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To lowest order in A/L and R/w, equations are found for the transport of energy, 
momentum, and angular momentum of an electromagnetic wave propagating in a weakly 
absorbing uniform time-independent anisotropic and gyrotropic medium with spatial 
and temporal dispersion (A and w are the wavelength and frequency and L and 1/R are the 
characteristic length and time scales on which the wave amplitude varies). It is shown 
that the intrinsic angular momentum (spin) of the wave is conserved only for transverse waves 
with circular polarization. Expressions are found for the spin density, its flux, and the 
power per unit volume of the losses. 

INTRODUCTION 

A packet of almost monochromatic electromagnetic 
waves propagating in a continuous medium with temporal 
and spatial dispersion is characterized by the density of 
energy, momentum, and angular momentum, and by the 
flux densities of these quantities. While the question re- 
garding the transport of energy '-' and m o m e n t ~ m ~ - ~  of the 
waves can be regarded as settled, the transport of angular 
momentum in such media has not been completely inves- 
tigated theoretically. For example, there is not even an 
expression for the intrinsic angular momentum density and 
its flux density in a medium. 

A. I. ~adovsk i i~ , '~  predicted the existence of intrinsic 
angular momentum (spin) in an electromagnetic wave. He 
showed that when a wave is absorbed or its polarization 
changes as it passes through material a rotational angular 
momentum develops. This effect has been observed in the 

and  ent ti meter'^"^ bands. An expression for 
the spin density of an electromagnetic wave in a dielectric 
without dispersion was reported by ~ 0 r ~ a r d t . l ~  The status 
of the spin of electromagnetic waves has been discussed in 
review  article^.",'^ This topic has also been studied in con- 
nection with plasma physics problems. 

In the present work we consider the transport of en- 
ergy, momentum, and angular momentum by an electro- 
magnetic wave propagating in a weakly absorbent uniform 
time-independent anisotropic and gyrotropic medium with 
temporal and spatial dispersion. In order to derive expres- 
sions for the density of the intrinsic angular momentum 
and its flux density, as we shall see (see also Ref. 17), it is 
necessary to find the momentum and angular momentum 
transport equations up to and including terms of order 
(L/L)~,  ( ~ / o ) ~ ,  and AWL@, where o and A are the fre- 
quency and wavelength and L and 1/R are the character- 
istic distance and time scales on which the wave amplitude 
changes. Here it is convenient in using the Maxwell equa- 
tions to find an expression for the density of the free elec- 
tric currents in terms of the strength of the wave electric 
field, retaining terms to second order in A/L and R/o 
(Sec. 1). The wave energy and momentum conservation 

laws are found to second order in Secs. 2 and 3 (the prin- 
cipal terms in these equations are of first order in A/L and 
R/o). In Sec. 4  expressions for the variation of the angular 
momentum density of the free currents is used to derive the 
transport equation for quantities which are quadratic in the 
complex amplitudes of the wave fields, which reduces to 
the transport equation for the orbital wave angular mo- 
mentum [given to first (lowest) order in L/L and R/o] 
and to the second-order equation. The law of conservation 
of intrinsic angular momentum in the direction of wave 
propagation follows from the latter for waves with circular 
polarization. Expressions are found for the intrinsic angu- 
lar momentum density and the density of its flux for the 
propagation of circularly polarized transverse waves in an 
isotropic gyrotropic dielectric with temporal and spatial 
dispersion and in a magnetized plasma parallel to the mag- 
netic field. 

1. BASIC EQUATIONS 

A macroscopic electromagnetic field in matter acts on 
a charge q moving with velocity v with a force 

This relation determines the strength of the electric field E 
and the magnetic field B in the medium. They satisfy the 
Maxwell equations 

1 aD 4 r .  
rot B=- -+- jot div B=O, 

at 

where po and jo are the densities of the free charges and 
currents in the medium. 

In the linear approximation the displacement D is re- 
lated to E by 

For a plane monochromatic wave we have 
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from which 

where A. is the time-independent amplitude and tzij(w,k) 
is the dielectric tensor of the medium (we assume that the 
magnetic permeability is equal to unity). 

To derive transport equations for the energy, momen- 
tum, and angular momentum of an electromagnetic wave 
propagating in the medium we will start with the familiar 
variations of these quantities for free charges and currents 
acted on by an electromagnetic field. 

