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The properties of stimulated Cherenkov emission from sheet relativistic electron beams 
(REBs) in a uniform isotropic dielectric medium are studied. It is shown that in the linear 
stage of the process there exist growing modes localized near the beam surface which 
have a transverse electromagnetic energy flux. In the nonlinear stage a mechanism is found 
for stochastic deceleration of the electrons, which interact successively (by turns) 
with an ensemble of electromagnetic waves radiated at various angles with respect to the 
system axis. As a result the efficiency with which the REB energy is converted into 
electromagnetic wave energy can reach 60%, considerably greater than the values 
achieved under ordinary conditions in which the transverse structure of the radiation field is 
produced by the external waveguide geometry. It is shown that this mechanism is 
promising as a source of powerful short-wavelength (in particular, submillimeter) radiation. 

INTRODUCTION 

The study of the stimulated emission from electron 
beams in electrodynamic systems which do not have wave- 
guide properties is of considerable practical interest, pri- 
marily as one of the more promising approaches to raising 
the power and frequency of coherent radiation sources.'-14 
In such systems the spatial structure of the radiation field 
is determined by the electron beam itself, and as in the 
situation when individual particles radiate the conditions 
for synchronous interaction are maintained automatically 
over a wide range of electron energies because of the vari- 
ation in the angle at which the wave is radiated. Conse- 
quently, the energy conversion efficiency can be consider- 
ably greater than the values achieved in ordinary systems 
in which the spatial structure of the radiation is determined 
by the external waveguide In addition, the 
analysis of the properties of stimulated emission from elec- 
tron beams of finite transverse extent in free space and in 
uniform media, including plasmas (see Refs. 18 and 19), is 
a fundamental problem of importance not only for labora- 
tory but also for astrophysical applications. 

The present work is devoted to the theory of stimu- 
lated Cherenkov emission from relativistic electron beams 
of finite transverse extent moving with superluminous ve- 
locity in a uniform isotropic dielectric medium. In Sec. 1 
we derive the dispersion relation and show that there exist 
growing eigenmodes which are localized near the beam 
surface. In Sec. 2 we use a parabolic equation to describe 
the evolution of the electromagnetic field and study the 
linear growing stage of radiation from a sheet electron 
beam in a semiinfinite problem. Sec. 3 is devoted to the 
nonlinear stage of the interaction process. A mechanism 
for stochastic deceleration of electrons in an ensemble of 
waves emitted at various angles to the system axis is de- 
scribed. 

1. DISPERSION RELATION: EIGENMODES OF AN 
ELECTRON BEAM OF FINITE TRANSVERSE EXTENT IN A 
DIELECTRIC MEDIUM 

Assume that a magnetized relativistic electron beam 
(REB) whose particles can move only in the z direction is 
injected into a medium (e.g., a gas) with an index of re- 
fraction n =  &. We treat a two-dimensional model in 
which it is assumed that the quantities do not depend on 
they coordinate and the radiation field has magnetic and 
electric components H, and Ex,,. For a monochromatic 
process with time dependence aexp(iwt) these compo- 
nents are related by the Maxwell equations 

By eliminating the quantities Ex and H, we reduce the 
system ( 1) to a single equation 

Here j ,  is the density of the high-frequency electron cur- 
rent. This quantity can be represented in the form 

where f (x) is a function describing the transverse beam 
current profile (here we assumed that the electron beam 
consists of a slab with thickness 6 )  and j is the amplitude 
of the current, which can be found by linearizing the elec- 
tron equation of motion, 

Here vo=floc is the unperturbed translational velocity of 
the particles, wb = (4.rrepdmd) 'I2 is the "longitudinal" 

II 

893 JETP 77 (6), December 1993 1063-7761 /93/120893-08$10.00 @ 1993 American Institute of Physics 893 



plasma frequency, po is the beam charge density, and 
yo= ( 1 - ~ 9 2 ) - ~ / ~  is the relativistic mass factor. 

