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We study the possibility for condensation of quasiparticles with a finite momentum k=ko#O 
in a moving medium. We investigate the general conditions for the occurrence of a 
condensate with a finite momentum ko and a frequency corresponding to a well defined value 
o(ko) on a low-lying branch of the Bose-excitation spectrum w(k) when the medium 
moves uniformly along a straight line with an arbitrary velocity v. We show that the condensate 
of the excitations appears for the first time when the velocity v of the medium becomes 
larger than some critical value v,. As a model for describing the field of the condensate we 
chose a two-component scalar field defined by giving the appropriate effective 
Lagrangian. We study both the case when we are just above criticality, I v - v, 1 4 v, for which 
a rather weak condensate field appears, and the case of a well developed condensate 
field. We consider in detail various possibilities, when a condensate of excitations with 
w (ko) < 0 appears, when a condensate with w (ko) < 0 is already present in a medium at rest, 
and when there is a static condensate in a medium with nonrelativistic interactions 
between the quasiparticles. We investigate the condensation of excitations in a rotating 
medium. We consider the rotation of a cylinder and of a spheroid. We find the critical values 
of the rotational frequencies for which a condensate appears corresponding to the 
branch with o(ko) > 0 and when a condensate appears corresponding to the branch with 
w (k,) < 0. We show that under rotation a liquid drop can change its shape and volume because 
a condensate forms in it. We discuss the possibility of the appearance of a metastable 
state which is not present in a rotating drop when there is no condensate. We list possible 
consequences of the effects considered which can be observed experimentally in such 
systems as condensed 4 ~ e ,  neutron stars, a nucleus with a large angular momentum, or the 
expanding hadron gas during a nucleus-nucleus collision. 

1. INTRODUCTION 

We consider a condensed medium in which there are 
various branches of collective Bose excitations determined 
by the appropriate dispersion equations. It is well known 
that there exist a whole class of such excitations. For in- 
stance, they can be the excitations of the phonon-roton 
branch of condensed 4 ~ e  (the dispersion law w(k) is 
shown in Fig. la), the zero-sound excitations of a Fermi 
liquid, in particular the spin-isospin-sound excitations in 
nuclear matter (Fig. lb), the gap excitations of paired 
particles (electrons in superconducting metals or alloys, 
nucleons in the nuclear Fermi liquid at temperatures 
T < T,, and so on), spin waves, ordinary sound waves, 
electromagnetic excitations in a medium, phonons in a 
solid, and so on. Different kinds of Bose excitations are 
described by the corresponding quantum fields: scalar, 
pseudoscalar, vector, and tensor fields, and so on. These 
fields can be defined by effective Lagrangians which in 
some of the simplest cases can be introduced starting from 
first principles, but in most cases are given phenomenolog- 
ically. 

Let the condensed medium in question move as a 
whole uniformly along a straight line with a velocity v 
relative to fixed massive walls which play the role of an 
excitation generator. If the medium is a quantum Bose 
liquid, at a temperature T < T, and for a sufficiently low 
flow velocity v < vcl, one can regard it as consisting of two 

components, a normal and a superfluid one. The thermal 
Bose excitations corresponding to a branch of the spectrum 
which behaves like w = v&, us= const., or w + A = const., 
and also the impurity particles with a quadratic dispersion 
law (e.g., 3 ~ e  atoms in 4 ~ e )  form the normal component. 
For v < vcl the superfluid component interacts neither with 
the normal component nor with the walls and it has zero 
viscosity. The normal component has a nonvanishing vis- 
cosity. In the velocity range vcl < v < v, the deceleration of 
the superfluid conlponent is caused by the creation of vor- 
tices which guarantee an effective viscosity between the 
two components of the liquid. According to the well 
known Landau criterion for v > v,= vi it becomes possible 
to populate the roton section of the elementary excitation 
spectrum and for v > vPh the phonon section of the spec- 
trum will also become populated. The elementary Bose 
excitations which are generated contribute to the viscosity 
(qexc); this leads to an effective deceleration of the whole 
system. 

Until recently it was assumed that for v > v, the super- 
fluid component of the liquid vanished completely as a 
consequence of the generation of elementary excitations 
and the liquid becomes a normal one. However, it was 
demonstrated in Ref. 1 that when 4 ~ e  moves in a capillary 
a condensate of rotons with a wavevector k=ko#O can 
appear, and its appearance prevents the further generation 
of excitations and destruction of the superfluid component. 

The main point of the effect is that when the medium 
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moves with a velocity v > u, it becomes energetically ad- 
vantageous to transfer part of the momentum from the 
particles in the medium to the condensate of excitations 
which may possess a large momentum and small energy. 
The interaction of the medium with the walls guarantees 
that excitations can be generated and subsequently un- 
dergo a transition to a coherent condensate state. These 
conditions can be satisfied not only for flow of a superfluid 
liquid in a capillary. It is therefore of interest to investigate 
the possibility of the condensation of excitations in other 
systems: not only in superfluid media but also in liquids 
with a small, but finite viscosity, in media in which the 
dispersion law does not have a roton minimum, not only in 
capillaries, for relativistic motion of the medium, or for 
nonuniform motion, in particular, for rotation. There exist 
media in which there are condensates with k#O even in 
the ground state, i.e., for v=O. It is of interest also to 
consider the possibility that part of the momentum can be 
transferred from the particles which make up the medium 
to the condensate subsystem when such a medium moves. 
Condensation is accompanied by a lowering of the energy 
of the system and the conditions for its stability are there- 
fore changed. In particular, the appearance of a condensate 
when the system rotates may guarantee a metastable state 
which is not present when there is no condensate. The 
shape of the system may also change at the same time. 

All these problems are discussed in the present paper. 

FIG. 1. Dispersion law of low-lying 
collective Bose excitations a) for 
4 ~ e ,  b) for a Fermi liquid; c)  the 
dashed line shows the diffusive ex- 
tension of the zero-sound branch 
for a Fermi liquid for a density sat- 
isfying p,> p > p,,. 

The paper is organized as follows. In the next section we 
consider the general properties of Bose excitation conden- 
sation. We discuss the possibility for excitations to con- 
dense in normal liquids with a low viscosity. We study the 
general case of relativistic uniform rectilinear motion. We 
formulate the model to be used in Sec. 3. Using the exam- 
ple of an effective Lagrangian of a two-component scalar 
field we study the possibility of condensation of excitations. 
In Sec. 4 we consider the case just above criticality when a 
rather weak field is generated, while in Sec. 5 we investi- 
gate a fully developed condensate field. We consider in 
detail various possibilities when there is no condensate in 
the medium at rest and when there is a condensate with 
k#O even for v=O. We investigate in Sec. 6 the case of a 
rotating medium which is of practical interest. We study in 
Sec. 7 the possibility of a change in shape and in volume of 
a rotating drop as a consequence of condensation. We con- 
sider the possibility of the appearance, as a consequence of 
condensation, of a metastable state which is not present in 
a fast rotating medium if we neglect condensation. In Sec. 
8 we discuss some physical consequences of the phenome- 
non considered here. 

