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The dynamical shielding of a free charge moving with constant velocity in a classical 
isothermal plasma is studied. Assuming that the response is linear, an expression is derived 
for the potential of the longitudinal part of the electric field in terms of the velocity 
and the spatial variables, using the nonrelativistic approach. The condition for its applicability 
are discussed. On the basis of numerical calculations the variation in the screening 
behavior is examined as a function of the charge speed and the direction of the point of 
observation. It is shown that the transition that takes place inside the polarization cloud from 
the Debye potential to the Coulomb potential is stretched out to a few dozen times the 
thermal velocity. In the back hemisphere relative to the direction of motion the effective charge 
changes sign and can exceed the original charge in magnitude. The potential of a plasma 
particle, averaged over the Maxwellian distribution, is calculated. It is concluded that the 
shielded electron potential in a hydrogen plasma falls off as a function of distance 
considerably more slowly than the Debye potential on account of the thermal motion. The 
results of T. Peter [J. Plasma Phys. 44, Part 2, 269 (1990)l and of C.-L. Wang and 
G. Joyce [J. Plasma Phys. 25, Part 2, 225 (1981)l are extended to larger values of the particle 
velocity. 

1. INTRODUCTION 

It is well known that a free charge at rest in a classical 
isothermal plasma produces a Debye-shielded potential 
there. The shielding decreases as the particle begins to 
move. Moreover, when the charge moves the angular dis- 
tribution of its potential becomes anisotropic; of course, 
this disappears both in the case of velocities which are 
small in comparison with the plasma electron thermal ve- 
locity and when the velocity of the charge is large (here we 
assume that all velocities are small in comparison with that 
of light, so that the motion is nonrelativistic) . As shown by 
Montgomery et al.,' when the system consisting of a free 
charge and the polarization cloud it produces moves the 
lowest-order multipole moment which appears is quadru- 
pole, and it vanishes only when the velocity of the free 
charge equals zero. Outside of the polarization cloud the 
potential of the system falls off in inverse proportion to the 
cube of the distance. 

The problem treated in the present work is to investi- 
gate the behavior of the dynamical screening for both the 
particles of the equilibrium plasma itself and the free 
charges moving in it. The most suitable quantity for de- 
scribing this situation is the effective charge of a particle. 
Numerical calculations reveal that dynamical shielding dif- 
fers qualitatively from static shielding; this is seen in the 
transition that takes place at the extremities of the polar- 
ization cloud as the velocity of the charge increases, when 
the Debye potential turns into the Coulomb potential (this 
is extended out to several dozen or even several hundred 
times the electron thermal velocity), and also in a change 
in the sign of the effective charge, whose magnitude can 
exceed that of the original charge. 

Although general expressions for the time-independent 

electric field of a point charge moving in an isotropic 
plasma with constant velocity are well known,24 until re- 
cently numerical calculations have been performed only 
with a model dispersion peter7 has recently 
shown that this approach is unsatisfactory for describing 
the far structure of the wake field of a charge by using the 
exact dispersion relation for a Maxwellian plasma. There 
was an earlier numerical study8 with an exact treatment of 
the dispersion which, however, essentially lacked a clear 
physical interpretation of the resulting dynamical screen- 
ing effects. There it was also incorrectly asserted that the 
change in the sign of the potential in the rear hemisphere 
can be interpreted as being due to the emission of Lang- 
muir waves. In fact, it is a consequence of the inertia of the 
polarization cloud, and wave emission does not enter into 
the steady formulation of the problem. 

The present work supplements Refs. 7 and 8, extend- 
ing them to larger velocities, and represents a continuation 
of previous work9 in which we investigated how the Debye 
shielding potential is established as a function of time for a 
stationary charge placed in the plasma. 

