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We examine the influence of vibrational and tunnel excitations of polymers and glasses on the 
shape of the homogeneous optical band of an impurity center. An analytic expression is 
obtained for the optical band shape in the vicinity of a zero-phonon line (ZPL) for interactions 
of arbitrary strength between the optical electrons of the impurity center and the nuclear 
vibrations and excitations of tunnel systems. At low temperature, the formulas found for the 
ZPL half-width and shift go over to the corresponding formulas of the "exchange 
model" used to consider dephasing in spin systems. Numerical calculations of the optical 
band shape are carried out, and its behavior is analyzed for different values of the physical 
parameters. 

1. INTRODUCTION 

In the last few years, it has been found using selective 
spectroscopy methods that strong inhomogeneous broad- 
ening is the primary reason why the impurity bands in 
polymers and glasses are relatively structureless. 

Selective spectroscopy techniques eliminate this inho- 
mogeneous broadening, yielding highly structured fluores- 
cence spectra as well as so-called "hole-burning 
These structured spectra, which will be called selective be- 
low, are not, strictly speaking, homogeneous, by which we 
mean the spectra of individual impurity centers. Indeed, in 
addition to a spread in the resonant electron frequency, 
impurity centers in such disordered systems as polymers 
and glasses possess a spread in other parameters, for ex- 
ample, in dynamic interaction with the environment, 
which affects the shape of a homogeneous optical band. 
Therefore, the theoretical processing of measured selective 
spectra is a more complicated problem than the processing 
of homogeneous spectra of impurity centers in crystals. 
The first step to solve this problem should be the construc- 
tion of a theory of a homogeneous impurity center band in 
polymers and glasses. 

Why then cannot we restrict ourselves to the theory 
developed earlier for impurity centers in when 
considering polymers and glasses? The point is that addi- 
tional degrees of freedom, so called two-level systems 
(TLS), exist in polymers and They are respon- 
sible for low-temperature anomalies of various physical 
properties of glasses7 and reveal themselves in selective 
spectra as ~e11.''~ Hence the theory of homogeneous opti- 
cal bands of polymers and glasses should allow for the 
interaction of optical electrons of an impurity center with 
both phonons and TLS excitations, which will be called 
tunnelons in what follows. In other words, we should allow 
for both electron-phonon and electron tunnelon interac- 
tions. 

We shall restrict ourselves to the consideration of op- 
tical bands of impurity centers, in which only two electron 
levels should be taken into account. The optical band of 
such an impurity center in a crystal consists of a zero- 

phonon line (ZPL) and an accompanying phonon wing 
(PW). The linear Franck-Condon interaction is known to 
determine PW and ZPL intensity but have no effect on 
ZPL halfwidth and shape. Conversely, the Franck- 
Condon interaction quadratic in the phonon operators re- 
sults in ZPL temperature broadening but contributes insig- 
nificantly to PW intensity.4 Nearly the same situation 
occurs as regards the linear and the quadratic electron- 
tunnelon interaction. lo," Reasoning from the foregoing 
and noting that ZPL is the primary object under study in 
selective spectra, we shall restrict ourselves to consider- 
ation of quadratic electron-phonon and electron-tunnelon 
interactions in the present paper. 

These interactions are responsible not only for the 
broadening of the zero-phonon or zero-tunnelon lines (the 
0-0' transition in Fig. 1) but also for the intensity and 
halfwidth of the 1-l', 2-2', etc. transitions. These transi- 
tions do not vary the total number of phonons or tun- 
nelons. On this basis some authors include them in the 
ZPL. These transitions do not affect the ZPL halfwidth 
noticeably. However, they cannot be ignored in the wings 
of this line. We have succeeded for the first time in finding 
a method for calculating the whole system of quantumless 
transitions, which does not rely upon the smallness of the 
quadratic electron-phonon and electron-tunnelon interac- 
tions. The presentation of this method and the results of 
the calculations of the whole system of quantumless tran- 
sitions using this method are the subject of the present 
paper. 