2. LANDAU CRITERION 

Consider a condensed medium which moves as a whole 
uniformly along a straight line with a velocity v relative to 
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fixed massive walls which play the role of a generator of 
excitations. It is convenient, using the Lorentz invariance 
condition, to change to a frame of reference in which the 
walls move with a velocity -v while the medium is at rest. 

Let the momentum of the set of excitations be Pexc and 
its energy be Eexc . From the momentum conservation law 
we then have 

where M is the mass of the walls,-v their velocity before 
the generation of the excitations, and-vl their velocity 
after some excitations have been generated. 

The energy of the medium before the generation of the 
excitations E$ is the sum of the internal energy Emed of 
the medium and the energy of the moving walls (in the 
frame fixed to the liquid). As a result we have 

When there are Bose excitations present the energy will be 

Using (2.1 ) to express v, in terms of v and Pexc we obtain 

Substituting the expressions obtained into (2.3) we have 

Hence we can get the Landau criterion for the appearance 
of a single elementary excitation with momentum Pexc=k 
and energy Eexc=w(k). Expanding (2.5) in powers of the 
quantity Pexc/M we find 

From the enery conservation law, El;: = E!::, we get the 
condition 

The dispersion law of the elementary Bose excitations 
for condensed 4 ~ e  has the form shown in Fig. la. One can 
see from that figure and the condition (2.7) that rotons 
begin to be generated in 4 ~ e  when 

For the linear portion of the spectrum, w(k) 
=vphk,k+O, the criterion (2.7) can be rewritten in the 
form 

where 8 is the angle between the directions of v and vph. 
Equation (2.9) determines the well known Mach angle 

in the case of sound waves2 (vph=cS where cs is the sound 

velocity in the medium considered) and the Cherenkov 
cone for charged particles uniformly moving in a medium 
with a velocity v greater than the light speed in the medium 
(uPh=cmed). 3 

For a supersonic flow propagating in the x-direction 
with a velocity v Eq. (2.9) together with the equations of 
geometric acoustics2 

determines two rays 

sin - sin a = c$v, (2.11) 

where a is the angle between the direction of the ray and 
the x-axis. 

One can raise the problem of what happens to the Bose 
excitations considered here at later times. The answer is 
essentially determined by the properties of the Bose exci- 
tations considered and of the medium. In the case of Cher- 
enkov radiation only a small number of light quanta is 
generated, which leads to some loss of energy of the mov- 
ing particle. In supersonic motion shock waves may occur, 
transporting the excess matter density. There is also an- 
other possibility. When a significant number of excitations 
are generated they can, as a result of collisions, give off the 
excess energy and change into an energetically more favor- 
able coherent state described by a nonlinear wave or, put 
differently, by a classical field of a condensate with a finite 
momentum ko#O. The excess energy is then spent on heat- 
ing the medium and on radiation. 

In a quantum Bose liquid there are no single- 
quasiparticle excitations with a quadratic dispersion law, 
w=k?/2m* for k-0 with m* the effective mass of the 
constituent particles of the liquid. In a normal liquid such 
excitations are present. According to Landau's criterion 
(2.8) they can be generated even for arbitrarily low veloc- 
ities of the liquid. The interaction between the particles 
excited by the walls and the bulk of the liquid effectively 
decelerates the latter. The energy dissipated in the liquid is 
determined by the expression2 

from which one can estimate the characteristic time, 
t,-m*P/rl ( I  is the distance of the layer considered to the 
closest wall) after which a given layer of the liquid is de- 
celerated. In addition to excitations with a quadratic dis- 
persion law, we assume as before that there is a branch of 
Bose excitations with a dispersion law o ( k )  of the form 
shown in Fig. 1. If the characteristic time t, (which de- 
pends on I) for the bulk of the liquid is much longer than 
the time tcond (i.e., the time for the Bose excitations to be 
generated and produce a condensate) Eqs. (2.1 ) to (2.8) 
can be approximately satisfied and the condensation effect 
considered is thus possible for times tgt,. For tR t,, of 
course, the condensate disappears together with the disap- 
pearance of the relative momentum of the wall and the 
bulk of the liquid. 
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Moreover, one can change the statement of the prob- 
lem somewhat and consider stationary flow at a given ex- 
ternal pressure. A certain velocity profile v(l) is then es- 
tablished and the condensation effect considered here is 
then possible in principle in regions with v(l) > v,. (Of 
course, we assume here, as in all previous discussions, the 
presence of a branch of Bose excitations of the appropriate 
kind.) For a given external pressure the effect considered 
here could, in principle, arise also in the case of solid mat- 
ter. The excitations then appear due to the presence of 
friction at the wall. 

Note that all considerations expressed above only point 
out the possibility in principle of the phenomenon of Bose 
condensation of excitations in various systems. In the case 
of an actual system, however, the problem may, of course, 
turn out to be considerably more complicated. 

3. FORMULATION OF THE MODEL 

For definiteness we shall assume that the low-lying 
Bose excitations are described by a two-component scalar 
field p=pl +ip2 determined directly by giving its effective 
Lagrangian. A single-component field can be considered to 
be a special case of a two-component one when the mag- 
nitude of one of the field components tends to zero. In 
principle one can formulate in a similar way the descrip- 
tion of fields with a different symmetry. 

A two-component field of spin-0 particles can be de- 
fined using the effective ~ a ~ r a n ~ i a n ~  

-p*fi(ia,,~v>p-A lp14/2), (3.1) 

where m is the mass, fi(ia,,iV) is the boson polarization 
operator in the coordinate representation in a symmetric 
formulation with respect to the action of the derivatives 
with respect to p and p* which occur in it, and the quan- 
tity A corresponds to the effective boson-boson interaction 
in the medium. 

Such a Lagrangian describes, for instance, the field of 
rf -mesons in a nuclear medium. In the case of a charged 
field p one must in (3.1 ) introduce also its interaction with 
the electromagnetic field A, which is realized through the 
gauge transformation ap + ap - ieA, . In what follows for 
simplicity we shall neglect the possible interaction of the 
field e, with the electromagnetic field A,. This can be done, 
firstly, if the field p is uncharged (as in the case of 4 ~ e ) ,  
and for a charged field p if the system considered occupies 
a sufficiently small volume so that one can neglect Cou- 
lomb effects.') For a charged system in a large volume one 
must additionally take into account the condition that the 
system is electrically neutral. 

