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We calculate the effective contribution of the magnetoelastic interaction to the elastic moduli 
for centrosymmetric antiferrornagnetics in the region of low frequencies which are small 
compared to the antiferromagnetic-resonance frequency, where the magnetizations of the 
magnetic sublattices and the electric polarizability follow the acoustic deformation in 
quasiequilibrium. There is a linear magnetoelectric effect in those antiferromagnetics. As a 
result the elastic moduli, renormalized with these interactions taken into account, 
and hence also the sound velocity, turn out to depend not only on the magnetic field, as in 
antiferrornagnetics with central symmetry, but also on the electric field. We consider 
rhombohedra1 antiferrornagnetics, amongst them especially Cr203. 

INTRODUCTION 

The linear magnetoelectric effect occurs in crystals in 
which the symmetry allows the existence in the thermody- 
namic potential of terms of the form 

where 2 is the magnetoelectric susceptibility tensor and H 
and E are the magnetic and electric field-strength vectors. 
It is clear that this is possible only in systems without a 
symmetry center (space inversion). There is also no time 
inversion ( t+  - t) ,  as indicated by the existence of a mag- 
netic structure.' 

In antiferromagnetics there can occur a situation 
where a symmetry center i which exists in a crystal- 
chemical (Fedorov) symmetry group is transformed into 
an antisymmetry center 7' after magnetic ordering. This 
means, in fact, that here the crystal-chemical inversion 
couples the magnetic atoms pertaining to magnetic sublat- 
tices with opposite magnetization directions. The vector 
parameter L of the antiferromagnetic ordering 
(L=M,-M2 in a two-sublattice model) changes its sign 
under the action of i into its opposite: 

We have assumed in Eq. (1) that there is invariance 
with respect to the elements of the true (magnetic) sym- 
metry. In accordance with the basic crystal-physics rules 
(see, e.g., Ref. 2, Sec. 25) it is then sufficient to consider 
only the elements of the magnetic point symmetry for the 
actual magnetic structure and magnetic state under con- 
sideration. We take the magnetic structure to mean the 
relative directions of the magnetic moments with respect to 
one another, and the magnetic state to mean their direction 
(e.g., that of the vector L) relative to the crystallographic 
axes. If we are interested in the properties of the antifer- 
romagnetic under external actions (and with a change of 
temperature) under which the magnetic state (and, in gen- 
eral, the magnetic structure) and with it the magnetic sym- 

metry change, we must start from the crystal-chemical 
symmetry in as far as it remains unchanged. 

To do this it is necessary to take into account explicitly 
the dependence of 2 in ( 1 ) on the antiferromagnetism vec- 
tor L which disturbs the initial crystal-chemical symmetry. 
It usually turns out to be sufficient to expand 2 in powers 
of L and to limit oneself to the linear terms. In other 
words, we shall write the magnetoelectric part of the ther- 
modynamic potential density in the form: 

where 1=L/2Mo (Mo is the actual modulus of the sublat- 
tice magnetization) while M and P are, respectively, the 
total (local) magnetization and the electric polarizability. 
In contrast to ( 1 ) we introduced here the internal variables 
M and P bearing in mind the non-equilibrium thermody- 
namic potential necessary for the dynamics. 

Since we take out the vector 1, the "breaker" of the 
crystal-chemical symmetry, explicitly we must determine 
the actual form of the tensor j j  from the requirements of 
crystal-chemical symmetry. It is then necessary to take 
into acount the parity of the symmetry elements.374 We call 
elements g+ and g- even and odd, respectively, if they 
couple magnetic atoms pertaining to one and the same 
magnetic sublattice (and also to sublattices with the same 
magnetization direction) or to sublattices with opposite 
magnetizations. It is important to remember that if 
giM=gM and g*P=gP (similarly for H and E )  we have 
f g L= *gL, where g is a point-symmetry element acting 

on M and L as on normal axial vectors, and on P as on a 
polar vector (Eq. ( 1 ) is a special case of the expressions 
given here since the antisymmetry center directly corre- 
sponds to an odd inversion: i'=i ). Taking the parity of 
the elements into account reflects, indeed, the fact that we 
are here dealing already with elements of space (crystal 
chemical) symmetry. 

