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Selective cross sections for (n,l) + (n',l') transitions between subshells of a Rydberg atom 
and for ionization in a collision with a fast charged particle are derived in the binary 
approximation. 

1. INTRODUCTION totic expansions diverge near the boundary of the range of 
applicability, and the corrections themselves are merely 

Rydberg atomic states with a principal quantum num- estimates of the accuracy of the given approximation. 
ber n - lo2 are currently the subject of active experimental 
and theoretical research (see, for example, Ref. I1 ). One 
specific feature of such states is their long lifetime with 
respect to radiative transitions, T-n3. It is thus important 
to consider collisional transitions, whose cross section in- 
creases in proportion to n4 because the size of the Rydberg 
atom scales as d-n2. A circumstance of importance from 
the standpoint of collision theory here is that the maximum 
of the cross section shifts toward lower energies with in- 
creasing principal quantum number. This tendency is clear 
from a comparison of the velocity of the Rydberg electron 
with the projectile velocity and also from the adiabatic 
approximation. According to the latter approximation, the 
cross section reaches a maximum at collision velocities v on 
the order of the Massey parameter, which varies in pro- 
portion to n-2 (Ref. 2). For collisions involving Rydberg 
atoms, it is thus legitimate to approximate by expanding in 
inverse powers of the collision velocity over a broad energy 
range E> n-4. In addition, at large values of n it is legiti- 
mate to use the classical or semiclassical approximation. 
The classical approach has been taken in calculations on 
atomic collisions for a long time now, dating back to the 
paper by ~ h o m a s . ~  Using the binary approach, the semi- 
classical approximation was developed in Ref. 4 for calcu- 
lations on transitions between shells, n-+nl.  Below we de- 
rive the corresponding approximation for selective 
transitions between subshells, (n, 1)  -+ (n', 1'). Calcula- 
tions on selective collisional transitions are required in or- 
der to fit these collisions into the overall scheme of kinetic 
equations, in which they compete with radiative transi- 
tions, which are closely related to the value of the orbital 
quantum number I. 

From the mathematical standpoint, this approach 
amounts to a double asymptotic expansion in the limits 
v-+ co and fi-+O. Everywhere, we retain only the first order. 
The reason for this approach is not so much the desire to 
derive a result in the simplest possible form as it is the 
fact-well known in the theory of asymptotic expansions- 
that the range of agreement with the exact result narrows 
with increasing number of corrections, because the asymp- 

2. ENERGY TRANSFER IN FAST COLLISIONS 

We first consider the energy transfer in fast collisions 
in the classical approximation. Although this problem has 
already been solved by Percival and ~ i c h a r d s , ~  our analy- 
sis has some substantial distinguishing features, concerning 
primarily the description of the Rydberg state, and the 
results are slightly different from those found previously. 

The starting point in this approach is the solution of 
the dynamic problem in the form of the momentum trans- 
ferred to an atomic electron by the projectile: 

where 

is the Coulomb force, Z is the charge of the projectile, and 
R(t)  is the radius vector of the projectile with respect to 
the electron. Here and below, unless otherwise stipulated, 
we are using the atomic system of units. 

In the limit of high collision energies the motion of the 
projectile should be regarded as uniform and rectilinear in 
a first approximation. Furthermore, since the collision time 
tends toward zero in this limit, we can ignore the change in 
the positions of an atomic electron in the course of the 
collision. It then becomes possible to use for the projectile 
the coordinate system moving with the electron. We can 
then write R(t)  = b+vt, where v=const is the projectile 
velocity, and b is the vector impact parameter with respect 
to the electron (bl v). In this approximation, the integral 
in ( 1 ) can be evaluated without difficulty; the result is 

Using (2) we can write the energy transfer as 
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where E and E' are the energies of the electron respectively 
before and after the collision (everywhere below, the 
primes mean the parameters of the final state), pb is the 
projection of the initial momentum p onto the plane of the 
impact parameter, and x is the angle between pb and b. The 
values of the potential energy before and after the collision 
in (3) cancel out, because the position of the electron is 
conserved during the collision. It can be seen from expres- 
sion (3) that a decrease in the impact parameter corre- 
sponds to an increase in AE. The boundary of the region of 
b values which lead to an energy transfer greater than E is 
specified by the equation AE(b) =E,  which, as can easily be 
verified, is the equation of a circle of radius 

which is displaced along the ~ = 0  axis. As a result, the 
differential cross section with respect to r for the transfer of 
an energy AE)E, which is given by the expression [O(x) 
= 1 for x)O and O(x) =O for x < 01 

is evidently 

The total cross section is found by taking an average of (5) 
over the distribution of the electron in the atom: 

where q(r) is the probability density for finding an electron 
at the point r. 

