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The derivation of an averaged equation describing the production of large-scale hydrodynamic 
structures in an anisotropic turbulent medium in a Coriolis force field is discussed. The 
small-scale turbulence is assumed to be the result of the local convective instability resulting 
from an internal source of heat in the fluid. The calculation is performed by means of 
a statistical average over the small-scale turbulent eddies, assuming that the Reynolds number 
is low. The tensor structure of the equation for the average velocity on the large scale is 
found to be identical with that of the equation derived in a model for the production of large- 
scale hydrodynamic structures due to spiral turbulence. 

1. INTRODUCTION 

There have recently been a number of treatments of the 
processes by which large-scale hydrodynamic structures 
are produced under the influence of spiral turbulence.14 
The concept of spiral turbulence enables us to derive a 
system of averaged equations which describe the creation 
of large-scale vortices like tropical cyclones. This model is 
characterized by coupling between the toroidal and poloi- 
dal velocity field lines, which is responsible for the creation 
of large-scale vortices. The spiral property, i.e., the break- 
ing of the mirror symmetry of the turbulence, implicitly 
assumes that some convection process is superposed on the 
Coriolis force.7 This concept is so effective in producing a 
state in which structures are created that there is no need 
for explicitly invoking such obviously important factors as 
the Coriolis force and convection on the energy-containing 
scales. If we interpret the large-scale vortices obtained in 
this model as, e.g., the initial stage in the formation of 
tropical cyclones, it is necessary to assume that the concept 
of spiral turbulence contains within itself or parametrizes 
all of these factors. 

Berezin and zhukov8 attempted to construct a model 
for the production of large-scale hydrodynamic structures 
directly through the action of the Coriolis force. They 
wound up concluding that it is impossible to construct 
such a model for an incompressible fluid, but in the case of 
a compressible fluid they derived equations for the large- 
scale motions superposed on a strong vertical variation, 
which they proposed to study numerically. Thus, the ques- 
tion of whether it is possible to construct a model for the 
generation of large-scale hydrodynamic structures in an 
incompressible fluid directly superposed on the small-scale 
convection in the Coriolis force field remains open. 

The turbulence that develops in the region of a tropical 
depression is convective, and according to most models it is 
maintained by the release of the stored heat of vapor con- 
densation. This process corresponds most closely to insta- 
bility in the presence of an internal heat source in the fluid. 
The temperature profile under such conditions assumes the 
form of a quadratic parabola whose curvature is propor- 

tional to the rate at which the heating takes place. Accord- 
ing to the basic idea of spiral turb~lence, '~~ the procedure 
for calculating the Reynolds stress by statistical averaging 
over the small-scale turbulent eddies including the Coriolis 
force and the curvature of the temperature profile in a 
convective cell should yield averaged equations analogous 
to those for the production of large-scale vortices under the 
action of spiral turbulence.'" 

2. FORMULATION OF THE PROBLEM 

The process by which spiral turbulence develops can 
be understood most naturally as a rotation in one direction 
or the other of a fluid element floating in or immersed in a 
fluid with a convective cell due to the Coriolis force.7 Thus 
it would seem that when we treat the problem of convec- 
tion including the Coriolis force and averaging over the 
fine scales superposed on nonspiral turbulence we should 
be able to find the Reynolds stress due to large-scale rota- 
tional instability. It turns out, however, that including the 
vertical variation in the simplest problem of convection on 
the small scale with a constant vertical temperature gradi- 
ent is inadequate to obtain the corresponding Reynolds 
stress. Atmospheric condensation, which proceeds on ac- 
count of the internal release of the heat of vaporization, 
encourages us to take into account the curvature of the 
vertical temperature gradient. Hence the convective insta- 
bility that takes place under these conditions is naturally 
regarded as the source of the turbulent motion. In this 
situation the curvature of the temperature profile should 
play a most important role. 

When modeling the convective turbulence we assumed 
that its characteristic size is less than the dimensions of the 
convective cell. The local convection process is assumed to 
take place as a result of the local heat release in a layer of 
thickness A, above and below which there is a slight stable 
stratification. We prescribe the temperature profile in the 
convective layer as a Taylor expansion in the vertical co- 
ordinate z, assuming that the curvature of the profile is 
weak: 
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The question of convection under these conditions has 
been treated in Ref. 10. The critical Rayleigh number in 
such a system turns out to be much less than the Rayleigh 
number for convection in a layer of fluid with boundaries, 
and the cells are stretched out in the vertical direction due 
to convective penetration. 