In Sec. 2 we derive general expressions for the poten- 
tial of a moving charge in a Maxwellian plasma. Section 3 
is devoted to a discussion of the conditions under which 
these expressions are applicable. An analytical treatment of 
the nonexponential decrease in the potential as a function 
of distance is given in Sec. 4. The results of the numerical 
calculations are presented in Sec. 5. Finally, in Sec. 6 the 
potential of the plasma's own charges, averaged over a 
Maxwellian distribution, is treated and evaluated for the 
first time. Here the average is performed over both the 
velocities of the plasma particles and their direction in 
space. 
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2. THE POTENTIAL OF A MOVING CHARGE IN A PLASMA 

Here we consider a fully ionized Maxwellian plasma 
consisting of singly charged ions and electrons (although 
in fact all the calculations can be extended to other types of 
plasma after simple modifications). Assume that a unit free 
charge is moving in the plasma with some velocity u. The 
Maxwell equation for the electric displacement D(r,t) 
takes the form 

where p(r,t) is the density of the free electric charge. Fou- 
rier transformation of Eq. (1) leads to a simple algebraic 
relation between the Fourier components D(k,w) of the 
displacement field and the charge density p(k,w): 

The first thing to notice is that the external sources 
have been introduced in a consistent fashion. Specifically, 
the continuity equation 

where j(r,t) is the current density of the free charge, after 
Fourier transformation assumes the form 

Since the current density is equal to 

its Fourier transform is 

Substituting (6) and (2) into (4) we find the relation 

which is satisfied identically. 
Let us find the relation between the electrical displace- 

ment D(k,w) and the electric field E(k,w): 

Here E ~ ~ ( ~ , w )  is the dielectric tensor, whose longitudinal 
part (the only one that matters under the present condi- 
tions) is equal to 

The longitudinal part q(k,w) of the permittivity takes the 
form (cf. Ref. 10, Sec. 31): 

Here v is the average electron thermal velocity 

where T is the plasma temperature and m is the electron 
mass. The quantity a is the Debye radius, which is given in 
terms of the electron density N by 

Next, the function F ( x )  is determined from the integral 

where the first term is defined in the sense of a principal 
value. 

Substituting (8) and (9) in (2) we find 

iq(k,w)kE(k,w) = 8?rzS(w- ku). (14) 

The electric field strength E(k,w) is conveniently ex- 
pressed in terms of the scalar potential q(k,w): 

Substituting (15) in (14) we find 

After inverting the Fourier transform we finally obtain 

(cf. Refs. 2 4 ) .  Here we have introduced the notation 
R=r-ut, so that in the coordinate system moving with 
the charge the electric field distribution is independent of 
time. 

3. CONDITIONS FOR APPLICABILITY OF THE SOLUTION 

The approximation in which the motion of the free 
charge is prescribed is only valid if we can neglect the 
reciprocal effect of the field on this charge. As is well 
known,2 in an isotropic plasma longitudinal waves can 
have such small velocities that they can be produced by 
Cherenkov emission when the resonance condition 
w = k . u is satisfied. Hence expression ( 17) is actually valid 
for times At large enough for the polarization clouds to 
develop but small enough so that their energy losses 
through Cherenkov radiation can be regarded as small. 

If we extrapolate the results of our previous work,9 
then the first condition becomes 

At) low;', (18) 

where up is the plasma frequency 

On the other hand, as noted above, this time must be 
short enough that the energy losses of the free charge 
through Cherenkov emission of plasma waves are small in 
comparison with its kinetic energy. The energy lost per 
unit time through radiation of plasma waves by a particle 
with velocity u which is much larger than the thermal 
velocity v was studied by Pines and  ohm." Based on the 
results of that work the second condition becomes 

where M is the mass of the free charge and el is its charge 
(taken to be unity in the present work). For an electron 
condition (20) in fact reduces to the condition for an ideal 
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FIG. 1.  Effective particle charge x as a 
function of distance p, expressed in units of 
the Debye radius (p=r/a) in the direction 
8=0 (ahead of the moving charge). Re- 
sults are plotted for four values of the par- 
ticle velocity, characterized by the dimen- 
sionless quantity s=u/vv"r. The light trace 
shows the effective charge for the Debye 
potential exp ( - p) . 

plasma if we combine it with the condition (18). As the drags electrons behind it. We shall see that the interaction 
mass of the free charge increases, condition (20) is satisfied between the moving charge and the plasma retains a sim- 
more readily. ilar character at large velocities as well. 