To calculate pb and q(r) below, we treat the atom in 
the one-electron approximation, and we specify the state of 
the atomic electron as a stationary ensemble of classical 
trajectories in a spherically symmetric effective potential 
U(r). In this case, the oscillatory structure of q(r) due to 
the semiclassical phase shift a= Spdx drops out of the 
picture. The phase shift must be taken into account in 
order to analyze the local properties of the distribution 
q(r), since the shift plays a leading role in this case. In 
integrals of the form (6), however, the shift appears in the 
form sin2(@/fi) = [1 -cos(2@/fi)]/2, and the contribution 
from the rapidly oscillating cosine corresponds to correc- 
tions of higher order in fi. If the corrections are taken into 
account only partially, on the other hand, the effect is usu- 
ally to degrade the result, since these corrections generally 
cancel out. 

Various methods have been used in the literature to 
construct ensembles (see Ref. 5, for example). We will use 
that ensemble with fixed values of the energy E, of the 

square of the angular momentum, L ~ ,  and of its projection 
M which is the closest to the quantum description. These 
properties are related to the one-electron spherical quan- 
tum numbers (n,l,m) by E=E,,,, L=fi(l+l/2), and 
M=fim. The quantity pb in (5) can then be expressed in 
terms of the integrals of motion through the use of the 
momentum components in the spherical coordinate sys- 
tem, r, 8, 4: 

This expression is 

pg=p$+ (pe cos 8+pr sin 8)  '. (7) 

In spherical coordinates, the probability density q(r) can 
be broken up into a product of 1D densities: 

In the general case of a 1D motion, the classical probability 
AN for finding a particle in a given path interval Ax is 
proportional to the time spent in this interval or inversely 
proportional to the momentum p, and the probability den- 
sity is 

The proportionality factor A is determined by the normal- 
ization condition; it has the value A=2/T in the case of 
libration and A= 1/T in the case of precession, where T is 
the period. The reason for the difference between libration 
and precession is that in the former case there are two 
states at each value of x ,  depending on the sign of the 
momentum, while in the latter case there is only one. In 
our case, motions in r and 8 are libration, while motion 
along 4 is precession, with periods 

2rr r sin 8d4 2r ? sin2 8 - - 
M ' 

where r,, r2, 8,, and tI2 are the corresponding turning 
points. As a result the 1D distributions become 

Alternatively, for the total distribution we find 
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After substituting (5), (7), and (8)  into (6), we find 
that the 3D integral can be evaluated analytically. For the 
total cross section we find 

where 

is the average potential energy. If U(r) is a uniform func- 
tion [i.e., if U(ar) =asU(r)], then we have the following 
relation from the virial theorem (Ref. 6, for example): 

It is a straightforward matter to work from the general 
expression (9) to find cross sections of certain other types. 
For comparison with experiment, one is usually interested 
in the cross section averaged over the orientation of the 
target, i.e., over the angular-momentum projection, 

Substituting the cross section in the form (9) into the right 
side of this expression, we easily find 

Interestingly, for a Coulomb interaction this cross section 
does not depend on L, so it is the same as the total cross 
section for n + n' transitions. The cross section for the loss 
of an electron, ulm, can be found by setting E = -En[= I in 
(11): 

where I is the ionization potential. 
To calculate the cross section for excitation to a state 

with a principal quantum number n', we need to write E in 
the form E= En, -En/ and then differentiate a (&)  with re- 
spect to nt: 

In expression ( 13) we have made use of the circumstance 
that in the semiclassical approximation the derivative of 
the energy with respect to the quantum number is equal to 
the classical frequency Cl' = 27r/T; for a given energy. 
Substituting (9) and ( 11 ) into ( 13), we find 

FIG. 1. Cross section for electron-impact ionization of helium in the 
metastable state, ~ e ( 2 ~ ~ ) .  Solid curve-calculated from expression 
(12); triangles-experimental results of Ref. 8; dashed curve-first Born 
approximation;g dotdashed curve-binary approximation.9 