We will study the derivation of equations for large- 
scale instability in an incompressible fluid under the action 
of small-scale convective turbulence superposed on the Co- 
riolis force using the following system of equations:" 

Here v is the kinematic viscosity, x is the thermal conduc- 
tivity (the Prandtl number is assumed equal to unity, Pr 
= V / X  = 1 ), B= - l/p[ap/aTlp is the thermal expansion 
coefficient, T is the temperature, and e is a unit vector 
directed vertically upward. 

We assume that at some time a layer with unstable 
stratification described by the temperature profile ( 1 ), su- 
perposed on the weak stable stratification, develops in the 
fluid under the influence of the internal heat source Q. We 
will analyze the instability for perturbations of the velocity 
V(rj) ,  temperature B ( t j )  [T= To(z) + 8(t,x)], and 
pressure P l ( t ~ ) [ P = P o ( z ) + P ~ ( t g ) ,  grad Po(z) 
= page( 1 -BTo(z) )] superposed on the basic state of 
To(z) and Po(z) resulting from the heating. The system of 
equations for the perturbations in the Boussinesq approx- 
imation takes the form 

The Navier-Stokes equation (6) contains an addi- 
tional external random force FI( (Fi) =0) due to the fine- 
scale turbulence in the fluid, whose parameters are as- 
sumed to be consistent with the parameters of the 
convection process. This means, in particular, that the ho- 
mogeneous and steady turbulence should be regarded as 
anisotropic. As is well known, the correlation of the aniso- 
tropic random velocity field in the Fourier representation 
takes the form (see, e.g., Ref. 7) 

where p is a parameter which characterizes the degree of 
anisotropy (O(p< 1 ). 

In this work we restrict ourselves to deriving the Rey- 
nolds stress corresponding to the large-scale instability in 
the presence of the Coriolis force and small-scale convec- 
tive penetration superposed on the prescribed nonspiral an- 
isotropic turbulence with the simplest properties. The Rey- 
nolds stress due to the turbulent correction to the viscosity 
coefficient was studied by Krauze and ~ i i d i ~ e r . ' ~  Conse- 
quently, the characteristic scale of the turbulence is on the 
order of the thickness A of the stably stratified layer, and its 
strength u~ is determined by the power of the external heat 
source. 

This model presupposes that the conditions for the oc- 
currence of small-scale convection are satisfied, which 
means that the time-independent part of the small-scale 
linear operator vanishes. The weak convective instability 
growth rate y(v/A2 is assumed to be consistent with the 
comparatively large correlation time T= l/y of the turbu- 
lence. Practically speaking this means that the convective 
motion is regarded as turbulent. The presence of a varia- 
tion in the temperature gradient in the problem under 
these conditions has a very strong effect. The role of even 
weak turbulence is therefore very important in determining 
the Reynolds stress. We can say that the process of free 
convection, which produces turbulent motion in the inho- 
mogeneous temperature gradient and Coriolis force field is 
at the same time an effective mechanism for producing the 
spiral property of this turbulence. However, it can be stud- 
ied comparatively simply using the ordinary technique for 
calculating the Reynolds stress only if the turbulent corre- 
lation time does not become too large: 

3. THE REYNOLDS STRESS 

The Reynolds stress will be derived using Eqs. ( 3 ) ,  
(6), and (7), assuming that the nonlinear terms in Eqs. 
(6) and (7) are small, i.e., that the Reynolds number sat- 
isfies Re=uTA/v(l. It is convenient to represent Eqs. 
(6)-(7) as a single equation for the velocity, solving the 
perturbed temperature equation (7) iteratively: 

Here we have introduced the notation Lij for the part of 
the linear operator which is independent of position: 
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The projection operator Pi, excludes the potential part of 
the velocity field. The differential operators in the denom- 
inator are taken to mean integral operators with the cor- 
responding Green's functions. 

Note that the operator L,,, generally speaking, de- 
pends on the large-scale velocity that develops as a result of 
the growth of the instability. In this case it describes the 
phenomenon of stimulated convection, and including it 
would enable us to describe the reciprocal effect of the 
instability on the development of the spiral property. In 
this model it is pointless to include the large-scale velocity 
in the operator Lij, however, since we are neglecting the 
variation of the large-scale velocity fields on the small 
scale, and including the large-scale velocity in the operator 
Li, will describe only the Galilean motion of the small- 
scale cells as a whole, without affecting the parameters of 
the convection process. 

