies shown in Fig. 2 (Ref. 5). This must be regarded 
as a surprising result since it has become clear (see Sec. 1 
below) that the spectra of localized plasmons obtained for 
individual disks and antidisks with smooth profiles of equi- 
librium electron density have the same structure and con- 
sist of modes such as those shown in Fig. la and in Fig. 2. 
Nevertheless, disks and antidisks have different imped- 
ances. Our aim in this paper is to calculate the spectrum of 
antiplasmons in an individual disk and then use it as a basis 
for a qualitative discussion of the possible reasons for the 
impedance difference. 

Section 1 presents a solution of the problem of the 
magnetoplasmon spectrum for an individual antidisk of 
radius R with an equilibrium electron-density profile n (r) 
of the form 

n(r)   con st(?/^^- l)'", r>R. (1) 

Comparison of the resulting spectrum w. with the 
J rn. 

corresponding magnetoplasmon spectrum6 in an individual 
disk with the profile 

n(r) =no(l -? /R~) ' /~ ,  r<R, (2) 

shows that these spectra are qualitatively the same. 
In Sec. 2 we discuss possible changes in the calculated 

magnetoplasmon frequencies oj, when a periodic system 
of antidisks is considered. Some of the details of this gen- 

erostructure in the 2D layer parallel to the plane of the 
antidisk and, on the other hand, the external distribution of 
electrons concentrated in the plane of the antidisk in its 
exterior within a circle of radius d < R. It follows from the 
results presented in Ref. 7 that, near the boundary, the 
electron density in the antidisk is proportional to 
( ? /R~  - 1 ) 'I2, which enables us to take the constant in ( 1 ) 
in the form 

where B is the density of the external electron system and 
N+ is the density of the donors (B > N+) .  For r) R, the 
correct solution for n(r) must tend to the constant N + ,  
but this does not happen in the model ( 1 ). Nevertheless, 
this model does not prevent us from obtaining finite mag- 
netoplasmon frequencies wj, localized near the boundary 
of the individual antidisk. 

Naturally, we assume R ( a  in this Section, where a is 
the separation between neighboring antidisks in a square 
2D lattice consisting of them. Moreover, we shall consider 
the classical case 

in which case we neglect quantum corrections to the spec- 
trum of classical plasmons (me is the effective electron 
mass and K is the dielectric constant). 

The problem of the magnetoplasmon spectrum can 
now be formulated as follows. The electrostatic potential 
q(r,z) in 

is an even function of z that is harmonic everywhere except 
for the part of the z=O plane (r>R ) occupied by the an- 
tidisk and satisfying the boundary conditions - 

eralization may be significant for the interpretation of ex- 2.rre6n/~, r>R 
perimental data. 

r < R ,  

1. MAGNETOPLASMON SPECTRUM FOR AN INDIVIDUAL where Sn (r,B,t) = 6n0(r,0)exp( - iwt) is the additional os- 
ANTIDISK WITH THE n(r) PROFILE GIVEN BY EQ. (1) cillatory term in the electron density that arises during 

To be specific, suppose that an antidisk arises in the magnetoplasmon excitation, 
model used in Ref. 7. The electron system in an antidisk is 
then in the magnetic field produced, on the one hand, by e6n= (iw)-' div j; j;=cTik(l,~)Ek, 

positively-charged donors distributed uniformly in the het- ji is the two-dimensional current in the antidisk, 
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FIG. 1. Magnetoplasmon spectrum of an antidisk in dimensionless units 
for j= Im(-1;  m = l ,  j=O(l-lo-1.2--w+). 

is the two-dimensional conductivity tensor, which in this 
approximation is independent of Sn and is proportional to 
n(r), oik(w) are constants that are effectively the compo- 
nents of the conductivity tensor at r=vZR when the equi- 
librium electron density is equal to the constant n(V2R) in 
( 1 ), and the factor (?/R2 - 1 ) is due to the distribution 
given by ( 1 ) . 

The harmonic potential p, is conveniently written in 
terms of the coordinates (u,r,8) of an oblate ellipsoid of 
revolution, so that the variables of the above problems can 
be separated: 

A single-valued solution of the Laplace equation written in 
terms of these coordinates and satisfying the condition 
p,+O for r+  UJ can take the form of the two combinations 

where c ( r )  and z ( i o )  are the associated Legendre func- 
tions of the first and second kind, respectively, m is an 
integer, and v > -0.5. 

The boundary condition given by (6b), which corre- 
sponds to the absence of surface charges at z=0, r < R [in 
terms of the above ellipsoidal coordinates, this region lies 
on the line o = O  and (6b) reduces to the requirement that 
aQ,fIml (io)/aoI ,,o=O] is satisfied if v is a nonnegative 
integer v= j ) O  and j is an integer such that j + m  is an 
odd number. However, in that case, on the z=0 plane in 
the interior of the antidisk, i.e., when r=0,  we have 
p,+=O, since Pi+Irnl (0) =0, so that OEO as well. It follows 
that the solution p,+ in (8) must be rejected. 