The energy of the boson subsystem is found from the 
formula 

Changing to the Fourier transform 

we have 

where V is the volume of the system. 
In the momentum representation the quantity A is a 

complicated function of the frequencies and momenta of 
the particles which occur in the diagrams defining it. For 
simplicity we take A = const in what follows. The general- 
ization is quite obvious. 

The total momentum of the boson subsystem is deter- 
mined in terms of the corresponding components of the 
energy-momentum tensor ( Td,a = 1,2,3) : 

where pk is the density of excitations with the given mo- 
mentum k and frequency o. 

The spatial dependence of the field p is found from the 
equation of motion 6 Y = 0  which has a whole class of 
solutions corresponding to different spatial structures. We 
further put 

where po=const is the amplitude of the condensate field, 
k, the wavevector, and w the frequency. Such a choice for 
the structure of the field corresponds to leaving just one 
harmonic pk=po with k=ko in Eqs. (3.4) to (3.6). The 
field parameters po and ko are determined by minimizing 
the energy. The frequency w is found from the dispersion 
law of the Bose excitations 

For solutions which have a physical meaning we then 
have5 

This factor arises as a consequence of the normalization of 
the wavefunction to a single quasiparticle. If for some 
branch of the spectrum w = w - ( k) we have 

(3.10) 
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such a branch must be interpreted as an antiparticle branch 
after the substitution w= -w-(k), as a result of which 
condition (3.9) is now satisfied. 

The excitation spectrum can thus have branches with 
w(k) > 0 and with w(k) < 0, but only solutions satisfying 
condition (3.9) have a physical meaning. In some cases the 
excitations have a diffusive nature. For instance, let us say, 
the spectrum of the low-lying excitations with pion quan- 
tum numbers in a nuclear medium with the same number 
of neutrons and protons (N=Z)  for a nuclear matter den- 
sity p>p,,=(0.5 to 0 . 7 ) ~ ~  where po=0.17 fm-3 is the 
density of an atomic nucleus, has the form 

where pa k is a positive quantity while we have 

with ?j2(k) < mz for values of the wavenumbers k close to 
the value ko corresponding to the minimum of the quantity 
?j2(k). For densities p > p,> po the quantity ?j2(ko) be- 
comes negative, which corresponds to the appearance of a 
static condensate of virtual pion quasiparticles. The factor 
(2o-aReII/aw) ( ,=, vanishes and, hence, for the total 
momentum we have Pexc=O, i.e., the effect considered in 
the present paper does not occur. 

In most cases condensed media consist of nonrelativ- 
istic quasiparticles and the dispersion law for the low-lying 
excitations is determined by nonrelativistic energies and 
momenta. For brevity we shall call such media nonrelativ- 
istic in what follows although they can, as before, move as 
a whole with a relativistic velocity v. For nonrelativistic 
media it is convenient to introduce a new definition of the 
frequency: ~ = w -  m, calculated relative to the mass. In 
that case we have ( E (  (m. Introducing obvious transfor- 
mations we have instead of (3.4) 

The energy of the system, calculated relative to the rest 
mass, is given by the expression 

a T e x c  E =&-- exc a& yexc, 

and the momentum of the boson subsystem by 

where pk is the density of excitations with a given momen- 
tum k and frequency E. The function ~ ( k )  can be found 
from the appropriate Dyson equation 

In the case of 3 ~ e ,  as for T-mesons in a medium with 
N=Z, the excitation spectrum is diffusive in character and 

the factor ( 1 - a H / a ~ )  I vanishes. In that case we find 
according to (3.13a) that Pexc=O. In the case of 4 ~ e  the 
spectrum ~ ( k ) ,  as we have already mentioned, has the 
shape shown in Fig. la, and the effect considered here is 
possible. 

4. APPROXIMATION OF WEAK EXCITATION 

Furthermore, assuming that the total momentum of 
the Bose excitations is much smaller than the momentum 
of the walls (or, put differently, the momentum of the 
whole medium in the wall frame) and expanding (2.5) up 
to terms quadratic in Pexc after substituting there (3.5) and 
(3.6) and using (2.2), we have 

x ( ~ k v - k ) ~ .  (4.1) 

Substituting the field q in the form (3.7) into (4.1 ) we 
get 

where we have written 

The choice of the direction of k, is determined by min- 
imizing expression (4.2), whence it follows that the vector 
ko is antiparallel to the wall velocity (parallel to the veloc- 
ity of the liquid in the wall frame). Using this and substi- 
tuting w=w(ko) into (4.2) we have 

a)  Assume that there is a low-lying branch of the spec- 
trum with w(ko) > 0. It is clear from Eqs. (4.3) and (3.9) 
that in that case the quantity 6E is negative when the 
Landau criterion is satisfied. 

For the spectrum shown in Fig. la  the value of k, is 
determined by the roton minimum. The magnitude of the 
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critical velocity v,= v~=o(ko)/ko is then less than the cor- 
responding quantity v:h for the phonon section of the spec- 
trum. For the Fermi liquid spectrum shown in Fig. lb the 
value of ko corresponds to the intersection of the w(k) 
curve with the line w = kvF , where v~ is the quasiparticle 
velocity on the Fermi surface. In the general case the quan- 
tity ko is determined directly by minimizing the energy. 

Minimizing (4.3) with respect to pi we have 

where 8(x) = 1 for x > 0 and 8(x) =O for x < 0. Resubsti- 
tuting the expression obtained into (4.3) we obtain 

It is clear from this that for v > v, the buildup of a conden- 
sate field with the structure (3.7) becomes energetically 
favorable. It is convenient to rewrite Eq. (4.5) in the form 

where we have written 

It is clear from (4.5a) that the condensate of excita- 
tions occurs through a second order phase transition, since 
(d6E/dv) ( u=uc = 0 while (d2SE/dz?) I ,=uc#O. 

In the limit A-0 we get from (4.5a), using (4.5b) and 
(4.2a1, 

For v>vc the quantity SE is thus finite, even when the 
interactions between the elementary excitations are ne- 
glected. 

We note that an/aw and X(w,k) are, generally speak- 
ing, complicated functions of the momentum k and the 
frequency w. The procedure of minimizing the energy, 
which determines these quantities and also the structure of 
the field p, is thus rather laborious in the general case. 

In the case of a nonrelativistic medium just above crit- 
icality we get instead of (4.1 ) 

Assuming that the field $ has the form 

and substituting its Fourier transform $k=$ into (4.7) we 
have 

where we have written 

while the quantity e(k0) is determined from the appropri- 
ate Dyson equation (3.14). 

As A-+O we get from (4.9) 

For 4 ~ e  we have M -- mRepV where p is the particle 
density and mEe the effective mass of the 4 ~ e  atoms. 

We consider the simplest complex solution of the equa- 
tion of motion (3.7). The density of the condensate, 
p=  (2w-an/aw) 1 p 1 2, is then a constant quantity. For a 
nonrelativistic medium we have p = ( 1 - aII/de) 1 $ 1  ', 
which is also a constant quantity for the corresponding 
field of the form (4.8). 

