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Within the framework of the quasiclassical approach, we discuss geometric oscillations in the 
absorption r and propagation velocity s of ultrasonic waves propagating in metals in a 
longitudinal magnetic field for arbitrary dispersion laws of the metallic electrons. We identify 
a number of specific features that distinguish these magnetoacoustic oscillations from 
geometric (Pippard) oscillations in a perpendicular field, and establish that the oscillations in 
I' and s for longitudinal waves are due primarily to a strain mechanism associated with 
electron-phonon interactions and should be sinusoidal in form. For the case of transverse waves 
the dominant mechanism should be field-dependent as well, in which case the shape of 
the oscillations can deviate from harmonic. We predict giant geometric oscillations in the 
regime of interaction between ultrasound and circularly polarized electromagnetic 
waves. 

1. INTRODUCTION 

In investigating polarization-related magnetoacoustic 
effects in single-crystal indium we encountered a new 
phenomenon:' when transverse ultrasonic waves propagate 
along the fourth-order axis parallel to the magnetic field H, 
we observed an oscillation in the ellipticity E(H) which is 
quasiperiodic in the magnitude of the inverse field H-'. 
We showed that this phenomenon can be interpreted as 
magnetoacoustic geometric oscillations in the geometry 
q(l H (where q is the wave vector), which differs from the 
geometry that is ordinarily used for observing them. 

A survey of the literature showed that no complete 
theory of geometric oscillations in a longitudinal field ex- 
ists. Although observed the first geometric oscillations for 
qll H Rayne and chandrasekhar2 in 1962, they were un- 
able to interpret their results. The idea that these oscilla- 
tions could exist related to those observed by ~ o m m e l ~  for 
q l  H and interpreted by pippard: was first reported in a 
paper by MacKinnon et a1.' These authors qualitatively 
described a physical picture in which ultrasonic absorption 
could exhibit oscillations. However, they made these asser- 
tions in order to interpret narrow high-power absorption 
peaks in Cd, which in all probability must be due to a 
completely different effect, i.e., Doppler-shifted cyclotron 
resonance (DSCR). In a subsequent paper, Daniel and 
M a c ~ i n n o n ~  attempted to obtain an expression connecting 
the period of oscillations with the characteristics of the 
Fermi surface; however, what they derived were the con- 
ditions for observing peaks in the Doppler-shifted cyclo- 
tron resonance. 

By using a quantum-mechanical model to treat the 
problem of propagation of longitudinal ultrasonic waves 
along a magnetic field and a model Fermi surface in the 
shape of an ellipsoid (one of whose axes is inclined at a 
certain angle to H) ,  ~ u i n n '  showed that in the collisionless 
limit the corresponding component of the conductivity ten- 
sor contained an oscillatory term. His main result was a 
correct expression for the period of the geometric oscilla- 

tions. The same problem, but now within the framework of 
a simpler quasiclassical theory, was solved by ~cks te in ,~  
who obtained an expression that was, on the whole, anal- 
ogous. Later experimental investigations9-" confirmed the 
correctness of the Quinn-Eckstein expressions for the pe- 
riod of the geometric oscillations. As far as we can tell, the 
last publication on this topic seems to be a paper by 
Miller1' that appeared in 1966. This loss of interest in mag- 
netoacoustic oscillations in a longitudinal field is probably 
connected with the view that the phenomenon is com- 
pletely analogous to Bommel-Pippard oscillations. 

In this paper, we use a unified quasiclassical scheme to 
investigate the geometric oscillations that arise when either 
longitudinal or transverse circularly-polarized modes prop- 
agate in a metal with an arbitrary electron dispersion law 
in a parallel magnetic field. We simultaneously analyze the 
absorption and change in velocity of these modes, and 
briefly describe the accompanying polarization effects. We 
show that magnetoacoustic oscillations in a longitudinal 
field differ in a number of significant respects from the 
geometric oscillations that appear for q l  H. 