4. NONEXPONENTIAL DECAY OF THE POTENTIAL AS A 5. RESULTS OF NUMERICAL CALCULATIONS 
FUNCTION OF DISTANCE 

If we separate the Coulomb contribution in (17) and 
The of a moving free charge the plasma integrate with respect to one of the angular variables we 

differs qualitatively from the Debye shielding ofa  charge at can reduce the general express.ons ( 17 ) to the following 
rest. This is seen in the nonexponential decay of the poten- form: 
tial (17) as a function of distance R. It can be found an- 
alytically by considering slow motions which satisfy u4v. 
Expanding ( 17) to first order in the velocity u of the 

q= ( charge and assuming that from ( 13 ) we have 

~ ( ~ ) = - 2 x ~ + i ? r ' / ~ x ,  x41 ,  (21) x [zsin 8 ( 1 - ~ ~ ) ~ / ~ ] e x ~ ( i z x  cos 8)R2[ l+F(sx)]  

we find the following result: 

This was obtained first by cooper12 and agrees with the 
results of Ref. 1. 

Thus, at distances large in comparison with the Debye 
radius the potential of a moving charge falls off as the 
inverse cube of the distance and, in addition, has a strong 
directional dependence. The first term in (22) can be ne- 
glected in comparison with the second. Then in the rear 
hemisphere relative to the direction of particle motion the 
effective charge of the moving particle is reversed, i.e., a 
moving electron repels electrons located ahead of it and 

Here 8 is the angle between the vectors u and R and we 
have written s= u/U1/Z. 

For numerical calculations we rewrite expression (23) 
in an explicitly real form by introducing the effective 
charge function q =x/R : 

x [z sin 8 (  1 -x2) I'2] @(Z,X;~,S,~) .  (24) 

Here we have used the notation 
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FIG. 2. As in Fig. 1, for 8=lr/4. 

@ ( ~ , X ; ~ , S , ~ > = C { ~ ~ ~ ( ~ + F ' ( S X ) ) + ~ ~ [ ( ~ + F ' ( S X ) ) ~  The change in the effective charge of the particle at 
small velocities is especially noticeable in the rear hemi- 

+ ( ~ " ( s x )  )*])cos(z cos ex) sphere (Fig. 4, 8= 3n-/4, and Fig. 5,8=n-). This is because 
the moving particle drags behind it a cloud of particles of 

-2p2~" (sx)sin(z cos ex)) the same species. However, when the velocity is large (see 

xC[$+p2(1+~' (sx))12 the case s=50 in Fig. 5), the particle is no longer able to 
entrain this cloud and the potential becomes Coulombic. It 

+ p 4 [ ~ " ( s ~ )  12)-', p=R/a. (25) is precisely this which is the inertial behavior of the polar- 

The function x(p,8) has been evaluated from Eqs. 
(24)-(25) for angles 8 between the direction of the radius 
vector R and the direction of the velocity u of the particle 
equal to 0, n-/4, n-/2, 3n-/4, and n-. Figure 1 shows the 
results for 8=0, i.e., in the direction ahead of the moving 
particle. It is clear that as the particle velocity increases the 
shielding becomes weaker, although even for velocity ratios 
s=50 the potential is significantly shielded (the complete 
disappearance of shielding would correspond to the hori- 
zontal straight line X= 1 ). This is substantially in disagree- 
ment with Ref. 7, where it was asserted that for fast par- 
ticles with p<s the potential is essentially Coulombic. 

The results in Fig. 2 for 8=n-/4 are similar. At very 
large velocities (s= 50) the shielding is weaker than for the 
angle 8=0, whereas for small velocities it is stronger. 

Figure 3 shows x as a function of p for different par- 
ticle velocities at right angles to its motion. It is clear that 
for moderate velocities (s= 1) there is still a small change 
in the effective charge of the moving particle. However, as 
the velocity increases the screening of the field of the par- 
ticle becomes weaker, and at s=50 its potential differs 
from the Coulomb potential by less than a factor of two if 
we restrict ourselves to distances of less than ten Debye 
radii. 

ization referred to earlier. 
Our results agree qualitatively with those of Refs. 7 

and 8, in which the calculations were carried out to s= 10 
and s= 15, respectively. 