For a hydrogen-like ion with an atomic number Z,, these 
expressions take the following form, where we are using 
( 10) : 

In the limit n ) 1 n' - n 1, the cross section in ( 17) is given 
approximately by 

and it agrees with that found in Ref. 4 for this case. 
Figures 1 and 2 show results calculated for a helium 

atom, in comparison with some results found previously. 
For helium we use the effective one-electron potential from 
Ref. 7: 
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FIG. 2. Cross section for excitation of helium from the ground state, 
~ e ( l ' ~ ) ,  to states with main quantum numbers n1=2, 3, 4. Solid 
c u r v ~ a l c u l a t e d  from ( 15); points-recommended experimental data 
for excitation of helium by protons;'0 dashed curve-recommended data 
for excitation of helium by electron impact.'' 

Figure 1 illustrates a calculation on the electron-impact 
ionization of helium in the metastable state, ~ e ( 2 ~ ~ ) ,  from 
expression (12). Shown for comparison are some other 
results, both experimental8 and the~retical.~ In this case 
the binding energy is Enl= -0.175 a.u., and the average 
potential is U= -0.374 a.u. Figure 2 shows cross sections 
for the excitation of helium-from the ground state, 
~ e ( 1 ' ~ )  (En,= -0.903 a.u., U= -2.15 a.u.), to states 
with n1=2, 3, 4, as calculated from expression ( 15). [In 
this case, the cross section in (15) should be doubled to 
allow for the two equivalent electrons.] Also shown in Fig. 
2 are recommended data for excitation of H e ( l l s )  by 
protons'0 and by electron impact." It can be seen from 
these figures that simple classical expressions give good 
agreement with both experimental and theoretical results, 
even for low-lying states of a two-electron atom. The dis- 
crepancy at very high energy is common to all classical 
approaches. It results from quantum-mechanical correc- 
tions logarithmic in E. 

In the case of the one-electron atom, the ionization 
cross section in (12) agrees with the result of Ref. 12 at 
high energies. 

3. CROSS SECTION FOR SELECTIVE TRANSITIONS 

To calculate the cross section for selective excitation, 
a(n,l+nl,l'), we need, in addition to the energy transfer in 
(3) ,  the magnitude of the angular-momentum transfer. 

For this purpose we resolve p and Ap into two components, 
one directly along the radius vector r of the electron and 
one lying in the plane .rr perpendicular to r: 

The square of the angular momentum in the final state can 
then be written 

= L~ + 2(2p,Ap, cos a + AP?), (19) 

where a (O<a<21r) is the angle between p, and Ap,. 
Transitions from the (n,l) subshell imply an average of 

the initial distribution (8) over M: 

As in the quantum-mechanical case, this distribution turns 
out to be isotropic. On the other hand, this averaging step 
is equivalent to choosing an ensemble of initial states which 
are distributed uniformly with respect to the angle a. Tak- 
ing that fact into account, we can write the normalized 
distribution with respect to L' for fixed values of r and b as 
follows: 

il(r,b, L') =- 7 . 
2~ l d a l  dL  

Evaluating the derivative of a with respect to L' with the 
help of (19), we can put this expression in the form 

L L 1 

il(r,b, L') =- 
T? 

(21) 
where p= (L'- L)/r and Y= (L'+ L)/r. 

By analogy with (4), the differential cross section with 
respect to n', L', and r is given by 

where S ( x )  is the Dirac 6-function. This Bfunction arises 
from the differentiation of the O function of the energy in 
(4) in accordance with rule ( 13). The expression for the 
selective cross section becomes 

(~(n ' ,  ~ ' , r ) ~ ( n , l , r ) ?  sin BdrdBd4. 

(23) 

When AE, q, and il from (3), (20), and (2 1 ), respectively, 
are substituted into these expressions, four of the five inte- 
grations in (22) and (23) can be carried out analytically 
(see the Appendix). The final result is found as a single 
radial integral over the classically allowed region which is 
common to the initial and final states (pl<r<p2):  
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Here g, = (A:- #)/#; the quantities A; and # are de- 
fined in the Appendix; T ,  and Ti are the periods of the 
radial oscillations in the initial and final states; and K(x) 
and E(x) are the complete elliptic integrals of the first and 
second kinds as defined in Ref. 13. The summation over i 
in (24) corresponds to two directions of the radial momen- 
tum, parallel and antiparallel to the radius vector r. It can 
be seen from expression (24) that, in addition to the 
known scaling properties in Z and v, the nontrivial part of 
the cross section, 

v2u(n,l+ n'l') 
Q(n,l;n1l') = 

z2L'  9 

is symmetric under interchange of the initial and final 
states. 