We note, however, that the matter density can have a 
modulated component Sp - po c o s ( Q  - ot )  (or 
Sp-llr, cos(Q-wt) in the case of a nonrelativistic me- 
dium) even for a field of the form (3.7) [or, respectively, 
(4.8)]. This occurs if only part of the particles in the sub- 
stance form a condensate phase and the total field p is in 
the form ( p )  +pl (or $= ($) +$') where the density 
component po is connected with the quantity (p )  ( ($) ). 
For instance, in the case of the excitations in condensed 
4 ~ e  the macroscopic wavefunction can be written in the 
form $= ($) + q0 exp(ikr- k t ) ,  where ($) is the macro- 
scopic wavefunction of the condensate with k=O and the 
second term describes the condensate of excitations with 
k = h ,  e=e(k0). AS a result the total density of the me- 
dium, P = l ~ 1 2 ,  contains a correction 
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Sp-q0 cos(Q-et). A similar correction, 
Sp - qo cos ( Q  - et) occurs in the case of liquid crystal 
substances. 

One can consider also other solutions, in particular, 
those which are defined by real functions. The simplest of 
such solutions are 

in the relativistic case and 

for a nonrelativistic medium. 
Substituting (4.1 1 ) into (3.5 ) we get, after averaging 

over space, 

Here we have taken into account only the volume contri- 
bution to the energy while the surface terms, which are - 8 ( l/roko) where ro is a characteristic transverse dimen- 
sion of the medium, have been dropped. Putting o = w (ko) 
and minimizing SE with respect to q,; we get 

It is clear from comparing (4.4) with (4.14) that so- 
lution (3.7) rather than (4.1 l ) is realized for A=const, 
since in the first case the energy is lower. In a more realistic 
statement of the problem the quantity A depends on the 
structure of the field, and this fact must be taken into 
account when comparing energies corresponding to differ- 
ent solutions. 

In the case of a nonrelativistic medium we have for a 
field of the form (4.12) 

One should note that the structures (4.11) and (4.12) 
correspond to a modulated density, p= (2o-an/aw) 
I q, 1 and p = ( 1 - aII/de) 1 $ 1  2, respectively. 

If structures are realized which modulate the density 
they can be more easily observed than structures corre- 
sponding to a constant density. 

If the field q, (or $) considered is a single-component 
one, in that case the solution has the form (4.11) (or, 
respectively, (4.12) ). 

It is clear from Eqs. (4.4), (4.14) and (4.9), (4.15) 
given above that the smaller the magnitude of o(ko) [or 
&(kg)] the lower the critical velocity for which the corre- 
sponding branch of the excitation spectrum starts to be 
populated. 

b) Let there now be a branch with w(ko) <O in the 
excitation spectrum. Such a branch occurs, for instance, in 
the T*-meson spectrum in a neutron medium with density 
p > Pcf < po). From Eq. (4.3) which is clearly valid 
also for w ( ko) < 0 we have, using (2.3), 

In this case there is even a condensate for v=O. The initial 
energy of the condensate subsystem (for v=O) is deter- 
mined by substituting a field of the form (3.7) into (3.5) 
and subsequently minimizing with respect to the amplitude 
qo of the field. As a result we have for the condensate 
energy and momentum 

2 

[ ( 2 @ - E )  lo(b)] a2(ko) 
~ ( 0 )  - 

cond - - 2A V, (4.17) 

Note that notwithstanding the presence of a nonvanishing 
momentum P,,, there may be no current I in the ground 
state since the momentum 

and the current 

are determined by essentially different expressions which in 
the case of a complicated dispersion do not reduce one to 
the other. 

We also point out that A rather than occurs in the 
denominator of (4.17) and (4.18). This is connected with 
the fact that in obtaining Eqs. (4.17) and (4.18) one need 
not assume that the momentum conservation law is satis- 
fied. Of course, in the nonstationary statement of the prob- 
lem for the generation of a condensate in a medium at rest 
the total momentum, being equal to zero, is conserved. 
Using this, as was done when obtaining Eq. (4.6), we 
would be led to Eq. (4.17) but with the quantity X instead 
of A since as the consequence of the conservation of the 
total momentum (and as a consequence of the fact that 
Pexc#O) the particles in the medium acquire a nonvanish- 
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ing kinetic energy (v#O). However, after the characteris- 
tic time t ,  this energy is dissipated and for tst, we have 
v+O and the energy connected with q, reaches the value 
(4.17) obtained above. 

Using (4.17) and (2 .2 )  we have for the initial energy 
E::: the expression 

As the velocity of the medium increases the momentum 
can be transferred to the condensate of excitations with a 
frequency o ( k o )  < 0 provided we have SE= E::: - E::: < 0 .  
Assuming the magnitude of A to be sufficiently large (in 
that case we have x = A )  we find from (4.16) and (4.19) 
the corresponding critical velocity 

We have thus v,+OasA+ CO. As A-0 we have SE>Oand 
uc+ co. 

C) In the case of a nonrelativistic medium it is of in- 
terest to consider the possibility of transferring part of the 
momentum of the medium to a static condensate (E=O) .  
The value E = O  is then no longer determined by the Dyson 
equation (3 .14) .  Putting E = O  in (4 .7 )  and minimizing the 
energy we have for a field of the form (4 .8 )  

where the value of Z(ko) is determined by the minimum of 
the expression 

with respect to the magnitude of k. 
It is clear from Eq. (4.21) that for ( 1 - a n / a ~  1 ,) > 0 

and 7 ( k o )  > 0 there is a critical value of the velocity 

such that a static condensate field can be generated for 
v > v:. If the magnitude of (4.23) is less than the value 
v c = ~ ( k o ) / k o > O  a static condensate is generated for v, 
> v > v: . For v > v, > v: a condensate of Bose excitations 
corresponding to the branch of the spectrum with ~ ( k )  > 0 
may also appear. This possibility is realized if the param- 
eters of the medium are such that the negative contribution 
to the energy (4 .9 )  increases faster than the corresponding 

contribution to (4.2 1 ) . In the opposite case the condensate 
of excitations with ~ ( k )  = & ( k g )  does not appear at all and 
the static condensate remains. In the v, < v: case there is a 
condensate of excitations with E = E ( ko)  for 0: > u > U, and 
a static field can also appear when we have v > v:. 

Equation (4.21 ) is suitable also for 7 ( k o )  < 0 when 
there is a static condensate with k=ko#O even in a me- 
dium at rest. We note that in the case considered the total 
momentum of the Bose subsystem Pexc is nonvanishing 
since the quantity 1 - a n / a &  l o  is different from zero and 
we have a current 

For 1 -aII/a& I ,=O the excitations have a diffusive nature 
and we have Pexc=O in the ground state of the system, so 
that this effect does not occur. 