On the other hand, p,- is not identically zero on the 
z=0 plane in the interior of the disk if j < I m I. We must 
recall here that the set of indices of Legendre functions in 
which we are interested here makes it unneEssary to have 
the factor r (v+p  + 1 ) in the definition of %(() [see, for 
example, Ref. 8; r ( x )  is the gamma-function]; it was in- 
troduced for the sake of convenience in writing the differ- 
ent relationships between the Legendre functions. Hence- 
forth, we shall take z ( ( )  to be the usual associated 
Legendre function of the second kind without the factor 
r ( v + p +  1) in its definition. The function p,(a,r,O,t) has 
the following form in our case: 

where j,m are integers, O< j < I m I, and j +m is an odd 
number. 

It will be useful to have the following list of the first 
few functions in (6) : 

If we substitute (9) into the boundary condition (6a), 
we obtain an equation for the number of magnetoplas- 
mons: 

FIG. 2. Magnetoplasmon spectrum of an antidisk in dimensionless units 
for j <  ImI -1; m=3, j=O(I-Iw-1,2--0+ ,3--wL) 

If we now use the conductivity tensor') obtained in the 
single-electron collisionless approximation 
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iwn ( 2 ' 1 2 ~ ) 2  w , 9 1 ( 2 ~ ' ~ ~ ) 2  
a,= 9 ow= 

me(w2-@;I me(w2-of) ' 
(11) 

and if we normalize all the frequencies to 
fly= [ 2 7 ~ n ( 2 l / ~ ~ ) e ~ / ~ m ~ ~  L~ we find from ( 10) that 

The behavior of the roots of this equation as functions of w, 
is different for j = l m l - 1  and j< lml -1 .  When 

j= lml - 1 holds, Eq. (12) has the root 
~ 1 0 , ) ~  - ~,,=o, sign(m) and also the pair of roots 

o&l-l,m= [-we/2~(o:/4+ Iml )'/2]sign(m). (13) 

The first of these roots, i.e., w~o,)l-l,m=ocsign(m), has 
arisen as a result of the multiplication of both sides of ( 10) 
by w2-w: between ( 10) and ( 12), and must be rejected. 
The behavior of wiml -l,m as a function of w, is shown in 
Fig. 1 for m= 1 (the solution w- is replaced in the figure 
by its numerical value). 

Next, it is readily verified that, for any o, and j < I m I 
- 1, Eq. (12) has three real roots with the following 
asymptotic behavior: 

where A=m2-j( j+  1). 
It is also useful to determine the position of the ex- 

trema ofw+(H) for m>O, o-(H) for m<0, and wL(H). 
This is done by solving (12) for o, and then finding the 
position of the extrema from the condition dwc/dw+ a. 
Hence 

The dependence of the oscillation frequencies w on w, for 
this case is shown in Fig. 2 for the lowest numerical value 
of m (equal to 3) for which this case is possible (we have 
taken m = 3 and replaced w- with its numerical value). 

The spectrum of MP oscillations was derived for the 
antidisk using the equilibrium electron-density distribution 
( 1) which increases without limit as r+  UJ. Nevertheless, 
the oscillatory additional term Sn in the electron density, 
which by (6a) and (9) is given by 

has the asymptotic form (r/R)-J-2 for large distances 
r) R. Because of this, the behavior of the equilibrium con- 
centration at these distances should not significantly affect 
the magnetoplasmon frequencies (however, see Sec. 2). 
We also note that Sn diverges as r+R. This is due to the 
use of the above approximate formulation of the eigenvalue 
problem for the magnetoplasmon frequencies for which the 
boundary of the electron gas in the antidisk is fixed. In fact, 

this boundary moves in the case of real MP oscillations. 
The function R(8,t) can be taken into account, but only 
within a nonlinear theory. 

Themodes I w ~ ~ ~ - ~ , ~ ~  in (13) and Iw-I form>Oor 
w+ for m < 0 in ( 14) begin with finite values for H=O and 
tend monotonically to o, as H increases. This is in com- 
plete analogy with the behavior of the spectrum of the MP 
oscillations of a uniformly charged plane. However, the 
modes I w- I for m < 0 and w+ for m > 0 have a negative H 
dipersion for low magnetic fields, as observed in Ref. 5. A 
specific dependence on the magnetic field is also found for 
the modes oTml - l,m and oL , which behave as H-' when 
H+ UJ; this corresponds to the behavior of magnetoplas- 
mons localized near the antidisk boundary. Moreover, as H 
decreases, wL approaches its maximum and linearly tends 
to zero as H+O. The function wL(H) was found in Ref. 5 
to have a similar form. 

Similar behavior of magnetoplasmon frequencies as 
functions of the magnetic field has also been found in the 
case of a disk.6 The significant formal difference between 
the two cases is that, for a disk with a fixed azimuthal 
number m, there is an infinite number of modes with radial 
indices j )  1 m 1, j +m even, whereas for an antidisk the 
number of modes is limited by the conditions j < 1 m 1, 
j + m odd. In particular, modes with m =0, i.e., pure radial 
oscillations, are absent in the case of the antidisk. 