2. STARTING RELATIONS 

Let us consider propagation of ultrasonic waves along 
an n-th order axis of rotational symmetry R, (n23) that is 
parallel to a constant external magnetic field H =  (O,O,H): 
here ql( R,(( H, where q is the wave vector. In this case the 
normal modes are two circularly-polarized waves and one 
longitudinal wave. Using the Maxwell equations and the 
theory of elasticity (described, e.g., in Sec. 5.1 of the re- 
view Ref. 12), we can show that the solution to the dis- 
persion equation for characteristic elastic waves has the 
following form: 
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where the label p characterizes the polarization of the nor- 
mal mode, and equals "+ ", "-", or "P' for circularly and 
longitudinally polarized modes respectively, while P takes 
the numerical values 1 for *-polarized waves and zero 
for longitudinal waves. The quantity 
A q ( ~ )  =q(P) (H) - qo(p) is a dynamic magnetic-field- 
dependent correction to the wave vector, with 
q(P) = ( o , o , ~ ( ~ ) )  and qJp) = 4 ( ~ )  (H=O) - w/sip), where o 
is the frequency and sip) is the phase velocity of the normal 
mode when H=O; d p )  is the quasistatic elastic modulus 
for H=O, where d* ) = c ~ ~  and d ' ) = ~ ~ ~ ;  and c is the 
velocity of light. The specific properties of a given metal, 
i.e., those that depend on its electronic structure, are taken 
into account by the three electroacoustic coefficients: a ( p )  

describes the strain-dependent interaction between the 
elastic and electronic subsystems of the metal, p(P) is the 
strain-dependent conductivity, and is the electronic 
conductivity. 

The Fourier components of the electroacoustic tensors 
a, p, and a entering into Eq. (1) that follow from solving 
the Boltzmann equation in the relaxation-time (7) approx- 
imation can be written in the following way: 

where h is Planck's constant, mc is the cyclotron mass, k, 
is the component of the electron wave vector, 
R= - eH/(m,g) is the cyclotron frequency, e < 0 is the 
electron charge, and F, is the value of the z component of 
the electron velocity v averaged over a cyclotron period; 
the label x identifies the orbits that exist for a given value 
of k,. The quantities a${ and bg), are defined to be the 
components of two vectors a and b that can represent ei- 
ther ev or w - (A, ,Ayz ,A,), where Aij are the compo- 
nents of the deformation potential tensor. In order to cal- 
culate the electroacoustic coefficients, it is necessary to 
make the following substitutions in Eq. (2): 

for dp)-a=b=ev, 

for ~ (P) -a=m,  b=w, 

for a(P)-a=b=w. (3) 

The quantities a${ and b$i are easily written in terms of a 
common expression. We introduce the following represen- 
tation for the arbitrary vector g: g=g(+ )+g('), where 
g( * ) E g1 -- (g, ,gy ,O) , and g(') E gll -- (O,O,g,) . Then 

where 8=  Rt is the dimensionless time for an electron mov- 
ing along a cyclotron orbit, and cp?) is the angle that spec- 
ifies the direction of the vector g( * ) relative to the x axis or 
the vector g(') relative to the z axis (cpy) = - cpf) =O or P). 
The quantity z(8) entering into (4) is defined by the ex- 
pression 

Recall that the field-dependent electronic corrections to the 
absorption r ( p )  and phase velocity dP) are given in terms 
of h q ( ~ )  as follows: 

3. OSCILLATION IN THE ELECTROACOUSTIC 
COEFFICIENTS FOR qll H 

It is clear from (2)-(4) that any electroacoustic coef- 
ficient y ( ~ )  is the sum of a series whose elements are labeled 
by the integer index m. For any m#O the denominator on 
the right side of (2) is resonant in character, i.e., there 
exists a value of the field H for which its magnitude reaches 
a minimum; the expression as a whole describes Doppler- 
shifted cyclotron resonance. The element with m=O is 
nonresonant, and it is just this term that gives rise to the 
geometric oscillations of the electroacoustic coefficients in 
the geometry qll H. Let us consider it in more detail: 