In terms of the parity of the symmetry elements one 
can easily classify an antiferromagnetic (AFM) structure 
(we shall deal here with the case when the magnetic and 
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the crystal chemical elementary cells are the same). The 
classification must include the independent symmetry ele- 
ments (generators of the crystal chemical group) with an 
indication of their parity. For instance, the AFM structure 
of Cr203 (space group R%) can be classified as i 3:2;. 
The threefold axis 3 11  z is even whereas the inversion i and 
the twofold axis 211 x are odd. To obtain from the relevant 
classification the corresponding AFM structure (when 
knowing the positions of the magnetic atoms) we must 
direct the magnetic moments of the atoms which are cou- 
pled by even symmetry elements parallel to one another 
and those which are coupled by odd symmetry elements 
antiparallel to one another (here glfgzf =gc and 
glfgT =gi- 

We can obtain the explicit form of the thermodynamic 
potential, including the magnetoelectric part (3), from the 
requirement that it be invariant with respect to the sym- 
metry elements which occur in the classification, taking 
their parity into account. We must also add to the magne- 
toelectric interaction energy (3 ) the magnetic (exchange, 
Zeeman, and magnetic anisotropy) energy 

the magnetoelastic (or more precisely, the 
antiferromagnetic-elastic) energy 

where 

is the deformation tensor (u is the elastic displacement 
vector); and, finally, the energy of the electric polarization 
P: 

where xap is the electric polarizability tensor. 
Our problem consists in studying the effect of the mag- 

netoelectric interaction ( 1 ) through M and le interactions 
[corresponding to (4) and (5)] on the acoustic properties 
of the antiferromagnetic. We shall consider the simplest 
(and, generally speaking, the most interesting) case of rel- 
atively low frequencies 

where W A F M ~  is the AFM resonance frequency ( z 10"- 
10" S-l) which is the minimum frequency for spin waves 
while w p  is the frequency of the polarization oscillations 
(optical frequency region). One can under those condi- 
tions assume that M, 1, and P follow the dynamic elastic 
deformations eaB in quasi-equilibrium, in agreement with 
the minimum of the thermodynamic potential 

Moreover, one can for those frequencies neglect in FM in 
(4) the inhomogeneous exchange (the term with g8,,). 

The calculation reduces to that first of all we determine 
from the equations 

the dynamic quantities AM, AP, and A1 caused by the 
acoustic oscillations eaB. The values found for AM, AP, 
and A1 expressed in terms of the ed are later substituted 
into F in (8). The quadratic form in the e a ~  thus obtained 
(if we restrict ourselves to the harmonic approximation) 
must be added to the elastic energy density 

and as a result we get a renormalization of the elastic 
moduli: 

These moduli then become dependent on H and E, and 
acoustic birefringence and other effects appear which are 
connected with magneto-elasticity and magneto-electricity. 
From purely symmetry arguments (without energy consid- 
erations), some of them were predicted in a paper by the 
present author5 (see also Ref. 4). 

A few words about the other approximations (apart 
from the ones mentioned above) used in the calculations. 

Firstly, we neglect that the longitudinal (for H(I 1) 
susceptibility XI, of the antiferromagnetic is nonvanishing. 
This corresponds to a model in which 

and 

L~ + M~ = const 

and which with more justification is applicable in the low- 
temperature region where XI, EX. 

Secondly, we assume that the magnetoelectric suscep- 
tibility [compare ( 1 ) and (3)] 

is a sufficiently small quantity although it may for different 
antiferromagnetics vary within very broad limits: a = 

(Refs. 6-8). For instance, a,,z6. lop4 for Cr203 
(TN=310 K)  while for a,,= 1 . lo-' TbP04 (TN=2.3 
K).8  This makes it possible to restrict ourselves in all cal- 
culations of effects of interest to us to an approximation of 
not higher than second order in the parameter v-&. 

We have already mentioned that in the present paper 
we shall base our considerations on the example of the - 
1 3$2; structure. We shall consider here two magnetic 
states: the "easy axis" kind when L(I 311 z and the "easy 
plane" kind when L l  3 for various directions of the H and 
E fields. 

1. THE L(I z STATE 

We first write down general expressions for the ener- 
gies contained in F in (8) which are invariant for the - 
1 3:2; s t r~c tu re :~  
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We note that when K >  0 in (14) the anisotropy energy 
corresponds to an easy-axis antiferromagnet. For an easy- 
plane antiferromagnet it is more convenient to write it as 
KI;/~ (again we assume that K > 0). We neglect the an- 
isotropy in the base plane. It is usually small for trigonal 
symmetry. Furthermore, by virtue of the condition (12) 
we can eliminate in ( 15) one of the last two terms (with y4 
and y5) introducing a new constant of the magnetoelectric 
interaction: 

We consider two cases for the directions of the H and 
E fields: 

1) Hll Ell Z 
Assuming that P,=x$+AP, we can choose as the 

independent variables in this case M,, My, I,, I,, P,, P,, 
and AP,. According to (12) we then have 

where I=: * 1. 