2. A PRlODlC SYSTEM OF ANTIDISKS 

The above antidisk model has advantages such as an 
equilibrium profile n (r)  ( 1 ) that is close to the real profile7 
for r 2  R and the possibility of a complete solution of the 
problem of MP oscillations, but it also has the qualitative 
disadvantage that its local plasma oscillations do not ex- 
hibit wave attenuation. When the problem of collective 
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excitations is correctly formulated, this type of attenuation 
of local modes, whose eigenvalues lie in the continuous 
spectrum of unlocalized excitations (in our case, unlocal- 
ized excitations of a uniformly charged plane), is always 
present and is usually relatively large (see, for example, 
Ref. 10). As far as oscillations in a periodic system of 
antidisks are concerned, here we may expect the superpo- 
sition of two effects. First, the periodic modulation of the 
initially uniformly charged plane should cause the initially 
continuous plasma spectrum w, to break up and Brillouin 
forbidden bands (gaps) to appear. Such effects were pre- 
dicted in Ref. 11 and were observed in Ref. 9. Second, the 
emission of local modes acquires new features. Coherence 
effects suppress some of the local eigenmodes whose fre- 
quencies fall into portions of the continuous spectrum. If, 
however, a local mode is found within a Brillouin gap, its 
existence becomes allowed and, on the contrary, wave at- 
tenuation is suppressed. It is therefore clear that a periodic 
system of antidisks has certain selective properties with 
respect to local modes. Some of these modes are renormal- 
ized and amplified, and some are suppressed. 

We shall now illustrate these ideas by considering a 
square lattice of identical linear oscillators of mass M and 
eigenfrequency oo,  placed on a conducting plane at z=0. 
We shall consider the case where the amplitude of these 
oscillators is much less than the lattice period a. 

The set of equations describing the interaction between 
the oscillator lattice and the electron system takes the form 
(assume for simplicity that H=O): 

Sn (x,t) + n, div v(x,t) = 0, (18) 

where x is the 2D electron coordinate, v(x,t) =x(t), rnln2 is 
the radius vector of the nth oscillator with origin at the 
corresponding n-th site, a l  and a2 are the basis vectors of 
the square lattice, and n, is the electron concentration. 

The motions of the oscillators and the electron system 
are coupled by the requirement that 

If we suppose that all the time-dependent variables 
have their time dependence described by the factor exp 
( -iwt), and if we transform to the Fourier components, 
we find from ( 17)-(21) that 

where G are the reciprocal-lattice eigenvectors of the oscil- 
lator system (G= I G 1 ). 

If we now use the condition given by (22), we obtain 
the dispersion relation 

It is clear that the solution for o given by (26) can be 
real, but does not exist for all coo. The necessary condition 
for a real solution is 

W O E ~ G .  (27) 

CONCLUSION 

We have calculated the spectrum of antiplasmons in an 
individual antidisk. The qualitative difference between the 
impedance of a system of disks and a system of antidisks 
can only be explained if we assume that the mode ool in the 
system of antidisks is suppressed by the mechanism de- 
scribed in Sec. 2. This suppression does not occur in a 
system of disks. 

As far as the m=3 mode is concerned, it is not the 
uniform external electric field that excites this mode in a 
periodic system of antidisks with quadratic symmetry, but 
the secondary fields produced in the square lattice of an- 
tidisks. 

It is also useful to examine some of the qualitative 
details of the spectrum reported in Ref. 5. Our results pro- 
vide a qualitative explanation of the behavior of the mag- 
netoplasmon frequencies as functions of the magnetic field. 
However, the gap in the calculated spectrum is greater 
than the observed gap. For a quantitative comparison with 
experimental data, it is convenient to use the ratio of char- 
acteristic frequencies of magnetoplasmon modes, which is 
independent of the parameters that appear in the definition 
of the normalizing quantity Rim. These characteristic 
frequencies-given in Ref. 5-are the frequency 
o+(H=O) of mode 1 (Fig. 2) and the maximum fre- 
quency myaX of mode 3. Experimental data for a lattice 
with a period of 300 nm and antidisk diameter of 100 nm 
give 

o+ (H=O) 
=2.73 (exper.). 

w=y 

The calculated result is 

o+ (H=O) 
= 5.92 (calc.). 

A different equilibrium electron-density profile in the an- 
tidisk will have to be used to obtain better agreement be- 
tween calculated and experimental results. 

"1n principle, it is best to use for uik the experimental values of this tensor 
near the frequencies in which we are interested, i.e., in the infrared. 
However, we know of no systematic data on uik(u) in this frequency 
range. We only know of reports2s3s5 that the characteristic properties of 
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the static Hall effect are strongly suppressed in the infrared. We shall 
therefore confine our attention in specific calculations to the determina- 
tion of uik reported in Ref. 9. 
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