2. ELECTRON-PHONON AND ELECTRON-TUNNELON 
INTERACTIONS 

The theoretical approach of Born and oppenheimer12 
to a system of interacting electrons and nuclei undoubtedly 
remains valid even if tunnel transitions as well as vibrations 
exist in the system of nuclei. In this case, the system of 
nuclei in the adiabatic approximation is described by the 
adiabatic Hamiltonians Pe, which are obtained by aver- 
aging the complete Hamiltonian over the ground ( g )  and 
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The difference A=HP-P between the two adiabatic 
Hamiltonians is the Franck-Condon interaction, which de- 
termines the shape of the homogeneous optical band. In 

FIG. 1. Diagram of the energy levels and potential curves of an impurity 
center in the ground and the excited electron states in the cases of tunnel 
(a) and vibrational (b) nuclear motion. The arrows mark only those 
optical transitions in the absorption spectrum which are analyzed in the 
present paper. 

the excited (e) electron states of an impurity center. In the 
absence of TLS, the yamiltonians IPe depend only on the 
phonon coordinates R: 

where fR and P e ( 2 )  are the operators of the kinetic and 
potential energy of the nuclei. In polymers and glasses, we 
should add to qi an operator depending on the Pauli 
matrix eZ describing tunnel degrees of freedom, i.e., TLS: 

where 

1 
Hp.e -- C eeazj . 

TLS - 2 j=1 

Here is the energy of thejth TLS for an electronically 
excited (e) and unexcited (g )  impurity. 

The Pauli matrix eZj may be expressed in terms of the 
operators cj and c7 obeying the Fermi commutational re- 
lations: 

3 ZJ .=C,.C,-C~C;. (4) 

Clearly, c; and cj are the creation and annihilation oper- 
ators for an excitation in thejth TLS, i.e., thejth tunnelon. 
The operator Pfis may be expressed in terms of the tun- 
nelon operators: 

N 

f ie  - C qc i+c j .  
,=I ( 5 )  

Here, we have omitted a constant, which may be included 
later in the electron interaction energy. 

poly~ers  _and glasses, it consists of !wo terms: 
= Aph + ATLS , where iPh = H",, - qh and ATLS = HeTLS 

- H8,,, describe the electron-phonon and the electron- 
tunnelon interactions f;espectively. Approximating the po- 
tential function P e ( R )  by a quadratic form, we get the 
following expressions for the interactions: 

where W =  Ue- Ug is the difference of the force matrices 
and A = E; - t$ is the difference of the tunnelon energies. 
We do not take into account the shift of equilibrium posi- 
tions, which gives rise to a linear electron-phonon interac- 
tion making no contribution in ZPL broadening. 

3. GENERAL FORMULAS FOR THE OPTICAL BAND SHAPE 

The expression describing the shape of the optical ab- 
sorption band of an impurity center has the form13914 

where wo is the resonant frequency of the impurity center, 
and 

(...),=Tr[exp(-flHg)...]/Tr[exp(-PHp)]. (9) 

The function (j( t)) ,  describes the time behavior of the 
dipole correlator, whose Fourier component is known to 
govern the shape cf the absorption band. 

The operator I ( t )  satisfies a simple equation 

where 

i ( t )  =exp(iH8t)i exp( - i P t ) .  (11) 

Solving Eq. (10) with the initial condition j(0) = 1, we 
find that 

The time-ordering operator f arranges the operators A in 
such a way that their times increase from right to left. 
Since the phonon operators R commute with the tunnelon 
operators cf and cj, Eq. (9) may be averaged indepen- 
dently over the phonon and the tunnelon subsystems: 

( i ( t ) )g= (jph(t) ) g , p h ( i ~ ~ ~ ( t )  ) g , ~ ~ ~ ,  (13) 

where the averages on the right side are described by Eq. 
(9), where H8 are replaced by Hgph and HgT, respectively. 
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Let us first consider the calculation of the phonon av- 
erage in Eq. ( 13 ) . In this case, t$e operator ( 12) is aver- 
aged, where the operators Aph= R ( W/2) R  are substituted 
for the operators A. If the impurity center is electrically 
neutral, only solvent molecules in its immediate vicinity 
experience the change of its electron state. In this case, the 
interaction is local, and we may restrict ourselves to the 
considesation of only one matrix element in the w matrix, 
taking Aph = ( ~ / 2 )  R ~ .  