- In those variables, and retaining in 
FMpzFM+Fp+FMp [see (14)-(16)] only terms which 
are quadratic in them, we have 

+'%-I 2 * (P2,+8)+ix&. (20) 
- 

Minimizing FMp with respect to M and P we find 

where 

Adding to & of (2 1 ) th_e remaining term FI, from ( 17) 
and then minimizing F = FMp+ PI, with respect to I, and I, 
we get 

The modulation of the antiferromagnetism vector 1 by the 
acoustic deformations cap, which is described by Eqs. 
(23), must lead to a corresponding modulation of the an- 
tiferromagnetic (1-dependent) part of the permittivity. 

After substituting the values of I, and I, from (23) into 
the energy F= FMp+ Fie we find the required effective con- 
tribution to the elastic energy: - 

F ~ ~ + F l e + h F e  

+2B41B~[(e,,-e,,)e,-t2e~p~~11. (24) 

Adding this to the initial elastic energy (10) of a rhombo- 
hedral crystal we see easily that its renormalized part has 
the form: 

+ 2exfxzl, 

where 

There occurs thus a softening of the acoustic modes 
connected with these elastic moduli. The condition for the 
stability of the state considered with 111 z (for HI1 Ell z) is 
then that all these moduli be positive-definite, i.e., - 

C,>O for K> B$C, (26) 

and not the condition K >  0 as might seem to follow from 
(21). In the phase transition ("spin flop") point there 
appears a magnetoelastic gap so that the value of K of (22) 
which determines it remains finite and one of the acoustic 
modes is softened (see in this connection Ref. 10). 

We call attention to the important fact that if the mag- 
netoelectric interaction is taken into account K of (22), 
and hence the energy of the whole system, depends on the 
sign of the product yo/. From the two states with I= .t 1 
the more stable ground state corresponds to the one for 
which yol>O. Such a choice will occur only when both 
fields are nonvanishing: H#O and E#O. It is just this fact 
which makes it possible to remove the AMF domain struc- 
ture in magnetoelectrics through heat treatment while si- 
multaneously applying E and H-(see, e.g., Ref. 6). 

Incidentally, the quantity K of (22) determines the 
gap for spin waves (the AMF frequencies wl and w2 of Ref. 
9). More precisely, in the present case K ~ - ' = W ~ W ~ / ~  (7 
is the gyromagnetic ratio). 

We consider next acoustic waves with wave vectors 
k(( z. According to (25) and (22) their velocity is deter- 
mined by the expression 

from which it is clear that this velocity will be different for 
domains with opposite directions of 1 (I= 1 ). This fact 
opens up the possibility in principle of "acousto-vision" of 
domains in magnetoelectric antiferromagnetics. 
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Of course, all these effects show up most strongly near 
the "spin-flop" point which corresponds to the equal sign 
in (26). 

2) Ell HI1 X 
In this case MX=xH+AMx and Px=xl E+AP, and 

the independent variables of the problem will be AM,, My, 
I,, I,, AP,, P,, and P,. We also must use Eqs. (18) and 
(19). We then have 

Here we have again retained only terms of no higher than 
the second power in the yi (and also in I, and I,). 

The procedure described for the previous case gives 

where 

Or, retaining only terms linear in the yi: 

K,= K+ y31xx1 HE. (31) 
- 

After minimizing FMp+ Fie with respect to 1, and I, we find 

Also 

This gives a renormalization of the following elastic mod- 
uli: 

Here, first of all, the isotropy of the elastic properties in 
the base plane disappears, since 

Secondly, there linear birefringence appears for waves 
with kJI z. Indeed, we have for the relative difference in the 
velocities of waves polarized along the x and the y axes 

The magnitude of the effect depends both on H and on E. 
For one of the domains (e.g., the one with I= + 1 )  it in- 
creases with increasing E, while for the other one (I= - 1) 
it decreases, in contrast. 