(P) -- 
go,, - iP Jo2" Ig(P)lexp{i(- 1)3+P/3-IPI+j+l 

From the definition of z(8) it follows that this function 
is periodic with period 2 ~ .  If we do not treat the trivial case 
v,(8) =const, the number of minima of this function on an 
interval 0 < 8 < 2 ~  coincides with the number of maxima, 
i.e., the number of extrema R is even. In what follows, we 
will refer to points on a cyclotron path corresponding to 
extremal values of z(8) as turning points. Points of this 
kind are actually in a system of coordinates moving with 
velocity F, in the direction H. If for any neighboring pair of 
points, one of which is a maximum and one a 
minimum, we have 

the expression under the integral sign in (8) is a rapidly 
oscillating function of the argument 8. In this case in order 
to estimate the integral we can apply the method of sta- 
tionary phase (see Ref. 13). As a result we obtain 
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where 

The label N in Eqs. ( lo)-( 12) implies that this quantity is 
evaluated at the corresponding turning point. Here and in 
what follows, turning point labels are chosen so that N =  1 
corresponds to a maximum of the function z(8), while the 
remaining extrema are labeled by the successive cyclotron 
trajectories. 

The inequality (9) implies that as an electron moves 
between two neighboring extremal points it traverses a dis- 
tance (in the z direction) that greatly exceeds the ultra- 
sonic wavelength 2r/qip). As the discussions that follow 
will show, this corresponds to treating oscillations whose 
labels are rather large. 

When (4) is included, the expression for the product 
of the electroacoustic coefficient and w [it is in this combi- 
nation that the coefficient enters into ( 1 )] takes the form 

Here 

is the distance between turning points k and I in the direc- 
tion H, measured in the moving system of coordinates de- 
scribed above. 

The oscillatory component of ~ ~ $ 1 , ~  is associated with 
elements of the sum in the integrand in Eq. ( 12) for which 
k#1. The periodic variation of these elements with the 
inverse magnetic field is associated with the spatial disper- 
sion parameter qp) . Azkl-qip)/~. TO within a factor of 
2 ~ ,  this is the ratio of the length of the electron path in the 
z direction to the wavelength. The argument of the expo- 
nential contains a phase correction that is independent of 
magnetic field but depends on polarization. The appear- 
ance of ellipticity and rotation of the plane of polarization 
of a transverse ultrasonic wave that is initially linearly po- 
larized during propagation is associated with this correc- 

tion. Furthermore, the characteristics I edp) I and I w ( ~ )  I of 
the electrons at the turning points, and the characteristic 
time 1 avdaB I q i P ) / ~  during which an electron remains 
in the vicinity of such a point, are contained under the 
integral sign in Eq. ( 12). 

In addition, we should note the factor in curly brackets 
in Eq. (12), which distinguishes a group of electrons that 
interact efficiently with the ultrasonic wave. These elec- 
trons are located within a belt on the Fermi surface cen- 
tered around the cyclotron path specified by the value 
5,=sip). The half-width of the belt (with respect to &) is 
determined by the temporal dispersion parameter: 

In the limit WT+ the real part of the last factor in (12) 
coincides with a 6 function of the argument 6z--shP) to 
within a factor independent of k,, while the imaginary part 
coincides with the derivative of this function. Thus, only 
those carriers that move in the z direction with a velocity 
whose value averaged over a cyclotron period equals the 
velocity of sound are effective; the period, amplitude, and 
phase of the oscillating components of my(") will be deter- 
mined by the characteristics of these turning point orbits 
alone. Note that this circumstance points to an important 
difference between magnetoacoustic oscillations in a longi- 
tudinal field and oscillations in a normal field, for which 
the oscillations are determined by electrons with extremal 
orbits. 

