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The hypothesis is put forward that in the percolation description of randomly inhomogeneous 
media with a continuous broad spectrum of the distribution of resistances it is necessary 
to assume that the medium is in the smearing regime. A nonlinear equation for the size of the 
smearing region is obtained. On the basis of this hypothesis and a weak-link model that 
describes the structure of a two-phase medium near the percolation threshold an analytical 
expression is found for the critical index of the pre-exponential factor in the effective 
conductivity of media with a broad spectrum of the distribution of resistances. As examples, 
media in which the distribution of resistances has an exponential spectrum (high- 
temperature hopping conductivity) and a power spectrum are considered. In both cases the 
critical scaling index is equal to y= (t-q)/2, where t and q are the critical indices of 
the conductivity of two-phase media. Good agreement with the known numerical values and 
with the exact upper and lower boundaries is demonstrated. The critical behavior of 
the l /  f noise in such media is investigated, and the exponent of the exponential and the critical 
index of the pre-exponential factor in the relative spectral density of the noise are 
determined. 

A large number of diverse problems reduce to the 
problem of the determination of the conductivity of ran- 
domly distributed resistances. For example, the description 
of the critical behavior of the conductivity, thermopower, 
Hall coefficient, etc., in percolation systems near the per- 
colation threshold have their origin in this problem. Here 
there are just two types of resistance-"metallic" resis- 
tances r, and "dielectric" resistances r2, with a 6-function 
distribution function 

A large number of works have been devoted to percolation 
problems (see, e.g., Refs. 1-3). 

No less interesting and important is the case when the 
spectrum of resistances is continuous, while preserving the 
strong inhomogeneity-the "worst" of all the possible re- 
sistances are much greater than the "best." The best- 
known problem of this type can be formulated, in the sim- 
plest case, as follows. Find the effective conductivity d of 
a random network of resistances 

can be formulated analogously; in certain cases, this prob- 
lem can model so-called Swiss-cheese systems.4 Below, for 
definiteness, we shall discuss the problem with an exponen- 
tially broad spectrum of resistances, and at the end extend 
this approach to the case of a problem with a power dis- 
tribution. 

A problem with a continuous spectrum of distributions 
is not directly a percolation problem-there is no percola- 
tion threshold such that when it is reached one of the 
phases forms an infinite cluster, since the phases them- 
selves do not exist. However, there exists a device, pro- 
posed in Refs. 5 and 6 (see also Ref. I ) ,  that reduces the 
problem with continuously distributed resistances to the 
two-phase percolation problem and makes it possible to 
determine the principal regular feature--the exponent in 
a4 As regards the pre-exponential factor, debate about this 
is still c o n t i n ~ i n ~ . ~ - ' ~  

In Ref. 8 the following asymptotic (A + co ) expression 
was proposed for the effective conductivity: 

where Ri is the resistance of the ith link in the lattice, Ro is A D(xc) 
d= 

a constant, and x is a random variable with a smooth prob- a f 2 R  (x,) 
As19 (4) 

ability density D(x); henceforth, we shall set D(x) = 1 for 
O<x<l, and D(x) =O for all other x. Values of As1 tor- where A is a constant that depends on the form of the 
respond to large inhomogeneitye ~h~ interest in this prob- lattice, a. is the lattice constant, and the value xc is defined 

lem, with an exponentially large inhomogeneity, arises be- in terms of the value of the percolation threshold PC : 

cause the calculation of the hopping conductivity reduces 
to it in a number of cases.' The problem for large inhomo- (5) 
geneity of the power-law type 
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FIG. 2. Form D= D(x) of the distribution of the random variable x that 
determines the magnitude of the link resistance via Ri=Ro exp( -k): I) 
region of low ("metallic") resistances; 11) region of high ("dielectric") 
resistances. 

FIG. 1.  Structure of a medium above the percolation threshold; I)  a For the very simple form of D(x) that we have chosen 
bridges set of "singly connected bonds" that consists of the good- here [D( 1) = l,O(x( l] the distance r= (p-p,)/p, from 
conductor phase. The good-conductor phase is shaded. the percolation threshold (p is the concentration of "me- 

tallic" resistances) is related to x and x, as follows (Fig. 

where all resistances with x > x, are conventionally re- 
garded as "metallic" and those with x < x, as "dielectric." 