The change per unit time of the kinetic energy of the 
free charges in an electromagnetic field is determined by 

where the summation is performed over all free charges. 
If we introduce the distribution of the free charge den- 

sity, 

po(t,r) = C q&[r-ra(t) I,  ( 6 )  
a 

then (5) can be rewritten in the form 

where jo=pov is the density of the free currents. 
By virtue of the Maxwell equations (2) we can replace 

the current density jo(t,r) of the free particles in (7) with 
the field properties, thereby obtaining a transport equation 
for the electromagnetic field energy. 

Using the equations of motion for the free charges in 
the medium when an electromagnetic field is present, we 
find 

After we make use of Eq. (2) to replace the quantities po 
and jo with field quantities, the second term in (8) deter- 
mines the equation for transport of the electromagnetic 
field momentum. 

Similarly, we find an expression which describes the 
transport of the angular momentum of the free charges and 
the field, 

For an arbitrary electromagnetic field in vacuum, substi- 
tuting for po and jo from (2) in ( lo), we find by virtue of 
the symmetry of the Maxwell stress tensor the law for 
conservation of angular momentum of a closed system con- 
sisting of fields and free particles. 

From (7), (8 ) ,  and ( 10) we see that to derive equa- 
tions for the transport of energy, momentum, and angular 
momentum of an electromagnetic wave we need to express 
jo(t,r) and po(t,r) in terms of the wave electric field using 
Eq. (2). 

When the wave is weakly damped, 14.1 4 It$[ [here 
4 and t$ are the Hermitian and anti-Hermitian parts of 
~~,(w,k)] ,  the damping rate is proportional to 4 and the 
amplitude of the electromagnetic wave is a slowly varying 
function of position and time in comparison with the phase 
wt-kr. We write the electric field of the wave in the form 

The field ( 11) is represented as a superposition of mono- 
chromatic fields with frequencies and wave vectors close to 
w and k respectively (a wave packet). Using the familiar 
techniquez1 we find 

To the same accuracy, retaining terms with derivatives 
of the slowly varying electric field amplitude through sec- 
ond order [i.e., through terms proportional to (A/L)~,  
(fi/w)', and Afi/Lw], we find from Eq. (2a) 

Substituting (12) and (13) in (2b) we have after some 
simple transformations 
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where 

where the terms are given by a hierarchy of equations 
which follow from ( 14) in the limit 1 M$ 1 4 I M;( and 
jo=O (we restrict ourselves to writing down the first three 
equations of this hierarchy) : 

(here Mi, is the Maxwell tensor and N is the index of 
refraction). 

Equation ( 14), which follows from the Maxwell equa- 
tions, relates the density of the free currents to the electric 
field strength of the waves to second order in il/L and 
R/o. This equation is the basis for deriving the transport 
equations. 

Note that the expansion (15) can be derived formally 
to any order, in analogy with (12), if we write (2b) in the 
form 

where for an amplitude 4 which is independent of space 
and time we have 

fij4 exp( -iwt+rlu) = fij(w,k)& exp(-iwt+llu), 
(18) 

fij(w,k) = -i+(w,k). 

From Eq. (22a) we find the dispersion relation for the 
eig enmodes 

and the polarization vector e for an arbitrary eigenrnode, 
2. THE ENERGY TRANSPORT EQUATION 

Substituting (14) in (7), after averaging over the wave 
period T=2r/w we find the energy conservation law in 
differential form to second order in A/L and R/u: where 

Here we have made use of the relation (cf. Refs. 23 and 24 
for MH=O) where 

In evaluating the components of the polarization vec- 
tor e it is convenient to use the formulas [cf. Eqs. (24) and 
(2511 

In (26) there is no summation over the subscripts i and j, 
each of which can assume one of the three values x, y, or z; 
for example, for j = x  we have 

Here w, S, and q are the energy density, energy flux den- 
sity, and the rate of energy losses per unit volume respec- 
tively, averaged over the wave period. 