FIG. 1. Path of effective electrons in a system of coordinates moving with 
the velocity of sound. We show the projection of paths on the plane xy 
and the z axis, and also the vectors a and b at turning points I and 2. In 
the inset we show the decomposition of the vector a into a(') and a(* ), and 
the angles q!f ). 
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As the "effectiveness belt" ( 14) widens, the integration 
over k, can cause a radical decrease in the amplitude of 
oscillations of oy(~),  since in this case oscillatory contribu- 
tions with different periods are being summed. However, 
for or(1 we can apply the method of stationary phase 
repeatedly and verify that the Pippard principle of discard- 
ing other effective orbits begins to apply if there is a suffi- 
ciently large group of carriers with an extremal value of 
Azkl, then the contribution from this group becomes dom- 
inant. In this situation it is the extremal group alone that 
determines the frequency and phase of oscillation of the 
electroacoustic coefficients. Thus, a decrease in or not only 
decreases the oscillation amplitude significantly, but can 
also lead to a change in its period. 

When there are several effective groups of electrons 
and (or) more than two inequivalent turning points are 
present on the cyclotron path, we will observe several se- 
ries of oscillations with different periods, phases, and am- 
plitudes. 

4. GEOMETRIC OSCILLATIONS IN THE ABSORPTION AND 
VELOCITY OF ULTRASONIC WAVES 

Let us consider how harmonic oscillations of the elec- 
troacoustic coefficients give rise to more complicated oscil- 
lations in the absorption and velocity of ultrasonic waves, 
and consider which of the interaction mechanisms (strain- 
or field-induced) is dominant for waves of different polar- 
izations. 

4.1. Longltudlnal waves 

It is clear from Eq. ( 12) that the amplitude of oscilla- 
tions of the electroacoustic coefficients is determined by the 
values of the components of the vectors v and (or) w at the 
turning point, along with other factors. For longitudinal 
waves these components are A, and v,, and for an effective 
orbit v,=sA1). Since sA') is three orders of magnitude smaller 
than the characteristic value of the Fermi velocity v ~ ,  we 
should expect that the oscillating components of the elec- 
troacoustic coefficients associated with this value of v, will 
be considerably smaller in absolute value than the compo- 
nents due to the fundamental and higher harmonics of the 
Doppler-shifted cyclotron resonance, which are deter- 
mined by values of v, on the order of v~ . This circumstance 
allows us to write the expression for Aq(') in the form 

where DL') and ail) are the fundamental components of /3(') 
and a(') calculated using Eq. (2) and excluding terms with 
the label m = 0. 

Based on what we have said above, it is difficult to 
believe that ~fig)=,//3f' 1 will be larger than loW3 in order 
of magnitude, while 1 a:),-,/ai1) I likewise should not ex- 
ceed lop6. At the same time, there is no requirement that 
&(ON) be small compared to characteristic values of A,. 

Consequently, when an experiment involving longitu- 
dinal fields leads to the observation of oscillations in the 
absorption or velocity of ultrasound that significantly ex- 
ceed of the characteristic value of Aq('), these oscil- 
lations are most likely due to the strain interaction. Elec- 
tromagnetic interactions lead to detectable effects only for 
I A,(ON)/A,l however, in this case lal,'L&?il) 1 
should not be greater than or of order and geometric 
oscillations in the absorption or velocity of ultrasound will 
be observable only for anomalously large values of 
I opZn'LdoaL1) I . 

Note that all the previously published theoretical work 
on geometric oscillations in a longitudinal field798 involved 
the longitudinal ultrasound itself and was based on analysis 
of the components of the conductivity tensor. This body of 
work does makes a number of features of the phenomenon 
understandable; nevertheless, as we showed above, its con- 
tribution to the understanding of the electroacoustic coef- 
ficients turns out to be minimal. In the majority of cases of 
practical interest, analysis of the oscillating corrections to 
the wave vector requires the use of the expression 

We can analyze in more detail how the parameters or 
and q d H  affect the amplitude of the oscillations in the 
experimentally observed quantities when the geometric os- 
cillations in the absorption and velocity of ultrasound are 
determined by the electroacoustic coefficient a(') alone. 
For this we consider a model of the Fermi surface for 
which the oscillatory contributions to a(') are due to n 
equivalent sheets, each of which has a plane of mirror 
symmetry parallel to H. The intersection of each sheet 
with the plane k,=const is simply connected, and the cy- 
clotron orbits contain the minimum number of turning 
points (R = 2). Then the expression for the oscillatory con- 
tribution to hq(') has the form 