The quantity that determines the behavior of the pre- 
exponential factor is the critical index y. The analytical 
expression obtained for y in Ref. 9 does not fully agree with 
the numerical values and upper and lower boundaries y+ 
and y- obtained in Refs. 7 and 8. 

In this paper we propose an approach which makes it 
possible to obtain an analytical expression for the critical 
index y and the analogous indices for other forms of broad 
continuous distributions of resistances. The basis of this 
approach is the weak-link model (WLM) (Refs. 11-14) 
and the hypothesis that for a correct percolation descrip- 
tion of randomly inhomogeneous media with a broad spec- 
trum of the distribution of resistances it is necessary to 
assume that they are in the smearing regime.') A simplified 
approach is given in Ref. 15. 

In Sec. 1 of the paper we consider the critical behavior 
of the ue of a network with an exponentially broad spec- 
trum of resistances, while in Sec. 2 we consider the case of 
a power spectrum. In Sec. 3 we give an analysis of the 
results and a comparison with the numerical values and 
upper and lower boundaries known from the literature. In 
Sec. 4 we consider the critical behavior (associated with 
the fourth moment of the current distribution) of the rel- 
ative spectral density of the l /  f noise. 

1. AN EXPONENTIALLY BROAD DISTRIBUTION OF 
RESISTANCES 

To determine the critical index y we shall assume first 
that for X+X,(X >x,) the medium is above the percolation 
threshold, i.e., if we were to regard all the resistances with 
R(R (x,) as the "metallic" phase, and all the others as the 
"dielectric" phase, we would obtain the standard structural 
picture of the nodes-links-blobs (NLB) type'"'9 (Fig. I ) ,  
with a definite bridge length [a set of single connected 
bonds (SCB)]. It is the resistance of these bridges that 
determines the entire resistance in the correlation volume. 

Taking into account the form of D(x) and the inequality 
A> 1 we can estimate the average resistance of a bridge as 
follows: 

where the renormalization Pl(x)  = D(x)/J'  X~ D(x)dx of 
the distribution is due to fulfillment of the condition that 
the largest bridge resistance is R (x,) . The bridge resistance 
(and, consequently, the resistance of the entire correlation 
volume) is equal to 

Ri=Ni(R),, ( 8 )  

where N1 is the number of SCB in the bridge. 
We now assume that for x+x,(x <x,) the medium is 

below the percolation threshold; i.e., if we were to color all 
the resistances with R < R(x2) black, we would obtain a 
picture dual to the preceding case (see Fig. 3)-the entire 
resistance is concentrated in a thin layer, of thickness equal 
to one link length ao, between "metallic" clusters. The 
average resistance (the links in the layer are parallel to 
each other) can be estimated as follows: 

where the renormalization P2(x) = D(X)/~:D(X)~X of 
the distribution is due to the fact that the smallest resis- 
tance in the layer is R(x,). The resistance of the layer 
(and, consequently, of the entire correlation volume) is 
equal to 

R2= l/(N2(1/R)z), (10) 

where N2 is the number of so-called single disconnected 
bonds (sDB)." 
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FIG. 3. Structure of a medium below the percolation threshold: 2) a 
layer-a set of "singly disconnected bonds" that consists of the poor- 
conductor phase. The good-conductor phase is shaded. 

The numbers N1 and N2 of SCB and SDB have a 
power dependence on the distance r= (x-x,)/( 1 -x,) 
[see (6)] from the percolation threshold p, : 

The values ai are determined differently in the different 
models of the percolation structure. In the NLB model the 
index al = 1 (Refs. 16, 1, 21-23), and, according to Refs. 
24 and 20, a2= 1 as well. According to the WLM,"-'~ the 
ai are expressed in terms of the well known indices cR and 
f G  describing the behavior of the resistance (RE) - r - 6 ~  
and conductance (G6) - 1 T 1 - 6 ~  averaged over the corre- 
lation length g: 

where t and q are the critical indices of the effective con- 
ductivity of a two-phase medium above and below the per- 
colation threshold. In such two-phase systems, with the 
conductivities of the phases satisfying u1)u2, as is well 
known,25 near the percolation threshold we have 

The dependences ( 13) are valid for A( 1 r 1 ( 1, where A is 
the region of smearing. At a finite ratio u2/ul (the ratio 
u2/u1 is the analog of the external field in the theory of 
second-order phase transitions, the effect of which depends 
on the magnitude of the order parameter) the discrete 
percolation-threshold point disappears and the transition 
"is smeared out." The order of magnitude of the region of 
smearing can be estimated by equating the values of ue 
above and below the percolation thre~hold:~' 

ulAtzu2A-9, (14) 

whence follow both the expression for the region of smear- 
ing and the value of the effective conductivity in the region 
of smearing: 