The calculation of the averages of the Aph products in 
formula (12) is performed in accordance with the rules 
worked out by Wick, Bloch, and  omi in is is.'^ Here the 
averages of the products of Aph are decomposed into the 
products of causal single-frequency phonon Green's func- 
tions: 

where 8(t)  is the Heaviside step function. The calculation 
of the averages in Eq. (14) brings us to the following ex- 
pression: 

where 

Here, n(v) = [exp(hv/kT) - 11-I, the spectral function 
rph(v) is determined by the amplitude of vibrations of the 
molecular coordinate R  at the frequency v.I6 

The calculation of the averages in formula ( 12) yields 
the following result: 

where 

Here, S(+O,r) denotes the infinite series in the square 
brackets. Evidently, it is a solution of the integral equation 

The tunnelon average (ITLS(t))g,TLS is calculated in a 
similar way. In this case, the casual single-frequency tun- 
nelon Green's function appears in the calculations 

The calculation of this function yields10 

where f (E) =[exp(E/kT) + I]-' and r j ( E )  is the spec- 
tral function of the jth tunnelon. 

When calculating (ITLS( t) )g,TLS, we should take into 
account the Fermi nature of the operators cT and c,. The 
result is 

( I T L s ( ~ ) ) = ~ x ~  C 4j(t), 
i 

where 

Here, the function S ( + ~ , T )  also describes an infinite se- 
ries, which is a solution of the equation 

for x = + 0. Equation (23 ) resembles Eq. ( 18) derived for 
the phonon system. They differ only in their Green's func- 
tions. 

The impurity center optical band allowing for the qua- 
dratic interaction in all orders in the coupling constants W 
or A, is thus described by 

where the cumulant functions #ph(t) and t$,(t) are deter- 
mined by formulas ( 17) and (22). Clearly, the problem is 
reduced to the solution of the integral equations (18) and 
(23). 

4. THE CALCULATION OF THE TUNNELON CUMULANT 
FUNCTION #At) 

We shall simulate the spectral function of the j-th tun- 
nelon by a Lorentzian curve with a halfwidth 2y. The sub- 
script j will be omitted in this section. The tunnelon energy 
in the ground state is denoted by E. Taking into account 
that 
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we can rewrite the tunnelon Green's function in the fol- 
lowing simplified form: 

The sign of the frequency Ro has to agree with that of the 
coupling constant A. It is easy to verify that yo < y. There- 
fore, we have yo-0 for a long-lived tunnelon. Solving Eq. 
(30) and substituting this solution in Eqs. (27) and (22), 
we get the following expression for the tunnelon cumulant 
function: 

Here we have written f = f (E), and 1/2y is the tunnelon 
lifetime. 

The function S(X,T) will be sought in the following 
form: 

where S 1 , 2 ( ~ , ~ )  and are unknown functions and com- 
plex frequencies. Let us substitute formulas (26) and (27) 
into the integral equation (23), perform integration over y 
and collect all the terms with identical exponentials. In- 
stead of the integral equation (23), we obtain the following 
algebraic equation 

where 

In the derivation of Eq. (35), we have used the fact that 
G(-0) -G(+O) =i. 

5. THE ELECTRON-TUNNELON BAND 

We restrict ourselves to examining the case, in which 
only one tunnelon experiences the variation of the impurity 
electron state, i.e., the electron-tunnelon interaction is lo- 
cal. Then the sum over j should be omitted in Eq. (24). 
Neglecting temporarily the electron-phonon interaction 
too, i.e., assuming &,=O, we find the following expression 
for the integrand in Eq. (24): 

This expression describes the time dependence of the di- 
pole correlator, including the interaction of the electron 
dipole with the tunnelon. Taking into account the relation * 
$( - t) = 4(t) ,  we obtain the following expression in 
place of (24): 

This equation is satisfied at any x value, if all the factors 
multiplying the exponents are zero. This condition is met, 
if the unknown frequencies are the roots of the equa- 
tion 

and the unknown functions S1 (7) and S2(7) are the solu- 
tions of the following system of equations 

To separate the real and the imaginary parts in the expres- 
sion in the square brackets, we introduce the real functions 
A and B: 

Here we have introduced the notation 

AI,2=~-iy-R1,2, h1,2=~+iy-R1,2. (31) 

Equation (29) has two roots 

Taking into account the fact that 

where 
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we find, instead of formula (38), the following final expres- 
sion for the electron-tunnelon optical band: 

Here R = w - wo- A/2. The real functions A and B may be 
expressed in terms of the physical parameters A and y and 
a temperature function f ,  if we make use of the expression 

which is obtained from (36) with allowance for Eq. (29). 
Substituting (41) in Eq. (39), we find 

Relations (40) and (42) permit the optical band shape to 
be calculated numerically. Let us analyze these formulas. 