Here we have used the relations A,(O1) =A,(02) and 
~ ~ ( 0 ~ )  = vZ(O2), which follow from the conditions of mirror 
symmetry. As we said above, the parameter or determines 
the width of the belt of effective electrons. If we assume 
that or is so large that the quantities m,, A,(O1), and 
lavJaeJ can be treated as constants within this belt, 
while h / 2 ~ .  dk,=M - dF,, where M is a constant with the 
dimensions of mass, then Eq. (16) can be written in the 
form: 
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where we have introduced the renormalized velocity 
F= ~4~6') - 1, while AG12 is determined from Eq. ( 13). If 
we write this quantity in the form of a sum ~ ! + F ~ ~ ( G ) ,  
where G! is the value of AG12 evaluated on an effective 
orbit, then Eq. ( 18) takes the form 

where we have introduced the notation 

In analyzing Eq. (19), we can see that if the function 
F12(9  is even or odd, the second term in the curly brack- 
ets is purely real; for even F12(G) the third component is 
also purely real. In this case only oscillations in the ultra- 
sonic absorption will arise. For odd F 1 2 ( 9 ,  however, the 
third term becomes pure imaginary, i.e., it describes geo- 
metric oscillations in the velocity of sound. It is apparent 
that geometric oscillations in the absorption and sound 
velocity will exist simultaneously when F 1 2 ( 9  has no 
properties of evenness or oddness. 

The amplitude of oscillations A,, in addition to other 
factors, must be a function of the temporal dispersion pa- 
rameter ~A' ) /H  and the quantity G;, which differ only by 
a factor from the spatial dispersion parameter 46') - h2Yff. 
We can also verify this based on analysis of Eq. (18). For 
example, let us consider the power-law function 

where K and are constants. It can be shown that in this 
case 

Clearly the case of most interest (especially when 
W T )  1 ) is the linear function F 12 = K . ii. In this case 

Here we wish to point out that the oscillations disap- 
pear as WT + 0, and have their largest amplitude as w r -  a,, 
in complete agreement with the qualitative discussion 
given above regarding the role of the parameter w r .  

4.2. Transverse circularly polarized waves 

Our description of the propagation of circularly polar- 
ized modes, in contrast to the case of longitudinal waves, is 
distinguished by the variety of forms which the geometric 
oscillations can exhibit. This is primarily connected with 
the substantially increased role played by the electromag- 
netic terms in Eq. ( 1 ) , due, first of all, to the lack of any 
requirement of smallness of the corresponding components 
of electron velocity at the turning point (in this case 
V(P) = V, GS vF) ; and, secondly, to the more complicated 
form of the electromagnetic term, which allows a substan- 
tial difference between 4(+) and q(-) where the ultrasound 
interacts with electromagnetic waves: 

Taking into account inequality (9), we limit ourselves to 
the region of fairly weak fields, neglecting the terms H2/477 
and cqrp)H/4rr in Eq. ( 1 ) . 

Furthermore, we should take into account the phase 
shifts 

entering into Eq. ( 12), which clearly depend on the polar- 
ization. Inclusion of these phase shifts causes the quantities 
g&,T) and the corresponding contributions to Yi%)o from 
any orbits that possess rotational symmetry to vanish [see 
Eqs. (10)-(1 l)]; this conclusion is a special case of the 
rule for discarding harmonics in the Doppler-shifted cyclo- 
tron resonance, which was first formulated by ~ 0 t k i n . l ~  
When the values of y i $ ,  are nonzero, these phase shifts 
lead to geometric oscillations in the ellipticity E and angle 
of rotation 4 of the plane of polarization of the ultrasound, 
which are determined by the following expressions: 
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where L is the distance traversed by ultrasound in the 
sample. 