We shall return to the problem with a continuous dis- 
tribution of resistances. Substituting (7) and (9) into (8) 

and (10) and going over from R to the conductivity 
of= ~ / R , Y - ~  (where {-ao 1 r 1 -' is the correlation length, 
with critical index Y, and d is the dimensionality of the 
problem), we obtain 

In analyzing ( 16) and ( 17) one should note that they are 
unsatisfactory for at least two reasons. First, in the form in 
which they are written they contradict the hypothesis of 
the universality of the critical index y-the dependences on 
A in ( 16) and ( 17) are directly opposite. Second, the value 
taken by r (and hence, according to (6), by xl  and x2) is 
not clear. We recall that, according to the method pro- 
posed in Refs. 5 and 6 (see also Ref. 1 ), the distance r from 
the percolation threshold is introduced by convention and 
is not a free parameter whose value can be chosen at will, 
as can be done in two-phase systems by changing the con- 
centration. 

These contradictions can be removed by assuming that 
at the point of completion (or breaking) of the percolation 
cluster the system is in the smearing regime. We note that 
whereas in two-phase systems the size of the region of 
smearing can equal zero (either the metal is a perfect con- 
ductor or the dielectric is a perfect insulator), in the prob- 
lem with a continuous distribution of resistances the size of 
the region of smearing has an entirely definite, nonzero 
value. By analogy with ( 14) we obtain an equation for the 
region of smearing: 

In the brief communication Ref. 15 it was assumed for 
simplicity that in (16) and (17) xl=x2=xC, which, with 
the use of ( 18), made it possible to remove the contradic- 
tion and determine approximately the critical index y. 
Here, we take into account that, according to (6), 

i.e., that xI#x2. 
Substituting ( 16), ( 17), and ( 19) into ( 18), we obtain 

the following nonlinear equation for A: 

Taking into account that A( 1 (but M )  1 ) , and neglecting 
the term ( 1 -x,)A in comparison with x, and 1 -x,, from 
(20) we obtain 

Now, both from (16) [u;=4(r=A)] and from (17) 
[&= & ( r =  A)] we obtain an expression for the effective 
conductivity: 
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FIG. 5. Dependence of the critical index y on the dimensionality d of the 
problem. The lines with shading are the upper and lower 
the solid line is the critical index of LeDo~ssal, '~ and the dashed line is 
the critical index y= ( t -q) /2  in the weak-link model. For the numerical 
values of the critical indices of the two-phase media we have taken 
v2=4/3, t2=q2=1.29; ~ ,=0.9 ,  4 ~ 1 . 7 ,  q3=o.7; v4=0.7, t4=2.4, 
q4=0.35; v5=0.6, t5=2.7, q5=0.14; v6=0.5, t6=3, q6=0, where the sub- 
script denotes the dimensionality of the problem. For convenience the 

FIG. 4. Distribution F ( z )  of the random variable z for which resistances dependence of on is presented as a continuous line. 
specified in the power-law manner ( 3 )  take the exponential form ( 2 ) .  

where A depends only weakly on A [A - (In A)al+a2+v(d-2)] and the critical index y is equal to 

An analysis of this expression is given in Sec. 3. 

2. A POWER-LAW DISTRIBUTION OF RESISTANCES 

We now consider a random network of resistances 
with a power-law dependence (3) of the resistance on the 
random variable x. We choose the distribution D(x) to be 
the same as before: D(x) = 1 for O<x< 1. The expression 
(3) can be brought to the exponential form (2) by the 
change of variable x=ln z, but the distribution of the ran- 
dom variable z now has a form different from that of D(x) 
(Fig. 4). 

In terms of the variable x the determination of d is 
analogous to the preceding determination. For example, 
the average bridge resistance and layer resistasce (with 
allowance for the fact that A) 1) are equal to 

while the equation for the region of smearing is 

the solution of which has the form 

Substituting (26) into the expression for the resistance of 
the correlation volume and going over to the effective con- 
ductivity ae, we obtain 

where A depends logarithmically on A and y coincides with 
(23). 