To derive the dispersion relations, assuming the system 
is unbounded in the z direction, we look for a solution of 
Eqs. (2) and (4) in the form 

I cos (gx) (symmetric mode) 
E,= ce-jht 

sin (gx) (antisymmetric mode) 

inside the beam and 
~ , = ~ ~ - i h z ~ - h I x I  

outside the beam. Here C and D are arbitrary constants, 

are the transverse wave numbers inside and outside the 
electron beam respectively, and k=w/c. From the bound- 
ary conditions at the limits of the electron beam (x= i b/ 
2) we find the dispersion relations 

tg (gb/2) = ix/g symmetric mode, (7) 

ctg (gb/2) = -ix/g antisymmetric mode. (8) 

We begin by investigating the case of a thin sheet elec- 
tron beam 

lgbI2) - Ix/g14 1. (9) 

In this case there exists only one symmetric mode, for 
which we have9*12 from Eq. (7) together with (5) and (6) 

We next study the waves propagating at a small angle 
with respect to the electron translational motion 

h=k&(l-I '),  I r l g l .  (11) 

In this case the dispersion relation can be rewritten in the 
form 

(L-t)z=ff1/2 or ( d - ~ ~ ) ' = i 2 ,  (12) 

FIG. 1. Real and imaginary parts of the trans- 
verse (a) and longitudinal (b) wave numbers ver- 
sus the mismatch parameter A for Cherenkov syn- 
chronization for an amplified localized mode ( n  

4 
=4) in the case of a thin electron beam. 

A 

where we have written A = A/G, A = (hvo- w)/wnDo is the 
initial mismatch in the Cherenkov condition with respect 
to a wave propagating rigorously parallel to the system 
axis; 2 = x/(kn KG) ,  ?=I'/G ( f  =Rz); and 

is the gain. 
The waves are amplified and aligned by the electron 

beam when there is a normal wave which grows in the 
longitudinal direction, (Im f < 0), localized in the trans- 
verse direction, (Im R < O), and having a flux of electro- 
magnetic energy away from the beam toward the periph- 
ery, (Re R > 0). For A=o the solutions of ( 12) are given 
by the relations 

and none of the four normal modes satisfies the pr:perties 
listed above. A growing localized mode exists forA > h, 
= 3 21n/8 (for more detail see Ref. lo). The dependence 
on A of the real and imaginary parts of the transverse and 
longitudinal wave numbers for this wave (which we specify 
by labeling it n =4) are shown in Fig. 1. 

The asymptotic behavior of the wave numbers for large 
positive values of the mismatch in the synchronization con- 
dition (A) 1 ) is given by the relations 

According to (15), the growth rate increases monotoni- 
cally as a function of A: I Im f 1 - A1l4/v2, or in dimen- 
sional variables 
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FIG. 2. Transverse (in the direction f =  
knx @) distribution of the longitudinal 
electric field amplitude for symmetric and 
antisymmetric modes, S, and A, respec- 
tivelyLin the case of a thick electron beam; 
here B=6. 

(npo- l)'l4 tg (cB/2)=ig symmetric mode, 
I lm I = ("ilI y) 23N (16) 

This is because the angle $ = Re x/h rr @i1/4, at 
which the wave is radiated increases as a function of A. 
Thus, for the phase velocity of this wave in the z direction 
to equal the particle translational velocity we must have 

Accordingly, as the angle $ increases the amplitude of the 
longitudinal component of the electric field acting on the 
electrons increases: 1 EJEx 1 - 1 x/k I, which is responsible 
for the increase in the growth rate. 

For 8 ~ 1  the aligning effect of the electron beam be- 
comes negligibly small: I Im 2 1 - 8- 'I4. This allows us to 
assume that in this limit the eigenmode is a superposition 
of two waves emitted in opposite directions from the beam 
at the Cherenkov angle cos += l/npo. 

In the regime of greatest practical interest, A>1, we 
can easily use the dispersion relations (7) and (8) to de- 
scribe a thick electron beam also. In this case, noting that 
r = A +A holds, where 1 A 1 ( 1, we transform expressions 
(5) and (6) for transverse wave numbers into the form 

x = n k m z n k  @, 

~ n k @ ( l  -I/A~)"~, (18) 

where = u2 /(u2n2). This enables us to reduce the dis- 
bll 

persion relations to the form1) 

ctg (g8/2) = - ig antisymmetric mode, (19) 

where g = g/(nk @) = ( 1 - 1/A2)'12. Equations ( 19) 
give the complex transverse wave numbers for modes with 
different numbers of field variations as functions of the 
reduced beam thickness B=nkb@. Consequently, the 
transverse dependence of the field amplitude inside the slab 
is determined (see Fig. 2). Note that outside the slab the 
field amplitude in this approximation is constant in the x 
direction. The growth rates for the modes can then be 
found from the simple relation 