When the oscillations are due primarily to the strain- 
induced interaction mechanism between ultrasound and 
electrons, or when the oscillatory contributions to the elec- 
troacoustic coefficients are comparatively small, the geo- 
metric oscillations in the absorption and velocity of sound 
are sinusoidal in form (as in the case of longitudinal 
waves). Under other conditions, anharmonic oscillations 
may be observed. 

4.2.1. Harmonic geometric oscillations. In order to de- 
scribe harmonic oscillations in the propagation parameters 
for transverse ultrasound (r(+ ), s(* ), E, and #), let us 
consider a multiply-connected Fermi surface containing, 
besides the sheets with nth order rotational symmetry, 2n 
other sheets, each of which has a single symmetry 
element-a mirror-reflection plane parallel to the k, axis 
(so that n sheets are centered in the region k, > 0, while the 
other n sheets are obtained from them by the operation of 
inversion). In this case the rotational symmetry of the 
Fermi surface as a whole is preserved by transforming one 
sheet into another by rotation through angles that are mul- 
tiples of 27r/n (recall that n)3). It is with these low- 
symmetry sheets that the geometric oscillations are associ- 
ated. For simplicity we limit ourselves to the case where 
the cyclotron orbits for effective electrons have two turning 
points apiece, while the total contribution of charge cam- 
ers to yF& in the region where the geometric oscillations 
exist is a comparatively slowly-varying function of the field 
H. As in the previous section, within the belt of effective 
electrons the quantities m,, ( w ) ~ ,  ( u ) ~ ,  q : * ) ( ~ ~ ) ,  and 

1 avJa8 I , can be treated as constants, and we will assume 
h/27r. dk,= M . dF,, and A G ] ~  = G;+fi. With these as- 
sumptions, the contribution from sheet I, centered in the 
half-plane k, > 0, takes the form 

+Disign(K) exp -isign(K) I 

where 

In these expressions we have taken into account the prop- 
erties of the vectors a and b that follow from the mirror 
symmetry. 

Continuing, let us consider the contribution to Y~t)o 
from sheet 11, which is obtained by inversion of sheet I 
with respect to the center of the Brillouin zone. The effec- 
tive orbit on the second sheet is a cyclotron orbit formed by 

inverting the corresponding orbit from sheet I, for which 
Fz= -sh*). Therefore, the periods of oscillation associated 
with sheets I and I1 are, in general, not equal to one an- 
other. However, because the quantity shf) is small com- 
pared to the Fermi velocities, we may expect that this dif- 
ference in periods is small, and neglect it in analyzing 
oscillations with comparatively small labels. Within the 
model we are discussing here, the value of 
(GF) I1 = G$- 2~ holds sheet 11, where GF and K are the 
same quantities that appear in Eq. (25). Furthermore, ac- 
cording to the rule for assigning labels [see Sec. 3, the 
commentary to Eq. ( 1 1 )], it is necessary to assign a label of 
2 to the tuning point obtained as the result of inverting the 
point N= 1, and conversely. In what follows we will in- 
clude the fact that the constant K changes sign as we go 
from sheet I to sheet 11. Taking into account the equations 

which follow from the inversion symmetry of the Fermi 
surface and the relations implied by reflection symmetry of 
the orbits, we can write the following properties of the 
phase corrections: 

After this we can obtain expressions for the elec- 
troacoustic coefficients, including contributions from all 2n 
sheets: 

where the angular differences Aqab are defined for a sheet 
with positive K and are functions of the arguments O1 and 
02. Thus, including inversion symmetry leads us to the 
following phase relations: oscillations of Re a(+) are al- 
most in phase with the oscillations in Re a(-), while the 
imaginary parts of a(+) and a(-) oscillate 180" out of 
phase. The same assertions are valid for a(*) as well. For 
p(*) the relations are inverted: the real parts of p(+) and 
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f l ( - )  are 180" out of phase, while the imaginary parts are in 
phase. Including the small difference in effective values of 
q! for sheets I and 11, we find that a phase shift appears in 
the phase relations we have listed above; this shift is still 
more noticeable as the oscillation label increases. 