We can write down the energy conservation law (19) 
for any eigenwave (jo=O). In this case the wave amplitude 
E(t,r;w,k) can be written as a power series in il/L and 
Wo (Ref. 22) 

From (24) and (25) it follows that 
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Retaining only the lowest-order term of the expansion of 
E0 in Eq. (20) we find from (21) in the form (24), using 
(281, 

Equation (34) describes the variation of the absolute 
value I Eo(o,k;t,r) I of the wave amplitude as a function of 
time and position. We define the phase ao(w,k;t,r) of the 
wave amplitude by the relation 

The change of this phase as a function of time and space is 
determined by the imaginary part of the equation obtained 
by multiplying (22b) by @, 

w (E0I2 aM; 
- M~(M;) - l 

Spe 1 6 ~  

- 
w dMH(w,k) 1 EOl 

-- 
Spe aw 1 6 ~ '  i.e., the phase a. varies only in the direction of the group 

velocity .22 

The expression for So is found from (20) in a similar fash- 
ion: 

3. MOMENTUM TRANSPORT EQUATION 

From the continuity equation for the free charge, 
where 

we can express po in terms of jo to second order in A/L and 
a/@: Finally, for the quantity qo we have 

where 

Using (39) and (13) we have 
We recall that it is necessary to substitute w = w(k) in 

the right-hand sides of Eqs. (29)-(33). Here w(k) is the 
eigenfrequency which satisfies the dispersion relation (23). 
Thus, for an eigenmode the energy conservation law ( 19) 
in lowest order assumes the form 

In contrast to the usual'-5 expressions used for wo, the 
expression (29) derived here has a simpler form, since it 
does not explicitly contain the wave polarization vector 
( I Eo 1 = I Eo 1 2). Equation (30) is the most direct tech- 
nique for deriving a relation between the energy flux den- 
sity and the energy density for an arbitrary eigenmode. 
Note that this relation is valid only in lowest order and 
becomes meaningless when we take into account subse- 
quent terms in the expansion of the field amplitude in pow- 
ers of A/L and a/w [compare Eqs. (19) and (20)l. From 
(29) it follows that when the condition 

If we substitute expression ( 14) in (40) for the free current 
j o ,  then we obtain the wave momentum transport equation 
to second order in the variation of the amplitude of the 
electromagnetic field. This transport equation has the form 
of a conservation law, o aMH(o,k) - > o  

Spe a w  

holds the wave energy density is positive. This condition 
generalizes the familiar conditions for waves in an isotropic 
plasma25 and for irrotational plasma oscillations in a mag- 
netic field26 to the case of an arbitrary dispersive medium. 

Here p, is the electromagnetic wave momentum density 
averaged over a wave period 2 ~ / w ,  
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Finally, the quantity q, which describes momentum dissi- 
pation is equal to 

Here w, S,, and q are defined in Eqs. (20). 
Note that in the expressions for the momentum density 

p, Eq. (42), and for the momentum flux S,,, Eq. (43), 
when the right-hand side is nonzero, i.e., for forced oscil- 
lations, we have the terms 

which are comparable in magnitude with the lowest-order 
terms retained in the expressions (kn/w)w and (kn/w)Sm 
respectively, and also the terms proportional to the anti- 
Hermitian part of the tensor Mij .  

To lowest order, neglecting terms of order il/L and 
R/w in Eqs. (42)-(44) and taking into account (22a), we 
find for the eigenmodes 

The flux density Snm of the nth component of the momen- 
tum in the xm direction is equal to 

where 

Thus, the momentum conservation law (45) to lowest or- 
der including (46) can be derived from the energy conser- 
vation law (34) in the same approximation if each term in 
(34) is multiplied by k h  (see, e.g., Ref. 18). This relation 
between the wave momentum and energy densities, 
po= (k/w) wo, is the same as that between the momentum 
and energy of a photon in quantum theory, but it fails 
when the subsequent terms in the expansion powers of A/L 
and R/w are taken into account in the expressions for p 
and w. 
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4. TRANSPORT EQUATIONS FOR ANGULAR MOMENTUM, 
ORBITAL ANGULAR MOMENTUM, AND INTRINSIC 
ANGULAR MOMENTUM 

Now from ( 10) and (40) we derive an equation for the 
transport of wave angular momentum in differential form: 

where esk, is the Levi-Civita fully antisymmetric third- 
order unit tensor [terms of higher order in A / L  and R/w 
have been omitted from the right-hand side of (47)]. 

The largest term on the right-hand side of (47) is the 
first: 

Substituting expression (19) in (48), we find the transport 
equation for the "orbital" angular momentum of the wave: 

Taking jo=O in (49a) and retaining only the lowest-order 
terms in the left-hand side [cf. Eqs. (29)-(33)], we have 

where M, is the orbital angular momentum density of the 
wave, 

If the phase velocity vph= ( o / ~ ) x  and the group velocity 
vg are not collinear (e.g., for propagation of waves in a 
magnetized plasma or in crystals with a symmetry axis 
above second order), then for the components of the or- 
bital angular momentum density vector lying in the same 
plane as the vectors vph and vg, Eq. (50) assumes the form 
of a conservation law. The component of the vector Mo 
perpendicular to this plane, as follows from (50), are not 
conserved. 