The derivation of a distribution with respect to L' for 
the ionization process differs from that for the excitation 
process only in that the differentiation with respect to n' in 
(22) is replaced by differentiation with respect to E'. The 
final result is 

16z2L' 
u(n,l+ E'I' ) = 

The literature reveals no data on selective transitions 
between Rydberg states. For the data available for small 
values of I and It, expression (24) does not give a satisfac- 
tory description, in contrast with the case of n-n' transi- 
tions. This is the standard situation. It occurs because there 
is a qualitative change in the structure of the caustics in the 
case I=0. As a result, at small values of I the semiclassical 
approximation in terms of angular variables is far poorer 
than for the radial variables. 

Figure 3 shows the results of a numerical calculation of 
the reduced cross section for the case of a Coulomb inter- 
action U ( r )  for selective transitions (25) from the n = 50 
shell. It can be seen from this figure that the cross section 
has a maximum at IzI ' .  For n#nl we find a second max- 
imum, which occurs because, with increasing I', the inner 
turning point in the effective potential of the final state 
approaches the outer turning point in the effective potential 
of the initial state. As a result, there is an increase in the 
overlap integral of the initial and final states. Figure 4 
shows the reduced distribution with respect to L' in the 
continuous spectrum, 

for values of E' which are multiples of half the ionization 
potential: E1=I/2, I ,  3I/2, 21, 5I/2. We see the following 
in this figure: 

a)  With increasing initial value of L, there is a de- 
crease in the maximum value L,!,,,, . 

b) With increasing final energy E', the maximum in 
the distribution shifts toward larger values of L'. 

FIG. 3. Reduced cross section for selective transitions, (25), for the case 
of a Coulomb interaction from the n= 50 shell to the following shells: a) 
n'= 50; b) n'= 58; c) n'= 100. Curves A, B, and C corresponding to 
initial values I= 10, 30. and 45 of the orbital quantum number. 

c) Toward Lk,, there is an increase in the cross sec- 
tion, because of the decrease in the distance between the 
turning points in the initial and final states as outlined 
above. 

We wish to thank R. K. Yanev for useful discussions 
and critical comments. This work was supported by the 
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FIG. 4. Reduced distribution with respect to L' in the continuous spec- 
trum [expression ( 2 7 ) ]  for ionization from the n=50 shell. a: The initial 
orbital quantum number is l=0.  b: 1=25. c: 1=49. 1 )  The final energy is 
E'=I/2; 2) 1; 3 )  31/2; 4 )  21; 5 )  51/2, where I is the ionization potential. 

Ministry of Science of the Republic of Macedonia through 
Grant 08-0565/5. 

APPENDIX 

To calculate the selective cross sections in (24) and 
(26), we write the energy transfer in (3) in terms of the 
momentum components in ( 18) : 

AE( b) =pJp,+pJp, cos(a) +i Ap2. 

We then substitute a from ( 19): 

Now solving the equation AE(b) = E n ~ l ~  -En[, we easily 
find that the 6-function in (22) is nonzero for Ap, = xl 
= -pr - p: and Ap, = x2 = -p, + p: . Expressing Ap, in 
terms of b in spherical coordinates in accordance with (2 ) , 

where the angle x is measured from the projection of r onto 
the plane of the impact parameter, and integrating over x 
in (22), we find 

bdb 
X 9 

( A l )  

where A;=%; +p2, B:= x;+ 2. After substituting (A1 ) 
into (23), we first evaluate the integrals over 4 and 0. The 
integral over 4 is trivial, since the integrand is independent 
of this variable. The integral over 0 reduces to an Abel 
integral and can also be handled analytically. The resulting 
expression, 

u(nl, L1,r) 

8vL' drbdb 
- --z J- 

T:T, 1 - 1  ?p: .p, J ( A ~ ~ - A ; )  (#-A~' )AP ' 

takes the form (24) after we integrate over b and use (2). 
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