3. ANALYSIS OF THE EXPRESSIONS OBTAINED 

The analytical expression for the critical index y has 
been obtained on the basis of the assumption that the sys- 
tem is in the smearing regime. The numerical value of y 
will depend on the model used for choosing al and a2. 
When the ai are chosen using the NLB models (ai= 1 ) the 
index y coincides with that in the paper of ~ e ~ o u s s a l : ' ~  

Comparison of yLD with the numerical values in Ref. 9 and 
the upper and lower boundaries in Refs. 8 and 9 shows 
insufficiently good agreement (see Fig. 5). 

When the ai are chosen using the WLM,"-'~ we have 

Y W L M = Y ( ~ I = ~ R ,  a ~ = g ~ ) = ( t - q ) / 2 ,  (29) 

which agrees well with Refs. 8 and 9. It is easy to see that 
since the upper boundary y+ and lower boundary y- are 
equal to y+=t-1 and y-=1-q (Refs. 8, 9) the value 
obtained for ~ L M  is their average ywLM= (y+ +y-)/2. 

962 JETP 77 (6), December 1993 A. E. Morozovskii and A. A. Snarskil 962 



We now show that y,, is a particular case of YWLM 

(23). For this it is sufficient to resort to the values o f t  and 
q that follow from the simplest variants of the models with 
SCB and SDB. We shall consider first the case T >  0. On 
the one hand, according to Refs. 1, 16, and 21-23, 
N'-T-~, and, on the other, the average value of the resis- 
tance of a network of size equal to the correlation length is 
(Rg) -Nl . Comparing these values with the familiar ex- 
pression (R5) - T - 5 ~  [{R=t-v(d-2)], for the critical 
index t we obtain t* = 1 + Y (d- 2). This result, based on 
the model of a single-cable network, turns out to be inac- 
curate in a number of cases (see the discussion oft* in the 
book Ref. I) ,  and this has stimulated a number of papers 
on the refinement of the structure of a percolation cluster 
(see, e.g., Ref. 26). Analogous arguments for the case r < 0 
(Refs. 24 and 20) lead to q* = 1 - v(d  -2). This result, 
based on SDB, is also inaccurate in a number of cases; e.g., 
for d > 4 we have q* < 0, unlike the value q > 0 generally 
adopted for all dimensionalities. The structure of the per- 
colation cluster for T < 0 is investigated in Ref. 27. 

Substituting t* and q* into the general expression (23) 
for y we obtain 

y(t=t*, ~ = ~ * ) = Y L D .  (30) 

For the critical dimensionality dc=6 the critical indi- 
ces t and q are known exactly27 [t(d,) =t*(d,) =3], but 
q*(d,) = - 1, which does not coincide with the exact value 
q(d,) =O. The latter evidently permits us to assert that 
y(d,) = (3 -0)/2= 1.5 (and not yLD=2, as stated in Ref. 
10). 

The results of this approach are not changed if one 
chooses the different notation adopted in, e.g., Ref. 1: 

Ri= Ro exp {, (31) 

where R,, as before, is the resistance of the ith link, and 
is a random variable with constant probability density in 
the interval [-C0, to]. A large inhomogeneity is specified 
by the condition go> 1. In this notation, as is easily shown, 

where {, is related to the percolation threshold p, by 
pc= ({c+{0)/2. The critical index y has the same value 
[(23) and (29)] as before. 

It is evident that the problem with a power-law distri- 
bution of resistances can serve as a suitable basis of a model 
for the description of the effective conductivity of island 
metallic films29 on a weakly conducting substrate. In this 
case the substrate can be interpreted as the second, poorly 
conducting phase, and the resistance of the metallic islands 
can be neglected in the first approximation. Then the re- 
sistance between two islands will be determined by the 
shape of the boundaries of the island near the contact, and, 
if we assume that this shape is smooth and almost a circle, 
we obtain R -xu (a=const), as in the Swiss-cheese 
model.4 

We note also that an investigation of the optical prop- 
erties of metallic island films on a nonconducting 
substrate3' points to the need to examine the properties of 

the structure over distances of the order of the correlation 
length, and this, when "translated into the concentration 
language," implies a region of smearing. 