The growth rates S,,, and A, for the symmetric and anti- 
symmetric modes are shown as functions of the reduced 
electron beam thickness in Fig. 3. It can be seen that as the 
beam thickness increases the growth rate of a mode first 
rises, reaches a maximum, and then begins to decrease. 
Hence as the thickness increases there is a continual in- 
crease in the index of the mode at which the maximum 
growth rate is reached. The maximum growth rate corre- 
sponds to I gl=: 1. For modes with high indices m> 1 this 
condition is satisfied if gb=m.rr holds, i.e., a whole number 
of half wavelengths laid down across the thickness of the 
beam, corresponding to the transverse wave number g= nk 
@. 
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FIG. 3. Growth rates S, and A, for the symmetric and anti- 
symmetric-modes respectively versus the reduced electron beam 
thickness B. 

2. THE PARABOLIC EQUATION AND THE AMPLIFICATION Taking into account the boundarv condition which follows 
OF AN INITIAL PERTURBATION IN A SEMI-UNBOUNDED from &. (25), 
SYSTEM 

As shown by the above analysis, the field emitted by an 
REB can describe a set of waves propagating at small an- 
gles with respect to the system axis, i.e., it can be repre- 
sented as a quasioptical wave beam 

Substituting (21) in (2) and assuming correspondingly 
j,=j(z)exp(-iknz), we find using Eq. (4) a system of 
equations in which the evolution of the field amplitude 
A (x,z) is described by an inhomogeneous parabolic equa- 
tion (cf. Refs. 2 and 10): 

#a aa a j  
i7+-=2i- f (x), ax az az 

(" aZ- iA ^ ) 2  j = ia, 

where Z= knGz, X = kn f i x ,  a = e ~ / ( r n c w y $ ~ ~ ~ ) .  
The boundary conditions for Eqs. (22) and (23) in- 

cluding a possible initial modulation of the beam density jo 
and velocity ,yo can be represented in the form 

Using Eqs. (22)-(24), let us treat the problem of the 
evolution of an initial perturbation specified in the form of 
a modulation in the electron beam density (jo#O, 
ao=Xo=O). Here we restrict ourselves to the case of a thin 
sheet electron beam: f (X) =6(X), where 6(X) is the delta 
function. 

Using the Laplace transform in the longitudinal coor- 
dinate, q5p= L[+(Z)], we have from (22) and (23) for the 
transformed functions 

from (25) and (26) we find for the transform of the field 

Expanding the denominator of Eq. (27) in partial fractions 

where sn= [1+4ix^,(L - ??,)I-', we reduce the inverse La- 
place transform 

to a sum of standard integrals.20 As a result we find for the 
amplitude of the longitudinal field component 

4 

a (X,Z) = ijoL2 C s, exp ( - i2,l X I +if,,Z) 
n=l 

where 

is the probability integral and 2, are the roots of the dis- 
persion relation ( 12). 

Using the asymptotic form of the probability integral 
for large values of the argument, 
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we find from Eq. (28) the following approximate expres- 
sion for the amplitude of the radiated field at distances 
from the input cross section substantially greater than the 
inverse growth rate: 

a - 2ijoh2s4 exp ( - iG4 I X 1 + i f  J). (29) 
Z, 1 

Thus for sufficiently long interaction lengths parallel to 
the beam surface the electromagnetic field develops as a 
growing localized wave. This conclusion can be extended 
to initial perturbations of arbitrary form, e.g., when the 
initial profile of the wave beam amplitude is given (nonin- 
creasing in the limit ( X  ( + w ) . 

3. NONLINEAR INTERACTION STAGE 

To study the nonlinear stage of electron beam emission 
in a dielectric medium we must replace the linearized equa- 
tions of motion (4) with the original full equations. Under 
the assumption that the electron energy is in the ultrarel- 
ativistic range y>l, by making use of the relation 
V ~ C (  1 - ~ - ~ / 2 )  we can reduce the self-consistent system 
of equations to the form 

with boundary conditions 

e(C,o=80+r cos eO, [0,21~]. (32) 

Here we have written {=kxy&'n, f=nkzyr2/2, and 
8 = y/yo is the electron energy scaled with respect to the 
initial value; e= wt- knz is the electron phase with respect 
to the synchronous wave; H = A z ~ ,  I = o:ll &(dn2) ;  r 
is a parameter describing the initial modulation of the elec- 
tron beam density, and a = 2eyoA/(mcw). 