From Figs. 1-5 the general conclusion is that as the 
velocity of the moving particle in the plasma increases its 
potential becomes strongly anisotropic as the perturbation 
extends to larger and larger volumes of space. In the rear 
hemisphere the effective charge changes in sign and can be 
considerably larger in absolute value than the original 
charge. 

6. SHIELDING OF THE FIELD OF THE PLASMA PARTICLES 

Thus far we have been talking about an individual free 
charge moving in a Maxwellian plasma. In this section we 
turn to the aggregate of plasma charges. If we consider the 
simplest fully ionized hydrogenic plasma (which, to be 
sure, is what we were talking about previously), then we 
are concerned with the motion of the ions and electrons. 
As regards the ions in the isothermal case, because of their 
large mass their thermal velocity is much less than the 
electron thermal velocity ( 1 1 ) , which is responsible for the 
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FIG. 3. As in Fig. 1, for 8=?r/2. 

Debye shielding. Hence the potential produced by the ions ensemble particles and over the angle 8, on which the Max- 
in this case is almost purely Debye-like, since we can treat well distribution obviously does not depend. 
them as though they were at rest. It is more convenient to start by averaging expression 

The situation is different, e.g., for the plasma electrons. ( 16) for the Fourier component of the potential of the 
In order to demonstrate this fact, let us find the mean moving charge over the Maxwellian distribution. We find 
potential for an ensemble of particles with thermal velocity 
vl .  For this purpose we will average the potential (23) (q(k,w)) = [25/2d/2/vlk3]~l(k ,~)  
found above with a Maxwellian distribution at time t = O .  
The average is carried out over both the velocity u of the x exp( -u2/2k2v;). (26) 
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FIG. 5. As in Fig. 1, for @=r. 

Inverting the Fourier transform and integrating over the sin ( k r )  m2 
angles of the vector k we find xE%GTl exp[-w]. ( 2 8 )  

( q ( r ) )  = ( x ( r )  ) /c ( 2 7 )  
Using expression ( 10) for the dielectric function and mak- 
ing a change of variables, we can perform the integral with 
respect to k. We finally obtain 

FIG. 6. The absolute value of the logarithm of 
the average effective charge of a moving parti- 
cle in a plasma with different values of 
p=uI/u3 the thermal velocity scaled by the 
thermal velocity u of the plasma electrons, as a 
function of distance from the charge p. The 
broken trace corresponds to the Debye 
potential. 

915 JETP 77 (6), December 1993 k. E. Trofimovich and V. P. Krainov 915 



Here we have introduced the dimensionless variables 

and the notation 

Figure 6 shows the results of the numerical calculation 
using Eq. (29) for different values of the parameter p de- 
fined in Eq. (30). It is clear that the inclusion of electron 
motion ( p  = 1 ) weakens the Debye shielding, as one would 
expect. 

These results can also be applied to a weakly ionized 
plasma containing electrons and ions. In addition, the re- 
sults can easily be generalized to the case of the ion thermal 
motion in electrolytic solutions. They are analogous to the 
so-called relaxation correction (see Ref. 10, Sec. 26). This 
arises because the ion motion in an external electric field 
distorts the distribution of charges in the polarization 
cloud, as a result of which an additional electric field acting 
on the ion in question develops. As is well known, this 
effect diminishes the ion mobility. Including the ion ther- 

mal motion effectively increases the Debye radius, thereby 
increasing the relaxation correction, i.e., still further reduc- 
ing the ion mobility. A similar change occurs in the so- 
called electrophoretic correction, which results because the 
motion of the polarization cloud causes the fluid to move, 
which in turn produces "drift" of the ion in question. This 
also reduces the ion mobility. 

In conclusion we wish to thank V. P. Yakovlev for 
valuable advice on the content of this work. 
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