We transform the last term in (47): 
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We see that in (47), when we take (52) into account, there 
is only one term, 

which does not explicitly contain the radius vector r. This 
term is precisely the one which determines the transport 
equation after substitution of (14): 

which under conditions to be specified below goes over to 
the law of conservation of wave intrinsic angular momen- 
tum. 

Let us investigate (54) for the case of the propagation 
of an eigenmode. Setting jo=O and substituting the first 
two terms of the expansion from (21) in the right-hand 
side of (54), using (22a) we have 

a ~ ;  aEo 
-- ~.EC----~M$~,E~ =O. 

ak, O ax, I 121 
Equation (55) is to be compatible with Eq. (22a) and 

(22b). We obtain the compatibility condition by taking the 
dot product of (55) with a, determined by 

ap,e; = Aef , (56) 

where A is an arbitrary proportionality coefficient. Then, 
taking into account that by virtue of (22a) we have 
efMH 11 = (M;ei)* = 0, after we take the dot product of 
(55) with the vector a the first term, which is proportional 
to E;, vanishes and we find the desired compatibility con- 
dition. Before writing this condition down explicitly, let us 
find the vector a. Solving (56) for a,, we obtain a relation 
which must be satisfied by the components of the polariza- 
tion vector for the eigenmode in question (along with the 
normalization condition 1 e 1 = 1 ) : 

From (27) it follows that ex and e, are real, while e, is 
purely imaginary. Condition ( 57) can therefore in general 
be satisfied only as a result of an additional relation be- 
tween w and k, different from that which follows from the 
dispersion relation, which has been eliminated. It is easy to 
see that condition (57) can be satisfied only for a wave 
with circular polarization: 
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transverse waves with the circular polarization (58), 
which have the spin (66) propagating in various media. 

a)  A wave propagates in an isotropic gyrotropic me- 
dium whose dielectric tensor for arbitrary spatial disper- 
sion is determined by the expression2' 

and the vector a that satisfies (56) together with (57) is 
equal to 

a=A(e*e). (59) 

If we set A = - i, then the vector a by virtue of (58) is 
equal to 

a =  -i(e*e) = *ez. (60) 

Using (60), we take the dot product of (55) with e,, 

In this case we have 

and the dispersion relation for transverse waves with the 
polarization (58) takes the form 

E,-N2= f k f .  (68) 

The energy density wo, the group velocity v,, and yo for 
transverse waves with the dispersion (68) are equal to [cf. 
Eqs. (29) and (31)] 

Then 

= fie*. (62) 

Substituting (62) in (61) we find from (61) the compati- 
bility condition 

[In the right-hand sides of Eqs. (69) we need to substitute 
(68), E: = Im E,, and f" = Im f in the expressions oper- 
ated on by the derivatives.] Substituting (69) in (66) and 
(65), we find explicit expressions for the spin of a wave 
and its conservation law. 

Note that if we put E ~ = E , = ~ ,  f =0, and yo=O in Eqs. 
(65)-(69), then we find the spin and its conservation law 
for a transverse wave propagating in vacuum. 

b) In a "cold" plasma in an external magnetic field Bo 
the dielectric tensor takes the form 

E i j ( ~ )  =&1(@)6ij+ (~3-~ l )h ih~+i~2e i~&, ,  (70) 

Using (29), (30), and (32), we can rewrite (63) in the 
form 

Derived from the angular momentum transport equation 
(47), this equation has the form of a conservation law for 
the intrinsic angular momentum (spin) of a wave with 
circular polarization directed perpendicular to the plane of 
polarization: 

where 

where 

and e,, nu, and ma are the charge, density, and mass re- 
spectively of particles of species a. For simplicity we as- 
sume that the waves are not collisionally damped 
(Im =Im c2=Im e3=O). 

For waves propagating parallel to the magnetic field Bo 
( x  = h = ez) , we have 

The quantity pz is the spin density averaged over the wave 
period, S, is the spin flux density, and 2y,+, is the rate at 
which spin is lost per unit volume [the * signs in (64) and 
(66) correspond to the signs in the polarization vector 
e(2-'I2, * i. 2-"2,0). Let us consider a few examples of 
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The dispersion relation for transverse waves with circular 
polarization given by Eq. (58) takes the form 

The energy density wo, the group velocity vg, and the en- 
ergy flux density So for such waves are equal to (yo=O) 

[In the expressions on the right-hand sides of Eqs. (75) 
acted on by the derivatives we must substitute (74).] Sub- 
stituting (75) in (66) and (65) we obtain explicit expres- 
sions for the spin of the wave and its conservation law. 