The energy conversion efficiency (the electronic Q) is 
given by the relation 

where ~=knby;'. 
In the quasioptical approximation used here we can 

assume that the amplitudes of the transverse field compo- 
nents are related by HyznEx. For the scaled values of 
these quantities, 

'Ley0 2eyo 
hY=-HY, ex=- 

mcw mcw nEx 

the coordinate dependence can be represented using Eqs. 
( lb,c) in the form 

The energy conservation law in this system can be written 
in the form 

where P, = Re j- Z e A f  d{' is the power transported by the 
electromagnetic field in the longitudinal direction. The first 
relation in Eq. (35) is the integral of the excitation equa- 
tions (30), and the second is the integral of the equations 
of motion (31). 

To numerically simulate the nonlinear stage of the in- 
teraction it is convenient to use the integral representation 
for the solution of the parabolic equation. For this purpose, 
after the substitutions 8= Xf+6, a = E exp( - ihf) ,  we re- 
duce the system of equations (30)-(3 1 ) to the form 

- 
where J= l / ~ $ ~ e - ~ d e ~ .  

We first consider the case of a thin sheet beam f (6) 
= BS (0. In this limit Eq. (36) simplifies to 

- 
where I = IB. Accordingly, the integration algorithm re- 
duces to a combination of the solution of the equations of 
motion (37) and the integral representation (38) evalu- 
ated at f =0, i.e., in the plane of the electron motion. The 
transverse distribution of the longitudin_al and transverse 
components can then be found when J ( f )  is known by 
using Eqs. (38) and (34). 

Small modulation of the beam density (r=0.1) have 
been used as the initial condition. The numerical simula- 
tion supports the conclusion drawn in Sec. 2, to the effect 
that for a > a, sufficiently far from the input cross section 
( f z 5  in Fig. 4a) the structure of the radiated field in the 
linear amplification regime is close to that of a localized 
eigenmode (n = 4), regardless of the initial conditions. 
Thus, in the linear stage of the interaction the electron 
beam amplifies and aligns the radiation. This continues 
until the system goes over to the nonlinear stage. 

Since the alignment process is accompanied by a par- 
tial leakage of electromagnetic energy from the electron 
channel (Re 2 > 0), in the nonlinear stage ( f  > 5) when 
the growth of the field amplitude near the axis saturates, 
the wave beam broadens. The explanation for this is that 
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rays emitted by electrons in the previous cross sections 
reach the periphery. As a result, the electromagnetic en- 
ergy gradually radiates away into the external space (see 
Fig. 4a). 

An important property of the nonlinear stage of Cher- 
enkov emission in free space filled with a dielectric is that 
the deceleration of the particles becomes stochastic in the 
limit z>1. The reason is that at sufficient distances f>l 
from the initial cross section the radiated field can be rep- 
resented as an ensemble of plane waves with random 
phases propagating at various angles with respect to the 
direction of translational motion of the particles (see the 
angular spectrum of the field, S,= 1/GJ "a exp(ik{)d{ 
shown in Fig. 4b). The phase velocity of these waves is 
given by 

Uph = - 
n cos $ ' 

The slowest component u$'=c/n, of the wave packet ob- 
viously corresponds to an electromagnetic wave propagat- 
ing exactly along the system axis, $=O. 

The time development of the angular spectrum of the 
radiation shows that, while in the initial linear stage of the 
interaction waves are radiated primarily at angles $ such 
that their phase velocity in the direction parallel to the 
system axis is close to the unperturbed translational veloc- 
ity of the particles (the spectral maximum in Fig. 4b at 
f z 5 corresponds to 2 z A"2), as the electrons slow down, 
waves satisfying up,,($) < vo fill up the angular spectrum. 
Hence under conditions such that the initial translational 
electron velocity vo is considerably larger than v? so that 
X> 1 holds, the electrons can interact synchronously suc- 
cessively with different parts of the packet of radiated 
waves until the average (over the ensemble) particle trans- 
lational velocity is comparable with v$". After that, the 
energy exchange essentially terminates (see Fig. 5). As- 
suming that the average final velocity of the electrons is 
equal to Ufpf", we find the following estimate for the elec- 
tronic Q: 

7,7=1- - 
(A- l)1'2. 