Part of the momentum of the medium can thus be 
transferred either to a nonstatic condensate or to a static 
condensate with k#O. However, to avoid misunderstand- 
ings one should note that it is impossible to transfer mo- 
mentum of the medium to a condensate with k=O such as 
exists, for instance, in the ground state of condensed 4 ~ e  
and in superconductors. However, we have already men- 
tioned that in 4 ~ e  the effect considered occurs for velocities 
v > v, corresponding to populating the roton minimum on 
the dispersion law curve ~ ( k )  .' It is also impossible to 
transfer momentum to a static condensate corresponding 
to the ground state of a system in the case of a diffusive 
spectrum when we have 1 - aII/a& 1 = 0 and Pexc = 0 .  

5. CONDENSATE FIELD FOR ARBITRARY VELOCITIES OF 
THE MEDIUM 

In the general case one must start directly from Eq. 
(2 .5 ) .  Using also (3 .5 )  and ( 3 . 6 )  and expressing the en- 
ergy Eexc of the boson subsystem in terms of the momen- 
tum Pexc when the condensate field has the form (3 .8 )  we 
get 

a) Let there be a branch of the excitation spectrum 
with w ( k o )  > 0 and let us have v 4 c  for the velocity. Equa- 
tion (5 .1 )  can then be simplified. Minimizing the energy 
E!:) with respect to the quantity Pexc we have 
v,  = vc=o(  ko) /ko ,  PexcII - v and, correspondingly, 
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2 

( u - v c ) 2 [ ( 2 w - ~ )  1 1 G 
Mu2 o(b) E(2) - M ~ ~ + - - -  - 

tot - 2 2Anre1 

where we have introduced the notation 

Hence we get 

which is the same as Eq. (4 .4 )  after one takes the nonrel- 
ativistic limit ( v  < c )  in the latter. 

In the case of arbitrary relativistic motion of the me- 
dium one can easily perform the minimization of expres- 
sion (5.1 ) with respect to Pe, in the limit A - 0.  As a result 
we have v,  -- v, and 

Hence we have E:) < E!:: for u > v,. One can easily show 
that for v-vc<vc the quantity SE following from (5 .4 )  is 
the same as expression (4 .5 )  obtained above just above 
criticality. 

As in the case when we are just above criticality we can 
thus conclude that the softer the excitation spectrum (the 
smaller the quantity vc= w ( k o ) / k o  > 0 )  the smaller also the 
resulting energy E::). As w ( k o )  -0 the condensate field q, 
appears already for v  > vc-0 and the energy ~ : b : )  tends to 
Mc2+Emd instead of to the quantity E!:: 
= Mc2/ + Em& as in the case when there is no 
excitation condensate. 

b) Let there now be a branch of the excitations with a 
negative frequency w ( k o )  < 0  in the medium at rest. We 
have already mentioned earlier that such a branch appears, 
for instance, in the n+-meson spectrum in neutron matter 
with a density p  > p: ( p z  < po) . In that case there is a 
condensate even for v=O. For w ( k o )  < 0 ,  as for w (k , )  > 0, 
one can start from Eq. (5.1 ) . In the nonrelativistic limit 
v<c we have 

i.e., the resulting velocity of the medium for v#O turns out 
to be antiparallel to the velocity of the initial motion. The 
resulting energy is 

One must now compare this quantity with the expression 
for the initial energy 

in which the presence of a condensate already in the me- 
dium at rest has been taken into account. 

One sees easily by comparing (5 .6 )  and (5.7) that for 
w ( k , )  < 0, as for the w (k , )  > 0  case, there is a critical value 
of the velocity of the medium starting from which it be- 
comes energetically favorable to transfer part of the mo- 
mentum from the particles in the medium to the boson 
subsystem. For v  > vc the amplitude of the condensate field 
and the energy gained, SE, increase with increasing v. 

One should again note that these effects occur for char- 
acteristic times t<  t,. For t  2 t ,  the energy 

changes to thermal energy and it is removed from the sys- 
tem together with the corresponding momentum 

SF= M V ~ /  dm-. (5 .9 )  

The resulting energy is then lowered by an amount SE and 
the condensate field corresponding to a frequency 
w ( k , )  < 0  reaches the value occurring in the system at rest. 

6. CONDENSATION OF BOSE EXCITATIONS IN A 
ROTATING MEDIUM 

Above we considered the simplest case of uniform and 
rectilinear motion of the medium. The interaction between 
the medium and the walls then served as the mechanism 
for the generation of excitations. One also required the 
velocity of the medium to exceed a certain critical magni- 
tude. 

It is natural to consider nonuniform as well as recti- 
linear uniform motion. The presence of walls is then no 
longer necessary. Indeed, the existence of acceleration or 
deceleration guarantees another mechanism for the gener- 
ation of excitations. Thus, an excitation condensate can 
occur in, let us say, a variable field or in a rotating medium. 

We now turn directly to the study of the case of a 
rotating medium which is of physical interest. Instead of 
the momentum conservation law used earlier we must then 
take into account the angular momentum conservation 
law. Otherwise the discussion is similar to the one given 
above for the case of rectilinear uniform motion. To sim- 
plify the calculations we restrict ourselves to the case of 
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nonrelativistic rotation with Ra(1, where f l  is the rotation 
frequency and a a characteristic dimension of the system. 
It would be necessary to take general relativistic effects 
connected with changes in the metric into account for 
flu - 1. To begin with we shall also neglect deformations of 
the system occurring during rotation, i.e., for simplicity we 
shall assume that the density of the medium and the shape 
of the body are fixed. 

In what follows we consider the two cases of a rotating 
cylinder and a rotating spheroid which are the simplest 
cases of most physical interest. 

a )  Rotation of a cylinder. 
The angular momentum of a cylinder of radius a ro- 

tating as a whole around the z-axis with frequency fl  is 

where m* is the mass of the particles forming the medium 
and we have r = J-. 

The Bose excitations which are generated subject to a 
w(k) dispersion law with a finite momentum k + O  may 
also have a finite angular momentum. The angular momen- 
tum conservation law has the form 

where L is the initial angular momentum, L, is the finite, 
angular momentum connected with the particles of the 
medium, and Lexc is the angular momentum transferred to 
the Bose excitations. In the case of a cylinder we have 

where nl is the resulting rotation frequency, 

and dPexc/dV is the density of the total momentum of the 
Bose subsystem. 

To find the quantities Pexc and Lexc we must know the 
structure of the Bose excitation field. A field of the form 
(3.7) is now unsuitable since for it in the case in question 
of a rotating medium we have FeXc=0 and hence Eexc=O, 
where the bar indicates averaging over the volume. Also 
unsuitable are cylindrically symmetric solutions of the 
equation of motion and spherically symmetric solutions of 
the form 

In what follows we shall use the variational principle; 
as a test function we choose a field of the form 

The variables F = J T ? ,  $, z determine a cylindrical 
coordinate system; the parameters q,,, ko, and also a, B are 
chosen by minimizing the energy. 