If the conditions wi)wlw,I, w(Iw,I, 
( I ( ( I E~ I ( I E~ I ), hold in the cold plasma, then a "whis- 
tler" can propagate. For propagation parallel to the mag- 
netic field Bo the dispersion relation for a whistler and the 
polarization factor take the forms ( E ~ =  - I e2 1 ) 

Explicit expressions for the spin in its conservation law in 
the case of a whistler can be derived from (65) and (66) 
(taking the + sign) by substituting (75) with 
replaced by - N2 + I e2 I . 

CONCLUSION 

This treatment of the transport of energy, momentum, 
and angular momentum of a nearly monochromatic elec- 
tromagnetic wave packet propagating in a weakly absorb- 
ing uniform time-independent medium with temporal and 
spatial dispersion shows that for a broad packet there is a 
conservation law for the intrinsic angular momentum in 
the differential form (65) (but only for waves with circular 
polarization), from which expressions for the intrinsic an- 
gular momentum density, its flux density, and the power 
lost per unit volume per unit time are obtained [see Eqs. 
(66)]. This conservation law can be derived only by treat- 
ing higher terms in the expansion of the field in powers of 
A/L and Wo. [The role of the finite size of the wave 
packet was remarked even in the early works of Abragam, 
Einstein, and Ehrenfest on the subject of the intrinsic an- 
gular momentum of electromagnetic waves (see Ref. 17) .] 

We have shown that there is a conservation law for the 
components of the wave orbital angular momentum in the 
same plane as the phase vectors and the group velocity, 
although the component perpendicular to this plane is not 
conserved [cf. Eq. (50)]. 

We have derived laws for the conservation of energy 
and momentum in differential form to within terms of 
higher order in the quantities A/L and O/o [Eqs. (19), 

(20), and (41)-(44)]. Note that the expressions for the 
momentum density and its flux contain terms proportional 
to the anti-Hermitian part of the tensor E ; ~ ,  and also (in 
the case of driven oscillations) terms of the same order as 
the leading terms for the eigenmodes (when jo=O). 

We have shown that the momentum conservation law 
is a consequence of the energy conservation law only to 
leading order; in this approximation the relation between 
the wave momentum and energy is the same as that for a 
photon in quantum theory. 

To lowest order we have found an expression simpler 
than the usual one (see, e.g., Refs. 4 and 5) for the energy 
density of an electromagnetic wave, which does not explic- 
itly contain the polarization vector. This expression allows 
the condition for the positivity (or negativity) of the wave 
energy density to be generalized to the case of an arbitrary 
dispersive medium. 

Note that the question of the transfer of angular mo- 
mentum to the medium can also be treated in the case of a 
very broad wave packet ( L  + CQ ) resulting from the for- 
mation of a scattered wave by a system of distributed di- 
pole moments, and also due to diffraction effects at the 
boundary of a scattering (or absorbing) dielectric plate.18 

In the above investigation we have not specified the 
mechanism by which waves are absorbed, described by the 
anti-Hermitian part of the tensor cij. Thus, we have not 
considered the fate of the absorbed wave energy, momen- 
tum, and angular momentum. To answer this question, 
each case must be analyzed separately. For example, in a 
collisionless plasma the absorbed energy (and momentum 
and angular momentum) of a wave packet are equal to the 
energy (momentum, angular momentum) acquired by the 
resonant particles. When collisions are taken into account 
this energy goes into increasing the particle thermal en- 
ergy, etc. In order to study these processes we must use a 
more detailed description of the system, e.g., by means of 
the kinetic equations. In this case it may be necessary to 
take into account nonlinear effects, such as the entrainment 
currents1' with the accompanying processes of charge sep- 
aration in the field of a damped wave packet27 and momen- 
tum transfer from the resonant particles to the nonreso- 
nant particles,7~28 the inverse Faraday effect (production of 
a wave packet by a quasisteady magnetic field1'), etc. But 
these topics lie outside the scope of the present work. 

In conclusion we express our sincere gratitude to S. V. 
Peletminskii and V. P. Silin for discussions of these results 
and critical comments. 
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