FIG. 5. The quality q and electron energy 8 (for different input 
phases 8,) versus thelongitu_dinal position for the case of a thin 
electron beam with I=0.1. A=7.  
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For example, for i= 7 we have from Eq. (39) qtz60%, 
which agrees well with the results of the numerical simu- 
lation (Fig. 5). 

Thus, the results obtained above enable us to conclude 
that when a sheet REB emits Cherenkov radiation in a 
uniform dielectric a higher efficiency can be achieved for 
the energy release than in conventional systems in which 
the transverse field structure is determined by the external 
shape of the waveguide (in uniform types of relativistic 
Cherenkov the value of Q is less than 30%). 
It is also important to emphasize that for radiation in a 
uniform dielectric the value of Q depends weakly on the 
beam current, whereas to achieve a high Q in conventional 
designs it is necessary to have a very specific (fairly high) 
current density. 

Let us investigate the nonlinear stage of radiation from 
a thick electron beam in the limit 1. In this regime the 
integral representation (36) for the radiated field simplifies 
and can be reduced to the form 

The transition to (40) corresponds to going to a represen- 
tation of the radiated field as a superposition of waves 
propagating exactly at the Cherenkov angle cos I,!I= l/nPo. 

FIG. 6. Variation with the longitudinal coordinate f of 
(a) the field amplitude 1 a 1 and (b) the electron energy 
(t%)Bo averaged over the input phases for the case of a 
thick electron beam with 1=0.25, g=6. 

In the limit as1 we can disregard the variation of the 
radiation angle, even when the energy of the ultrarelativ- 
istic electrons changes substantially. 

If the layer thickness is small on the scale of the inverse 
growth rate, B< (2A) 'I2, then Eq. (40) permits the follow- 
ing simplification: 

where c=i''2<, B=h'/2~. Simultaneous solution of (41) 
and the equations of motion (37) shows that in the initial 
linear stage of the interaction a field profile develops inside 
the electron beam which corresponds to the structure of an 
eigenmode having the maximum growth rate for the spec- 
ified beam thickness. In the simulated case 8= 6 this is the 
second symmetric mode S2 (compare Fig. 6a for c= 10 
with Fig. 2). Then the transverse structure of the field 
becomes complicated (stochastic) in the nonlinear stage. 
The distribution of the average (over the input phases) 
electron energy along the slab is shown in Fig. 6b. It is 
evident that the presence of maxima and minima in the 
amplitude of the h f field causes the energy to be exchanged 
nonuniformly in different parts of the electron beam. In 
particular, there exist regions near the field minima at 
which the energy release is quite small. Consequently, the 
value of Q integrated over the transverse cross section of 
the electron beam is less than 50% (see Fig. 7). 

In conclusion we show that the radiation from a sheet 
REB in a dielectric can be used to obtain powerful electro- 
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FIG. 7. Elliciolcy q with which energy is converted as a function of 
longiludinal posilion lor a thick electron tK.Rm will1 1-0.25, b =6. 

magnetic waves in the short-wavelength range. Here we 
demonstrate this possibility for the case of submillimeter 
radiation. Assume that the high-current REB has electron 
energy %'= 1 MeV, current density - lo4 A/cm2, and 
thickness b= 1 mm, and that it is injected into a channel in 
a dielectric with index of refraction n= 1.2. Assume that 
the radiation wavelength is A-0.5 mm (for the beam mod- 
ulator in this case we can use, e.g., a gyrotron21). These 
values of the parameters correspond to I=0.25, B=6. 
Then, using Eq. (16) and Fig. 7, we find that the growth 
rate is equal to I Im h 1 - 10 cm-', and the efficiency with 
which beam energy is converted into electromagnetic radi- 
ation energy amounts to 40% at a distance - 10 cm from 
the input cross section. The radiated power per centimeter 
of transverse cross section may exceed 400 MW. 

"From the practical standpoint it is important to note that the same 
modes also exist when an electron beam propagates through a dielectric 
in a channel of width b. 
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