Expression (6.6) was chosen so that if we neglect small 
terms - 8 ( l/koa) we have 

the same as for the one-dimensional solution (3.7), while 
the momentum density dFeXc/dv and the angular momen- 
tum zexc are nonvanishing. 

Substituting (6.6) into (3.6) we get for the $ compo- 
nent of the momentum density of the Bose subsystem 

where G=aw cos($-awt/ko?) +Po, and n+ is a unit vec- 
tor defining the $ direction, which is conveniently written 
in the form 

The direction of the vector Lo is then 

Substituting (6.10) into (6.8) we have from (6.4) in 
the cylindrical case considered 

- ail 
L -n 2wa-- 

koa 
e x c  T q t ~ .  

o(k,) 

The bar indicates here as before averaging over the volume 
or, which is the same, over the angle $. To determine the 
value of the quantity 

awt an aii 
2cos JI-- --- , 

koi: au-ao ( 1 
which occurs in Eq. (6.11) we must expand the polariza- 
tion operator II(i3,ko) in a series in the parameter 5 ,  to 
determine the quantity an/dij, carry out the averaging, 
and after that again form the series. 

The excitation spectrum is determined from the equa- 
tion of motion. After we neglect fast oscillating terms it 
takes the form 

where we have introduced the notation ij2 =;dm2 +B2o2. 
Equation (6.13) is completely analogous to Eq. (3.8) used 
earlier. It determines the excitation spectrum w (k) . In the 
case of a nonretarded interaction we have 
n(i3,k2) =II(o,k2). In that case the averaging in (6.13) 
does not change the shape of the spectrum if we put a = a ,  
P=O. We can proceed also in the case of a quadratic de- 
pendence 

In the case of a linear dependence, 
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we must take into account that we have B#O. In the fol- 
lowing calculations for simplicity we put B=0, a = a  and 
assume that the function Z(k) has the form shown in one 
of the figures la  or lb. 

If there are no excitations the energy of a rotating 
liquid is 

L2 
,#$I)-- 

tot - 2I +Ern4 * (6.14) 

where Ernd is the internal energy of the medium in the 
system rotating together with its center of inertia and I is 
the moment of inertia. For a cylinder we have 

If there are Bose excitations present the energy is 

L: ~$2: = B + ~ m d + ~ e x c .  (6.16) 

For a field of the form (6.6) we have from (3.5) for a=v2, 
B=O 

Assuming the change in the frequency due to the 
condensation of Bose excitations to be small, using (6.2), 
(6.11), and (6.17), we get from (6.14) and (6.16) 

L2 E(~)- -+E, ,+  
tot - 21 

where 

ail 

(6.18a) 

Minimizing (6.18) with respect to q,: we have 

From this we can determine the critical value of the rota- 
tional frequency for o(ko) > 0: 

In the w(ko) <O case we have 

where the quantity  EL:^ is given by (4.17). Here we use 
the fact that the field q, which minimizes the energy has the 
form (3.7) in a medium at rest. Assuming that the mag- 
nitude of A is large, i.e., assuming that we can consider the 
second term in the square brackets in (6.18a) to be a cor- 
rection, we get from the condition 6E < 0 

Equations (6.18) to (6.22) are completely analogous 
to the corresponding equations obtained in Sec. 4 for the 
case of uniform rectilinear motion. The changes are con- 
nected with the more complicated coordinate and momen- 
tum dependence of the test function q,. As for the uniform 
motion one can also show easily that for nonrelativistic 
rotation (fla<l)  Eq. (6.19) is valid not only under con- 
ditions where we are just above criticality but also for any 
distance from criticality. 

b) Rotation of a spheroid. 
We consider a spheroid defined by the equation 

?/a2 + 2 / b 2 =  1 .  In that case we have instead of (6.3) 

For a field of the form (6.6) we get instead of (6.1 1 ) 
( a = f l ,  /3=0): 

Taking these obvious changes into account we have 
instead of (6.18) and (6.18a) 

where 

Minimizing (6.25) with respect to q,; we get 
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L~ 
~ ( 2 )  -- 

tot - 21 + E m &  

and for the critical rotation frequency we have for 
d k o )  > 0 

For w (ko) < 0 and large values of il when the second term 
in the square brackets in (6.25a) can be regarded as a 
correction, we get 

It is convenient to rewrite Eqs. (6.19) and (6.26) in 
new variables, using instead of the quantity R the con- 
served angular momentum L. As a result we have for 
L >  LC 

where 

(I, R* 

and we have i=1,2, respectively, for a cylinder and a 
spheroid. The initial energy is then 

and the quantity E!::, is given by Eq. (4.17) and has the 
meaning of the energy of the condensate corresponding to 
a field of the form (3.7) which exists in a medium at rest 
even before it rotates. 

For w ( ko) > 0 the quantity 

determined by the equation SE=0 for a fixed shape of the 
system has the meaning of the critical angular momentum. 

For small values of A. when we can neglect unity in 
comparison with the second terms in the square brackets of 
(6.18a) and (6.25a) we can simplify Eqs. (6.28a) and 
(6.29a). As a result we have 

For w(ko) <O we can simplify the expression for the 
quantity LC considerably in the limiting case of large il 
values used above. Equating (6.28) and (6.29) we have in 
that case 

7. CHANGE IN SHAPE AND VOLUME OF ROTATING BODIES 

Above we assumed that the shape and the volume of 
the system were fixed and remained unchanged when the 
condensate appeared. In the general case this is not true. 
Even before the appearance of a condensate the shape and 
volume of a drop can change when it rotates. To determine 
these quantities we must minimize the energy with respect 
to the characteristic dimensions for a fixed value of L. It is 
then advantageous for an initially spherical drop to become 
a rotating spheroid. Moreover, the value of the equilibrium 
density p, also changes. For a fixed number of particles, A, 
this means a change in the volume. When the condensate 
appears the dependence of the energy on the characteristic 
dimensions and the density changes. This leads to a change 
in the shape and the volume. 

The way the energy of a drop at rest depends on its 
shape and volume is determined by the equation 

where Es(p) is the surface energy density, Ev(p) the vol- 
ume energy density, and S the surface area. In what fol- 
lows we assume that the density satisfies pcconst. In fact, 
in the general case the density of the medium may depend 
on the distance from the axis of rotation. Moreover, we 
shall assume that the drop has the shape of a rotating 
spheroid. In the limiting a)b  case we have s=2.rra2 and 
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for a<b  we have s - d a b .  We restrict our discussion to 
those two possibilities. Putting a) b we have for the energy 
of the system before condensation 

Minimizing (7.2) with respect to a for fixed volume V 
(density p)  we find 

E:: = 2 ~  ws/ (7.3a) 

The condition a$b used in deriving (7.3) is satisfied for 

L )  (MP2Es) 1/2(3~/~)2/32- 1/3p- 1/6 (7.4) 

For sufficiently large values of L the rotating system thus 
acquires the shape of a strongly flattened rotational ellip- 
soid. 