We start our analysis with the case when the tunnelon 
is long-lived. Then we may set y=O, and according to 
formulas (33) and (34), we therefore have yo=O and 
Ro=A/2. In this case, Eq. (40) is drastically simplified, 
and we obtain the well-known resultlo 

These two 6-function lines describe the 0-0' and 1-1' tran- 
sitions depicted in Fig. la. The 1-1' transition is accom- 
panied by annihilation of a tunnelon in the ground electron 
state and creation of a tunnelon in the excited electron 
state. The interaction with a long-lived tunnelon does not 
cause line broadening. 

Let us now consider the influence of the interaction 
with a short-lived tunnelon on the optical band. Compar- 
ison of Eqs. (40) and (43) shows that the finite tunnelon 
lifetime 1/2y cannot be allowed for just by replacing the 
6-functions in Eq. (43) by Lorentzian curves with the 
proper widths, because the intensities of phototransitions 
also depend on tunnelon lifetime. The first Lorentzian 
curve in Eq. (40) with a smaller halfwidth 2 ( y - yo) de- 
scribes the zero-tunnelon line, while the second Lorentzian 
curve with a halfwidth 2(y + yo) corresponds to the 1-1' 
transition. Moreover, the terms proportional to B make 
the Lorentzian curves asymmetric. The electron-tunnelon 
bands calculated from Eq. (40) for various values of the 
dimensionless coupling constant A/2y and various temper- 

FIG. 2. a-The effect of temperature on the shape of the homogeneous 
electron-tunnelon band calculated from formulas (38)-(40), for various 
values of the dimensionless temperature kT/~=0.5 (I); 1 (2); 3 (3) and 
at A/2y= 1. The frequency in the x-axis is in units of ZPL halfwidth and 
is measured from the ZPL position at T=O. &As in Fig. 2a, for A/2y 
=2.5. +As in Fig. 2a, for A/2y=5. 

atures are shown in Figs. 2a, 2b, and 2c. The scale in the 
abscissa is chosen so that all the zero-tunnelon lines have 
unit halfwidth. On this scale, the shapes of the 0-0' and 
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1-1' lines and their relative position are clearly seen. 
The total intensity of the whole optical band does not 

depend on electron-tunnelon coupling constant and tem- 
perature. As the temperature increases, the total intensity 
of the zero-tunnelon line decreases, while the intensity of 
the 1-1' transitions grows. Intensity is transferred from the 
0-0' to the 1-1' line as the temperature increases, as in the 
case of electron-phonon spectra. 

6. THE EVALUATION OF THE PHONON CUMULANT 
FUNCTION 4,(t) 

The method used in Sec. 4 for resolving the integral 
equation (23) can be used to calculate 4ph(t) as well, if 
only the interaction with a quasilocal vibration is taken 
into account. Experiment shows that in most of the cases 
studied an impurity center interacts most actively with a 
quasilocal vibration. This vibration, as well as tunnelon, 
may be approximated by a Lorentzian curve with a half- 
width 2y. If an approximation of the form (25) is used, the 
phonon Green's function ( 15) is transformed to 

where n=[exp(hv/k~)-11-', v and 1/2y are the fre- 
quency and the lifetime of the quasilocal phonon. 

We look for the solution of the integral equation ( 18) 
in the following form: 

4 

S(X,T) = ~~(r)e '"$ .  
i= 1 

(45 

The procedure for determining the unknown functions 
Si(r)  and the complex frequencies 0; is quite similar to 
that presented in Sec. 4. Substituting (44) and (45) in Eq. 
(18), we find the following equations for the unknown 
frequencies and functions: 

Once the four roots Ri of Eq. (46) are found, we could find 
the four unknown functions Si(r)  by substituting the roots 
in the system of four equations (47). This procedure is 
simple in principle, but rather cumbersome in practice. 
Fortunately, it can be avoided, if we consider that we do 
not need the whole function S(x,r)  for the cumulant func- 
tion to be determined, but only its value at x =  +O, i.e., 
S(+O,r). However, the function S ( + ~ , T )  can be ex- 
pressed merely in terms of the determinant d ( r )  of system 
(47) : 

Substituting (48) in ( 17), we get the following expression 
for the phonon cumulant function q5ph(t): 

The cumulant function at t*<O can be found by using a 

simple relation $ph( - t) = $( t) . It follows from Eq. (46) 
that there are only two independent complex roots a1,2, 
because a3 = - R1 and R4 = - a2. Calculating the deter- 
minant d(t) of system (47), we find 

where 

Formulas (49)-(51) completely determine the phonon cu- 
mulant function 4ph( t).  