Equation (30) allows us to analyze the phase relations 
for geometric oscillations in the absorption and velocity of 
circular waves based on Eqs. (6) and (23). If the oscillat- 
ing corrections to the electroacoustic coefficients are rela- 
tively small, it is not difficult to obtain an expansion anal- 
ogous to Eq. (15), but with the replacement of ui') by 
0:') - i(cqb+ ) ) 2 / 4 ~ .  

Thus, e.g., if pure strain oscillations predominate, we 
should observe in-phase geometric oscillations in the ab- 
sorption of circular ultrasonic waves, while the oscillatory 
corrections to the velocity of the ultrasound should be out 
of phase by 180". In this situation oscillations appear in the 
angle of rotation of the plane of polarization, see Eq. (25). 
However, when the electromagnetic contributions to the 
geometric oscillations predominate, another situation may 
be realized in which 180" out-of-phase oscillations are ob- 
served in the absorption and in-phase oscillatory correc- 
tions to the velocity of the circular modes. This should 
result in the appearance of geometric oscillations in the 
ellipticity. Here we must keep in mind that oscillations of 
E and 4 may be associated not only with dephasing of the 
oscillations of r+ and r - ,  or s+ and s-, but also with 
differences in their amplitudes, which should be observed 
where ultrasound interacts with circularly-polarized 
electro-magnetic 

We note that in-phase geometric oscillations of the ab- 
sorption have been observed in Sb (Ref. 1 I),  while oscil- 
lations of E caused by the 180" out-of-phase oscillations of 
r+ and r- were observed in In (Ref. 1). 

4.2.2. Anharmonic oscillations. When the oscillatory 
corrections are accompanied by contributions from 
Doppler-shifted cyclotron resonance (yis) to the elec- 
troacoustic coefficients, we should observe geometric oscil- 
lations more complicated than those described above. 

Adopting a common terminology, we may group an- 
harmonic geometric oscillations into a minimum of two 
types, both of them due to an electromagnetic interaction 
mechanism. The first type is associated with the fact that 
the coefficient p(*) enters into Eq. (23) to second order, 
and leads to the appearance of geometric oscillations with 
doubled frequency. The second type of oscillation is due to 
the form of the denominator of the field-dependent term, 
which has a resonant character. The conditions for this 
resonance are 

The oscillatory contribution to the Hall conductivity Im 
a(*) makes the system periodically approach the reso- 
nance conditions and then depart from them. During the 
approach to resonance the quantity exhibits sharp anoma- 
lies. Therefore, in this case peculiar geometric oscillations 
in the resonance polarization should appear, which are dis- 

tinguished, first of all, by their large amplitude (greatly 
exceeding the amplitude of geometric oscillations in the 
nonresonance polarization), and, secondly, by their un- 
usual nonsinusoidal shape. However, when it happens that 
the amplitude of oscillation ~ $ 1 ~  is already large enough 
to rigorously satisfy the resonance condition (3  1 ) (this 
takes place twice per period), the giant oscillations in 
hqp)/qAP) acquire a characteristic two-horned shape, i.e., a 
dip appears at the location of the first maximum. Since the 
amplitude of oscillations of this kind can be comparable to 
the characteristic level of the electronic contributions to 
the wave vector q(P), and can even exceed it, we may apply 
the term "giant" to these geometric oscillations. 

Note that giant geometric oscillations can appear only 
in a non-Pippard geometry and only for transverse waves. 

Since these giant geometric oscillations should appear 
for only one (resonant) polarization, under these condi- 
tions we should expect strong polarization effects. 

5. CONCLUSIONS 

Thus, the following basic results follow from our qua- 
siclassical treatment of the problem of propagation of ul- 
trasonic waves in a longitudinal magnetic field along an 
axis of symmetry of at least third order in a metal with an 
arbitrary dispersion law for electrons. 

1. Oscillatory components appear in the electroacous- 
tic coefficients that are determined by electronic properties, 
i.e., the values of the velocity v and the vector w made up 
of components of the strain potential tensor, evaluated in 
the vicinity of turning points on effective cyclotron paths. 
For wr>l the effective paths are those of charge carriers 
whose average velocities equal the velocity of sound, while 
for wr(1 these paths are those whose size AZkl along the 
magnetic field between two turning points is extremal. 