When there is an excitation condensate field present we 
have, using (6.28) and (7.1), 

where the quantities 

are independent of the transverse dimension a; we have 
yl>Ofor o(ko) >O and yl<O for w(ko) <O. 

To begin with, let us have w (ko) > 0 and L > LC,. One 
can easily minimize expression (7.5) in the limiting case of 
a small magnitude of A, i.e., when yo-0 [see (6.31)J. Put- 
ting a )  b  we have in that case 

The condition a )  b which we have used is satisfied for 

We now consider the case w(ko) < 0. In that case, even 
when we neglect the contribution Es, there is a finite value 
of a which is determined by the minimization of (7.5). 
Hence we get for Es=O 

The value (7.8) can be either less than or greater than b. 
For 

we have a$b, which corresponds to a strongly flattened 
spheroid. For large values of A we have y1 - 1/A and con- 
dition (7.9) is satisfied even for not too large values of L. 

The expression for the energy was minimized above 
with respect to the characteristic dimensions for a fixed 
volume. However, the volume can also change. The expres- 
sions obtained must therefore still be minimized with re- 
spect to p. To carry out this procedure one must know how 
the various parameters depend on the density p. As a result 
the gain in energy due to a decrease in kinetic energy and 
a change in the shape and volume of the drop may be 
sufficient for it to be unstable for a given value of L, or the 
system may go over into a metastable state even for L=O. 
The observation of such metastable states would undoubt- 
edly be of interest. 

8. PHYSICAL CONSEQUENCES 

1. In the case of condensed 4 ~ e  one must look for 
a) A modulated density component and b) a stream- 

ing effect such that the superfluid and the normal compo- 
nents have different momenta. 

One can observe a modulated density component in 
neutron scattering experiments. The effects considered oc- 
cur not only for uniform rectilinear flow of 4 ~ e  in a 
capillary1 but also for rotation. In the latter case the 4 ~ e  
pressure is diminished on the walls of the vessel. The effect 
can also be observed from the change in the moment of 
inertia. All these effects occur for velocities for which 
u> u,. 

2. We list here some astrophysical consequences. 
a) It is well known that when a compact object rotates 

with a frequency R for which R > RF - d m ,  where 
G is the gravitational constant, M the mass, and R the 
radius, matter is stripped from the surface. It is thus com- 
monly assumed that i2: is the maximum rotational fre- 
quency of a star. For a neutron star we have M-Ma,  
R - 10 km, and we get a,- lo4 s-'. Rotation with such a 
frequency corresponds to a critical value of the angular 
momentum, L:- M R ~ R , .  Since the angular momentum is 
conserved one usually assumes that a neutron star is 
formed in the collapse of a star with angular momentum 
L < L:. We have already mentioned above that for R > R, 
an excitation condensate can occur which removes part of 
the angular momentum. Moreover, for p, > p > p; there is 
a branch in the ?rf meson spectrum with w (ko) < 0 and the 
excess angular momentum can be transferred to the T+ 
condensate. As a result a neutron star can become stable 
for values of the angular momentum L considerably larger 
than L:. 

b) The energy of a rotating star with a sufficiently 
small radius R consisting of an ultrarelativistic degenerate 
perfect Fermi gas is given by the equation 

where Ao, A,, and A, are numerical coefficients. It is clear 
from this expression that the rotational energy, which is 
proportional to L'/R~, increases with decreasing radius 
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faster than the gravitational attraction energy. It is thus 
commonly assumed that the rotation of a compact object 
prevents its collapse. If we take condensation of excitations 
into account the last term in (8.1) decreases. In the limit- 
ing case when R -0 we get for w(ko) > 0 instead of (8.1 ) 

Rotation with an angular momentum L 5 GM~/V* thus 
does not prevent collapse. 

c)  A rotating neutron star loses energy and angular 
momentum through radiation. As a result it slows down. 
The equation for the time-dependence of the rotational fre- 
quency has a different form depending on whether there is 
a condensate removing part of the angular momentum. 
The energy is lost mainly through magnetic dipole emis- 
sion. The rate of energy emission is in this case given by the 
equation6 

where we have A = e6 sinZ a/6c, Bp is the magnetic field 
at the magnetic pole of the star, and a is the angle giving 
the orientation of the magnetic moment relative to the axis 
of rotation. If there is no condensate the equation deter- 
mining R ( t )  has the form 

For the pulsar in the Crab Nebula the exact age to is 
known and there are also very exact data allowing us to 
establish the values of R(to), d( to) ,  and h(to). The solu- 
tion of Eq. (8.4) does not satisfy these data. One can sat- 
isfy the experimental values of R(to) and h ( to )  in a com- 
bined model taking into account the possibility of 
gravitational radiation by a rotating spheroid with a well 
defined nonvanishing eccentricity E. However, the value of 
n=Rh/h2  is then found to be 3.43 (according to 1972 
data) instead of the experimental value n = 2.5 15 * 0.005. 

Taking condensation into account the equation deter- 
mining the rate of energy loss according to (6.28) and 
(6.23) has the form: 

we have R*>O when there is a condensate of excitations 
with w (ko) > 0 and R* < 0 in the case of a P+ condensation 
for p: < p < p, when we have o (  ko) < 0. Introducing the 
notation 

we easily get from (8.5) 

Hence we can find the function R(t) .  We can determine 
the constants a ,  p, and t, from the experimental values of 
R(to), h(to) ,  and h(to) .  According to (8.7) we have 

FIG. 2. Sketch of the density dependence of the energy of a rotating 
nuclear drop with a condensate for large values of the angular momentum 
L. The magnitude of the density p, corresponds to a possible metastable 
state. 

Using 1972 data [to=921 yrs, R(to) = 1.898 . loz s-', 
R(to)fi(to) = -4.59. lo-' s - ~ ,  n(to) =2.515], we find 
ae2 .04 .  1015 s-', 8- -0.84 - 10" s - ~ ,  and tl - 1.53. 101° 
s. Since B< 0, we have R* < 0, i.e., the experimental data 
can be explained by saying that part of the angular mo- 
mentum was transferred to the .rr+ condensate. 

d) The .rr+ condensate subsystem is superfluid. It 
therefore interacts very weakly with the normal subsystem. 
When the period of the pulsar is disrupted the frequency of 
rotation of the normal subsystem changes. It takes a long 
time to equalize the frequencies between the normal and 
the condensate subsystems. The disruptions of periods in 
the sufficiently fast rotating pulsars (for R > RC) may be 
connected with the accumulation of vortices in the conden- 
sate region and the subsequent release of the stored energy. 
This mechanism for disruptions of pulsar periods and their 
subsequent relaxation is completely analogous to the stan- 
dard mechanism which is commonly assumed to be con- 
nected with nn and pp pairing and superfluidity. 