4. RELATIVE SPECTRAL DENSITY OF THE l / f  NOISE 

The amplitude Y of the relative spectral density 
(RSD) of the l/f noise3' is one of the important charac- 
teristics of materials. A large number of papers are devoted 
to its study in macroscopically inhomogeneous media (see 
Refs. 12, 20, and 32-35, and the literature cited therein). 
As is well known, in two-phase media near the percolation 
threshold the effective amplitude Ye of the RSD of the 
l /  f noise behaves in a critical manner. The problem of the 
determination of Ye in macroscopically inhomogeneous 
media is formulated analogously to the problem of the de- 
termination of ue; from the given local values Y1 and Y, 
of the RSD in the two phases one determines the Ye of the 
whole sample. Here, just as in the case of the problem of 
the determination of d, there exist rules for calculating the 
Ye of parallel- and series-connected resistances Ri: 

where Re is the total resistance and Yi is the RSD of the 
resistance Ri; the first relation is for resistances connected 
in series, and the second for resistances connected in par- 
allel. 

It is often more convenient to use the specific relative 
spectral density C of the I/ f noise. This is related to Y as 
follows: 

c=Y,. v, (34) 

where Y is the RSD of the l/ f noise of a homogeneous 
sample of volume V. 

In terms of C the expression for the effective RSD of 
the l /  f noise has the form 

where j is the current density and E is the field intensity. 
It follows from (33) and (35) that to determine the 

RSD of the l /  f noise it is necessary to know not only the 
spatial distribution of the phases but also the distribution 
of the currents in the system. Models of the NLB or WLM 
type, describing the principal elements of the structure, 
make it possible to estimate the behavior of the RSD of the 
l /  f noise in systems with continuously distributed resis- 
tances. 

First it is necessary to formulate an assumption anal- 
ogous to the hypothesis of Ref. 31, according to which 
C= a/u, where a z const is the universal Hooge constant. 
We shall assume that in our model system with an expo- 
nential spread of resistances the specific local RSD of the 
l/  f noise depends as follows on the random variable x: 

a = const. 
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The subsequent calculation is implemented analo- 
gously to the calculation of a'. First it is necessary to de- 
termine the RSD of the l/f noise above the percolation 
threshold. According to (33) (the resistances in the bridge 
are arranged in series), 

where Re is the resistance of the whole sample. Use of 
(36), which can be formulated in the form 

brings (37) to the form 

The sum in (39) is determined analogously to (7) and (8) : 
zR3 (x) = N~ (R3) Calculating (R3 (x) ) and substituting 
into (39), we obtain for an exponential distribution of re- 
sistances (here we have already taken into account that the 
system is in the smearing regime): 

where the critical index m is equal to 

The calculation below the percolation threshold is per- 
formed analogously; in this case, 

where 

a2-Ql m2= -- 
2 + vd. 

In the NLB models ( a l = a 2 =  1) we have ml=m2=0. 
According to the WLM, we have m2 > ml, and, in the final 
expression for Ye it is necessary to retain only (42). Going 
over to the specific relative spectral density Ce= YeA-" of 
the l /  f noise, we obtain 

where 

a2-a1 
m > y  + vd. 

Taking into account the values ( 12) of the ai in the WLM, 
from (45) we obtain 

The expressions (44) and (45), (46) fully determine 
the critical behavior of the RSD of the l/f noise in a 
model system with an exponentially broad spectrum of the 
distribution of resistances in terms of the "Hooge hypoth- 
esis" (36) (we note that it would be possible to choose any 
other hypothesis). According to (44)-(46) the RSD of the 
l /  f noise depends exponentially strongly on A. Unlike the 

critical index y, which determines the pre-exponential fac- 
tor of the effective conductivity oe, the critical index m is 
not equal to zero in the two-dimensional case. We note that 
the local "Hooge hypothesis" C(x)a(x)=const is no 
longer fulfilled for the whole sample: 

Ced-A2") 1. (47) 

We are grateful to D. Bergman, P. Gadenne, S. Roux, 
E. Stanley, and A.-M. S. Tremblay for sending preprints of 
their papers, to S. Nepiiko for a discussion about the pos- 
sible connection of the power problem with the conductiv- 
ity ,of island metallic films on a conducting substrate, and 
to E. Baskin and P. Tomchuk for numerous discussions on 
the topics touched upon. 

This work was carried out partly with the support of 
the Ukrainian State Committee on Science and Technolo- 
gies [grant no. 4/726 ( 1992)l. 

' ) B ~  the smearing region A we mean the magnitude of the "smearing" of 
the transition from one critical behavior to the other (the percolation 
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name for this quantity, also adopted in the literature, is the width of the 
transition. For details, see Refs. 14 and 15. 
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