2. We find that the specific features of geometric oscil- 
lations in a longitudinal field compared to oscillations with 
q(~) l  H are most clearly manifest for wr>l. In this case 
the width of the belt of effective electrons is determined by 
the temporal dispersion parameter wr, while the period of 
oscillations is determined by the spatial dispersion 

'hzkl. 
3. We have shown that oscillations in the absorption 

and velocity of longitudinal ultrasound are due primarily 
to the strain mechanism for electron-phonon interaction, 
and should be sinusoidal in form. 

4. For geometric oscillations involving transverse 
circularly-polarized waves, the dominant interaction mech- 
anism can be either strain- or field-induced. For the latter 
type we should expect the shape of the oscillations to de- 
viate significantly from harmonic, and we listed two rea- 
sons for this distortion in shape. The first is the dominant 
influence of the strain-induced conductivity in generating 
the oscillations, while the second is oscillations in the con- 
ductivity in the region of interaction of the ultrasound with 
electromagnetic waves. In this case the distortions in the 
shape of the oscillations should be observed for only one 
polarization. We also predict the possible existence of giant 
geometric oscillations. 
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5. We have shown that oscillations of the electroacous- 
tic coefficients that describe the propagation of transverse 
waves have phase corrections that depend on polarization. 
In the expressions for the wave vectors, these coefficients 
are combined in such a way that not only a phase differ- 
ence but also a difference in amplitudes can appear in the 
oscillations of the absorption and (or) velocity of waves of 
different circular polarizations. This circumstance leads to 
the appearance of oscillatory components in the ellipticity 
and angle of rotation of the plane of polarization of the 
ultrasound. 

'V. V. Gudkov and A. V. Tkach, Phil. Mag. Lett. 65, 267 (1992). 
*J. A. Rayne and B. S. Chandrasekhar, Phys. Rev. 125, 1952 (1962). 
3 ~ .  E. Bijmmel, Phys. Rev. 100, 758 (1955). 
4 ~ .  B. Pippard, Phil. Mag. 2, 1147 ( 1957). 
5L. MacKinnon, M. T. Taylor, and M. R. Daniel, Phil. Mag. 7, 739 

(1962). 

6 ~ .  R. Daniel and L. MacKinnon, Phil. Mag. 8, 537 (1963). 
7 ~ .  J. Quinn, Phys. Rev. Lett. 11, 316 (1964); Phys. Rev. 135A, 181 

(1964). 
's. G. Eckstein, Phys. Rev. Lett. 12, 360 (1964). 
90. Beckman, L. Eriksson, and S. Hornfeldt, Solid State Commun. 2, 7 

(1964). 
'OY. Eckstein, J. B. Ketterson, and S. G. Eckstein, Phys. Rev. 135A, 740 

(1964). 
"B. Miller, Phys. Rev. 151, 519 (1966). 
l2 J. Mertsching, Phys. Stat. Sol. 37, 465 (1970). 
"A. H. Nayfeh, Introduction to Perturbation Techniques (New York: 

Wiley, 1981). 
1 4 ~ .  L. Kotkin, Zh. Eksp. Teor. Fiz. 41,281 (1961) [Sov. Phys. JETP 14, 

201 (1962)l. 
I5L. T. Tsymbal and T. F. Butenko, Solid State Commun. 13,633 (1973). 
I6s. V. Medvedev, V. G. Skobov, L. M. Fisher, V. A. Yudin, Zh. Eksp. 

Teor. Fiz. 69, 2267 (1975) [Sov. Phys. JETP 42, 1152 (1975)l. 
I7v. V. Gudkov and I. V. Zhevstovskikh, Zh. Eksp. Teor. Fiz. 92, 208 

(1987) [Sov. Phys. JETP 65, 117 ( 198711. 

Translated by Frank J. Crowne 

992 JETP 77 (6), December 1993 V. V. Gudkov and A. V. Tkach 992 