Let us compare expression (50), which allows for the 
phonon peak width y and the temperature T, with Eq. 
(21) of Ref. 16 for the cumulant function h, which was 
calculated earlier by another method at y=O and T#O. If 
we set y=O in the expression for d(t) and neglect the 
contribution of the linear electron-phonon interaction in 
the function h, we find that the results agree completely: 
h (t) =#ph (t). This proves the adequacy of two different 
methods for calculating the cumulant function. 

The determinant may be simplified, if we note that the 
parameter A in principle may not exceed unity in magni- 
tude. In real physical systems, it is always less than unity. 
Indeed, in the limit y+O the frequencies Q1 and f12 trans- 
form to real frequencies of the ground and the excited 
states, i.e., a2 = v and a, = v+ A. The parameter A satisfies 
A =A/(2v+A) < 0.1 even if the value A/v=0.2 is taken to 
estimate it. To zero order in A, we obtain the following 
simplified expression for the cumulant function : 

This cumulant function resembles the tunnelon function 
(35) derived in Sec. 4. 

7. THE ELECTRON-PHONON BAND 

Substituting (49) in formula (24) and temporarily ne- 
glecting the tunnelon cumulant function 4j ,  we find the 
following expression for the electron-phonon band: 
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Let us examine this formula, substituting in it first a sim- 
plified version of the determinant, i.e., 

where 4ph is determined from formula (52). Then, instead 
of (53), we find 

where a= o - w, + - 0 . The optical band consists of 
an infinite sum of peaks corresponding to the W', 1-lo, 
2-2', etc. transitions depicted in Fig. lb. All the peaks, 
except the 0-0' peak, identified as the ZPL, vanish as tem- 
perature increases, because the parameter ab = exp ( - hv/ 
kT), when y-0. 

It is of interest to consider the the influence of low- 
frequency excitation statistics on the nature of the optical 
band. Recall that phonons are bosons and tunnelons are 
fermions. The question of the impact of statistics comes to 
mind in connection with the fact that the mathematical 
methods for calculating the electron-phonon and the 
electron-tunnelon bands are identical, while the optical 
bands obtained are fundamentally different in nature: the 
electron-tunnelon band consists of two peaks, while the 
electron-phonon band consists of a great number of peaks. 
This distinction in the band nature arises because the sign 
of In in Eq. (35) is opposite to that in Eq. (52). Conse- 
quently, the difference in the statistics results in the oppo- 
site signs of In and in the fundamental distinctions in the 
nature of the optical bands. 

The shape of the electron-phonon band is most 
strongly affected by the parameter W/2vy describing the 
ratio of the phonon frequency variation and the phonon 
peak width. It is clear without numerical computations 
that the transitions 1-l', 2-2', etc. merge with the ZPL for 
W/2vy < 1. However, numerical calculations with formu- 
las (50), (51), and (53) show that such merging occurs 
even for W/2vy- 30 (Fig. 3 ) . Only for W/2vy- 1 0  does 
a structure appear near the ZPL (Figs. 4a,b). The calcu- 
lation of the curves in Fig. 4a was performed with the exact 
formulas (49)-(51) with W/2vy=400. This parameter 
value corresponds to it2=0.04. Thus, the contribution of 
the parameter it in the optical band is actually small, and 
the transition from (50) to (52) is really justified. Accord- 
ing to Eq. (50), the parameter it2 determines the intensities 
of transitions in which two, four, etc. phonons are created 
or annihilated. First, these lines are located far from the 
ZPL, and second, they have low intensity. Their influence 
is not seen in Fig. 4, although W/2vy=400. 