3. When determining the conditions for the stability of 
a nuclear system with a large angular momentum L one 
must also take into account the possibility of condensation 
of excitations with w(ko) > 0  or a .rr+ condensation with 
w(ko) < 0. In those cases for some density p, a new meta- 
stable state may appear which is stable against small 
changes in density. We sketch in Fig. 2 the behavior of the 
total energy E ( p )  corresponding to the possibility of such 
a metastable state. To find the values of p, and E(p,) we 
must minimize the energy with respect to the density, the 
isotopic composition, and the characteristic dimensions. 
For o ( ko) > 0 one can use Eq. (7.6a), if one assumes a 
strongly flattened spheroid, and Eq. (7.9a) for w(ko) < 0. 
One must then take into account the explicit density de- 
pendence of all the parameters ko, o(ko), afi/do, Es, E,, 
and A. 

a )  A metastable state may occur for a nuclear drop 
with the number of neutrons approximately equal to the 
number of protons. In that case it corresponds to the pres- 
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ence of low-lying excitations of the zero-sound type, for 
instance, spin-isospin sound with a frequency w -- kovF (see 
Fig. lb). 

b) Metastable states are possible of neutron matter 
with a large angular momentum and a density p - p: < po 
in which the r+ condensate subsystem (w(ko) <O) ac- 
counts for part of the angular momentum. Such neutron 
drops have not too large a size, but larger than the coher- 
ence length, since in the opposite case the energy of the 
electric field is essentially lost. To balance it in a large 
system ( Z >  l/e3) electrons are generated which carry a 
large kinetic energy.'.' 

Note that the lifetime of such neutron drops may be 
very long. This is connected with the fact that a r+ con- 
densate with w (ko) < 0 is superfluid and the interaction 
between the P+ condensate and the normal subsystems is 
difficult. Moreover, the P+ condensate in a finite system, 
even in the ground state, possesses a finite angular momen- 
tum. 

Drops of P+ condensate may be formed during the 
collapse of a supernova when it changes to a neutron star. 
In that case they take away part of the total angular mo- 
mentum of the star which, as we mentioned already earlier, 
might in the standard scenario prevent the collapse. 

The presence of metastable r+ condensate neutron 
drops may be observed also during collisions of high- 
energy nuclei. 

Some time ago there was a broad discussion in the 
literature of the problem of the so-called anomalons.' In 
nucleus-nucleus collisions with energies 2 GeV/nucleon 
specific fragments of nucleus projectiles were observed fly- 
ing off at small angles and possessing anomalously large 
cross-sections for interaction with matter. It turned out 
that these fragments made up several per cent. They pos- 
sess a very long lifetime. A memory effect was also 
observed-after interacting an anormalon decayed into an- 
ormalons. 

From those experiments it was concluded that one is 
dealing with stable or metastable nuclear systems which 
for a given atomic weight have an anomalously large size 
and are generated in the peripheries of the colliding nuclei 
with energies larger than a well defined critical value 
( - GeV/nucleon) . 

Notwithstanding a multitude of models which were 
proposed to explain the anomalon effect, up to now there 
does not exist any convincing theoretical explanation of 
this effect. The statistics of the experiments are not very 
good and they also do not make it possible to reach unam- 
biguous concl~sions.~ 

We note here that a T+ condensate neutron drop may 
serve as a good candidate to explain the anomalon effect. 

Firstly, it is just in a peripheral collision of nuclei that 
a fragment with large angular momentum may appear. A 
rough estimate of the maximum possible angular momen- 
tum gives 

where Ekin is the collision energy of the nuclei in the lab- 

oratory system, A is the atomic number of the colliding 
nuclei, and R is a characteristic dimension. This value of L 
is larger than the magnitude LC starting from some critical 
value of the collision energy of the nuclei (for nuclei of a 
given atomic weight). 

Secondly, since there is a metastable state for a neutron 
drop with a r+ condensate one can explain the long life- 
time of an anomalon and the memory effect. 

Thirdly, since for the equilibrium density value we 
have p,-p$ < po while the shape of the drop probably 
corresponds to a strongly flattened spheroid, its cross- 
section for interactions with matter will exceed consider- 
ably the cross-section of a normal fragment with the same 
atomic weight. 

Finally, since the metastable r+ condensate state oc- 
curs through a phase transition and on average the value of 
the angular momentum of fragments is small, the proba- 
bility for the appearance of such anomalous fragments is 
rather small. 

4). An excitation condensate with o = kovF[p(t)] may 
appear also in the central region of collisions of nuclei. One 
usually assumes that a nuclear fireball is formed in a 
nucleus-nucleus collision which afterwards expands into 
vacuum. During the expansion of the fireball the charac- 
teristic velocity of the nucleons increases and for 
v> u,[p(t)] ~ ~ ( p / p o ) " 3  an excitation condensate may oc- 
cur with o - kovF. According to the model of Refs. 4 and 
9 the minimum density of a nuclear fireball in the stage 
where it breaks up is p b - 0 . 6 ~ ~  and a velocity v larger than 
v, can be reached for nucleon energies )0.4 GeV/nucleon. 
In the breakup of a nuclear fireball the excess momentum 
of the excitation condensate is transferred back to the nu- 
cleons thereby effectively heating the nucleon subsystem. 
This fact may, even if only partially, explain that the ef- 
fective temperature of the nucleons (experimentally deter- 
mined from the slope of the invariant differential cross- 
section) is slightly higher than the corresponding 
temperature of the pions. 

9. CONCLUDING REMARKS 

As we have already noted earlier the essence of the 
effect considered here is that if excitations can be generated 
with a sufficiently large momentum and a sufficiently small 
energy (which is determined from the dispersion law w(k) 
and the velocity of the medium) the particles of the mov- 
ing medium transfer part of their momentum to the exci- 
tations, thereby lowering the energy of the system on the 
whole. Since this effect is quite general many of the results 
obtained are model-independent, although they were ob- 
tained above for the specific model of a two-component 
scalar field. We have formulated some physical conse- 
quences of the effect considered in actual systems which 
might make it possible to observe it experimentally. A 
minute description of the details of the effect in actual 
systems was not the object of the present paper; the effect 
is of interest in itself. 
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"At the same time the characteristic size of the system must be larger 
than the coherence length, i.e., the characteristic length over which the 
amplitude of the condensate field changes, since otherwise the concept 
of a "quasicondensate" loses its meaning. 
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