As to the connection with the antiferromagnetic reso- 
nance frequencies we have here 

2. THE I1 z STATE 

Let HJI x; for sufficiently large H overcoming the an- 
isotropy in the base plane we then have LJI y. We consider 
the two cases for the direction of E which are the simplest 
as far as symmetry is concerned: 

1) Ell HI1 x(LlI Y) 
In this case M,=xH+ AM, and Px= x1 E+ AP, and 

for the independent variables we can take AM,, M,, I,, I,, 
AP,, P,, and P,. We then have 

The expression for the thermodynamic potential FMp 
reduces in terms of those variables to the form: 

Minimizing it with respect to M and P gives 

where 

- 
The minimization of FMp of (39) with respect to I, and 1, 
with the addition of the elastic energy 

leads to the expressions 

871 JETP 77 (5), November 1993 E. A. Turov 871 



As a result we find the following renormalization of 
elastic moduli: 

The quantities Kx from (40) and K,  from (41 ) deter- 
mine, respectively, the low-frequency ( a l )  and the high- 
frequency (u2) antiferromagnetic resonance frequencies: 

The magnetoelectric interaction thus makes according 
to ( a ) ,  (41 ), and (45) additional contributions propor- 
tional to HE to the magnon gaps (in the approximation 
which is linear in the yi), while we must have yll> 0 in the 
lowest ground state which corresponds to the highest ex- 
citation energy. 

In this case the acoustic birefringence can become very 
strong since, by analogy with (35), 

The last, approximated part of the equation is written 
down under conditions where [see (40) and (41)] 

This can undoubtedly occur for sufficiently weak H and E 
fields. The situation is here completely analogous to the 
one for hematite (a-Fe203 and FeB03; see Ref. 11) only 
with the quantity 

playing the role of the Dzyaloshinskii field in this case. 
2) Ell ~(111 Y,HII x)  
A calculation similar to the preceding case leads again 

to an expression of the form (39) where now 

In this case there are no terms linear in the yi. 
From the previous form of (42_)-(45) we shall have 

formulas for I,, I,, wlV2, and the Cij using the indicated 
substitution for Kx and K,. 

influence of E on the can become particularly notice- 
able near orientational phase transitions where one of the 
acoustic modes softens. 

2) The linear acoustic birefringence connected with 
magnetoelasticity also turns out to depend on E. 

3) Since these effects depend on the direction of 1 in the 
domains, there appears a possibility for an acoustic study 
of antiferromagnetic domain structure in magnetoelectric 
antiferromagnetics. 

It follows fom Eqs. (40), (44), and (46) that these 
effects must manifest themselves most strongly in easy- 
plane antiferrornagnetics in states for which 11 z and 
Hll Ell X .  In that case the effects (relative differences in 
the velocities or their change under the simultaneous ac- 
tion of the E and H fields) can apparently reach several 
times 10%. However, the author is unfortunataely not 
aware of any actual magnetoelectric antiferromagnetic of 
this kind which might be recommended for an experimen- 
tal study. 

As far as Cr203 is concerned, for which 111 z, the situ- 
ation turns out to be unfavorable. In order that the mag- 
netoelectric contribution in (22) or (30) be comparable in 
order of magnitude, at least in the magnetic-field term, it is 
necessary to have a field Eza-  lXH. 300, if H is expressed 
in Oersted and E in V/cm. ~ a k i n ~ ~  X=10-3 and 
a = 6  lop4 for Cr203 we find E=: 500 H. For more rigor- 
ous estimates we must perform the calculations using a 
model in which XI, #O. 

In a subsequent paper we shall consider tetragonal 
magnetoelectric - antiferromagnetics with i 4:2; and 
1 4,-27 structures. This is necessary because, firstly, a 
whole series of magnetoelectrics with such structures is 
known, both easy-axis and easy-plane ones. Secondly, the 
magnetoelectric antiferromagnetic with the largest magne- 
toelectric susceptibility a= 1 . (TbPO,) is just one of 
them. Moreover, it is interesting to elucidate the different 
properties for antiferrornagnetics with different parities of 
the 4, symmetry axis. (The 3, axis can only be even.) 

Finally, a comparison of the results for those tetrago- 
nal magnetoelectrics with the results of the present paper 
for the i 3:2; structure makes it possible to give a rather 
complete answer for the following problems, of interest to 
us, of the acoustics of antiferromagnetic magnetoelectrics: 
Which qualitative regularities of the effect of the magneto- 
electric interaction on the acoustic properties distinguish 
antiferromagnetics with different magnetic structures and 
states? Which effects is it especially desirable to study ex- 
perimentally, and in what actual materials? And finally, 
what useful information can magneto-electro-acoustics 
give about magnetoelectric antiferromagnetics? 

This work was performed with financial support by the 
Fund for Fundamental Studies (93-02-14026). 
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