8. TEMPERATURE BROADENING AND THE SHIFT 
OF THE ZPL 

According to (24), the actual optical band is a convo- 
lution of the electron-tunnelon and the electron-phonon 
bands. Hence the halfwidth of the nearly Lorentzian 0-0' 
line is the sum 

FIG. 3. The effect of coupling strength on the shape of the homogeneous 
electron-phonon band. CUN~S 1-3 are calculated from formulas (50), 
(53) for W/Zvy=60 (1); 30 (2 ) ;  15 (3) and for kT/v=0.8. The fre- 
quency scale is similar to that used in Fig. 2a. 

where yTLS(T) and yph(T) are the halfwidths of the zero- 
tunnelon and the zero-phonon lines. 

Figures 2-4 indicate that the phototransitions which 
leave the number of phonons and tunnelons unchanged do 
not change the halfwidth of the (1-0' line much, although 
they are located near it. It is this fact that was considered 
earlier in the construction of the theory of ZPL broadening 
and In this theory, formulas for ZPL half- 
width and shift were derived, which differ from that ob- 
tained in the present paper. The analysis of this problem 
shows that in the earlier theory the exact tunnelon and 
phonon Green's functions (15) and (20) were used, while 
in the present paper the simplified expressions (26) and 
(44) for these functions are used. If the exact Green's 
function in the final formulas of the earlier theory are re- 
placed by the model expressions (26) and (44), then the 
results of the two theories are in complete agreement.I7 

Let us consider at greater length the expressions for 
the 0-0' line halfwidth and shift resulting from the 
electron-tunnelon interaction. According to Eq. (40), we 
have 

where f lO(T) and yo(T) are defined by (33) and (34). If 
we introduce a dimensionless variable x = A/2y into the 
last-mentioned formulas, they can be represented in the 
following form 
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FIG. 4. The effect of temperature on the shape of the homogeneous 
electron-phonon band calculated from formulas ( 5 0 ) ,  ( 5 3 )  for W / 2 v  
= 100 (a) and 400 (b) and for kT/v=0.8  ( I )  and kT/v=0.4  (2). The 
frequency scale is similar to that used in Fig. 2a. 

Since chK2(&/2k~) 41  for kT<&, we may expand (57) 
and (58) in ~ h - ~ .  Leaving the first nonvanishing terms, we 
find 

A l A  
h ( T )  =--- - ch-2 - 

2 4 1 + x  (2LT) ' 

957 JETP 77 (6), December 1993 

If we take into account the fact that at low temperature 

then after substituting (59) and (60) in (56), we find 

where r= 1/2y is the tunnelon lifetime. The results (61 ) 
coincide exactly with those of the so called "exchange 
model," which is used to calculate the phase relaxation 
time T2 in both spinl8 and e le~tron '~  systems. Evidently, 
Eqs. (56)-(58) are more general than the formulas of the 
exchange model. 

Equations (58) and (60) for the halfwidth possess the 
property of temperature saturation. Indeed, if the temper- 
ature T exceeds the tunnelon energy E, the ZPL halfwidth 
becomes temperature-independent. The electron-phonon 
mechanisms for ZPL broadening cannot result in such sat- 
uration in principle. The Korotaev investigating 
temperature broadening of the 04' line of perylene in 
n-octane, has recently found that under elevated pressure 
conditions a clearly defined plateau exists in the tempera- 
ture dependence of the halfwidth at 10 K < T < 20 K, and 
the dependence of the halfwidth in a region of 5-20 K is 
adequately described by Eq. (60). The authors of Ref. 20 
interpret their data as a result of the manifestation of the 
quadratic electron-tunnelon interaction. 

9. CONCLUSION 

At present, theoretical processing of selective spectra 
of impurity centers in polymers and glasses is still in the 
initial stage of solution. To make significant progress, it is 
necessary to construct a theory of the homogeneous band, 
a theory of homogeneous band averaging, and finally a 
theory of so called "spectral diff~sion."~ In the present 
paper, only a theory of the homogeneous band of an im- 
purity center in polymers and glasses has been constructed. 
This theory makes it possible in the near future to treat the 
averaging the homogeneous spectral band over the relevant 
parameters and include the spectral diffusion effect. The 
experimental data on selective spectra of impurity centers 
in polymers and glasses will never receive an adequate the- 
oretical description until this program is implemented. 
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