To perform the average over Eq. ( lo) ,  we follow Ref. 
12 and represent the velocity Vi in the form 

The field V: is a homogeneous random velocity field re- 
sulting from the direct action of the external force Fi: 

The quantity ( V,) is the large-scale average velocity field 
((V) ( vT). The equation describing it is found by 
ensemble-averaging over realizations of the turbulent equa- 
tion (10): 

Equation (14) describes the velocity field (Vi), in 
which the parameters A and B refer to the large-scale back- 
ground temperature profile. Since the background profile 
in this model is assumed to be neutral on the average, the 
parameters A and B in this equation must be set equal to 
zero, so that the large-scale equation assumes the form 

L ~ , D ( V ~ ) = - P ~ ~ V ~ ( ( V ~ V , ) + ( Y ~ V ; ) ) .  (15) 

The average velocity field ( V,) superposed on the tur- 
bulent ed_die_s V: gives rise to a small inhomogeneous cor- 
rection Vi( V( vT), which is therefore a functional of vT 
and ( V) : Vi= V,{ vT, ( V)). Subtracting the equation for 
the turbulent part of the velocity v:, Eq. (13), and the 

averaged equation ( 14) from the full equation ( lo), we 
find to lowest order an equation descrjbing the inhomoge- 
neous part of the turbulent velocity Vi: 

The averages of quadratic combinations (the Reynolds 
stress) enter into Eq. (15) for the large-scale velocity. 
These can be expressed in terms of the average field (Vi) 
and the turbulent correlation by using the functional de- 
pendence of the field Vi on the random field v:, assumed 
to be Gaussian, by means of the Furutsu-Novikov 
formula: l3 

similar to the way the production of large-scale structures 
superposed on spiral turbulence is 

Let us determine hoy the inhomogeneous part of the 
turbulent velocity field Vi depends on the turbzlent field 
v:. We represented as a sum of the main part V,, which 
depends on (V) and vT, and a small correction Vlp 

The correction vli, which is associated with the variation 
in the temperature gradient, i_n view of the inequality ( 11 ) 
can be determined by using Vop 

In the expression for & we have omitted unimportant 
terms which contain derivatives with respect to the large- 
scale coordinates, since the averaged equation contains a 
single large-scale derivative on the right-hand side, while 
the Reynolds stress with a second derivative with respect 
to the large-scale coordinates describes the turbulent vis- 
cosity. The tensor L;' represents the inverse operator, 
whose explicit form can be determined through simple but 
rather lengthy calculations: 
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m = E~, ,V&~.  (21 

Hence the variational derivative which enters into the 
Furutsu-Novikov formula ( 17) can be represented as 

(22) 

The calculations in Eq. (17) can be carried out con- 
veniently in the Fourier coordinate representation:14 

Then the Furutsu-Novikov formula (17) assumes the 
form 

where 

of the wave vector. In performing the differentiation with 
respect to kl we should keep in mind that the main con- 
tribution to the integral over the magnitude of the wave 
vector comes from the vicinity of the pole in the inverse 
operator responsible for producing small-scale turbulence. 
To integrate over the wave vector we must explicitly give 
the correlation function &(tl - t2, kl ,ek), which must de- 
scribe both the way the spectrum falls off as the scale of the 
turbulence decreases and the shape of a convective cell. We 
prescribe the correlation function as follows: 

The quantity rl in Eq. (25) describes the ratio of the ver- 
tical to the horizontal scale. It should be regarded as small, 
~ ( 1 ,  since we are using a model with convective cells that 
are elongated vertically. In order to simplify the integra- 
tion we assume that the turbulent spectrum has a trivial 
form, since in this model it is assumed that the turbulent 
spectrum has no wave numbers less than the convective 
wave numbers. The main contribution of the integral 
comes from the vicinity of the pole, and the manner in 
which the turbulent spectrum falls off has no great signif- 
icance. If we neglect the variation of the large-scale veloc- 
ity on the turbulent scale, and also assuming that the ratio 
of the square of the vertical wave number to that of the 
horizontal wave number is much less than unity, we can 
transform-the expression for the quadratic combination 
( v;(t,x) V,(t,x)) > K as follows: 

-4(ek)B3( B/A) ~ ~ k ,  
XNs-tl) [k2e,- (ek) k, 

k6($k2-kl f l ~ ~ ) ~  

xeikl~S(s-t). (24) When integrating near the pole we neglect the shift due to 
The first term in square brackets in Eq. (24) can be the Coriolis parameter. As a result we find the following 

omitted, since it vanishes when integrated over the angles expression for the Reynolds stress: 
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where 

The anisotropic turbulence is characterized by differ- 
ent values of the turbulent energy in the vertical and hor- 
izontal directions: 

For strong anisotropy ( p  -. 1 ) most of the energy is con- 
centrated in the vertical motion: 

The coefficient Go can thus be expressed in terms of the 
turbulent energy density E: 

Then the equation for the average velocity (V,) can be 
represented in the form 

where 

and YT is the turbulent viscosity coefficient on the large 
scale, whose magnitude will be assumed much larger than 
that of the corresponding small-scale coefficient v(vT>v). 

4. LARGE-SCALE MOTION 

Equation (27) describes the large-scale instability in 
an incompressible fluid. This instability can conveniently 
be studied in terms of the poloidal and toroidal parts of the 
velocity ( V), 

The system of equations for the poloidal potential q, and 
the toroidal potential ) of the fields takes the form 

The large-scale instability described by Eqs. (28) is most 
clearly manifested for structures whose horizontal dimen- 
sions are large in comparison to the vertical, Kz$Kl , 
where K= (Kl ,Kz) is the wave vector of the large-scale 
instability, whose growth rate is given by 

When the instability develops, structures form with 
typical size ~&, '=4v~/Cb*  corresponding to the maxi- 
mum value of the growth rate (29), with driven oscilla- 
tions of the medium at frequencies o= - CKz* 2n. It is 
reasonable to expect that the exponential growth of the 
amplitude in the initial stage is slowed down by the possi- 
ble nonlinearity. However, if the amplitude in the process 
of amplification nevertheless approaches the phase velocity 
V~,,=WK&~, the solutions become multivalued and the mo- 
tion acquires a turbulent character. This system can be 
regarded as a source of large-scale turbulence with the 
energy contained on the scale 4vT/Cb* and the character- 
istic amplitude Vph of the turbulent eddies. This can be 
treated as an inverse cascade of energy in the turbulent 
spectrum, which in general causes its shape to change. The 
study of the shape of the turbulent spectrum lies outside 
the scope of the present model. 

If we treat a medium which is bounded in the vertical 
direction, then the thickness h of this layer may turn out to 
be less than the characteristic vertical scale of the instabil- 
ity, h < 4vT/Cb*. In this case a single structure will occupy 
the entire volume of the layer, and the instability will be 
characterized by a threshold determined by a boundary- 
value problem. 

Consider the limiting case of large values of the param- 
eter b* - 2fl,i2/v) 1, realized, e.g., when the small-scale 
viscosity coefficient v is sufficiently small. Equation (27) 
with lengths scaled by the layer thickness h and times 
scaled by h2/vT assumes the form 
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Equation (30) differs from the equation of the large- 
scale instability derived using the idea of spiral turbulence 
by Lupyan et a16 only in having a term with the Taylor 
number, which arises naturally in this model. The role of 
the spiral coefficient S is consequently played by the prod- 
uct 

Thus, in this model the procedure for performing a 
statistical average over the small-scale turbulent eddies in- 
cluding the Coriolis force and curvature of the temperature 
profile in the convective cell yields large-scale equations 
analogous to the equations in the model for the production 
of large-scale vortices under the action of spiral 
tu rb~ lence . '~ , '~  Consequently, the concept of spiral turbu- 
lence parametrizes the combined effects of the variation in 
the temperature gradient and the Coriolis force, while the 
spiral coefficient is proportional to a product of the varia- 
tion in the temperature gradient, the intensity of the tur- 
bulence, and the Coriolis force. 

Note that both Eqs. (28) and Eqs. (30) lead to a 
large-scale instability due to the interaction of the poloidal 
and toroidal velocity fields. Just as in the case of spiral 
turbulence, its growth rate does not depend on the sign of 
the spiral parameters Cb*/2 or S. The direction of the 
spiral characterizes the direction of the velocity fields; for 
example, with a prescribed direction of the poloidal field 
(say, the fluid rises in the central part of the cell and falls 
at the periphery) the sign of the spiral parameter deter- 
mines the sign of the toroidal field, i.e., the direction in 
which the large-scale vortex rotates (when the spiral has a 

positive sign seen from above, the vortex rotates counter- 
clockwise, while with a negative sign it rotates clockwise). 

Equation (30) for the values of the spiral coefficient S 
which exceeds some threshold value describes creation of a 
large-scale vortex like a tropical cyclone, whose horizontal 
dimensions are substantially greater than the layer thick- 
ness h. Under certain conditions the toroidal velocity in 
such a vortex is considerably greater than the poloidal 
field. Including the term with the Taylor number does not 
significantly change the instability process. According to 
~ l ~ a t s k i n , ' ~  the effect of this term reduces to raising the 
instability threshold somewhat and changing the shape of 
the neutral curves. 
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