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We use the method of irreducible tensor operators in the second-quantization representation 
to derive the equivalent Hamiltonian of intersite Coulomb and exchange interactions 
for orbit-degenerate atomic states. The fact that the atomic wave functions at different sites 
are not orthogonal is consistently taken into account. We obtain a multipole expansion 
for the Heisenberg Hamiltonian in powers of the orbital angular momentum operators and the 
vectors connecting the sites of the crystal lattice. The cases of weak and strong spin-orbit 
coupling are considered. Within the degenerate Hubbard model, with allowance for orbital 
dependence of transport integrals, we obtain the Hamiltonian of superexchange interaction 
for a magnetic insulator; we also study the dependence of the sign of spin and orbital exchange 
on the quantum numbers of the virtual states of ions. For the case of a narrow-band 
conductor (double exchange interaction) we find a representation of this model in terms of 
the spin and orbital angular momenta. 

1. INTRODUCTION tions of moderate and weak crystalline fields; in the latter 

Dirac's derivation1 of the Heisenberg Hamiltonian for case the Hamiltonian is expressed in terms of operators of 

s-states (spin f )  laid the foundation for the theory of ex- total angular momentum J. 

change interaction in solids. Atomic-spectroscopy methods In Sec. 5 we employ the method of multielectron 

developed by Racah (see Ref. 2) made it possible to ex- X-operators to study the exchange interaction through the 

amine the case of real degenerate atomic configurations valence band in a magnetic insulator; in describing this we 

and obtain the Hamiltonian in the Heisenberg model for use the Hubbard model with degenerate atomic configura- 

higher spins.3 Subsequent theoretical papers focused on tions. A canonical transformation reduces this model to a 

studying, within the s- f model, the indirect exchange in- Hamiltonian of the Heisenberg type. Finally, remaining 

teraction, via conduction electrons, between multielectron within the same model, we study in Sec. 6 a magnetic 

4 f-shells of rare-earth ions.k9 The exchange interaction in semiconductor or a metal with strong intratomic interac- 

systems of d- electron^'^'^ was basically treated in the tion and a narrow conduction band. Indirect interaction 

single-electron representation, which corresponds to the between magnetic moments in such systems is essentially 

approximation of a strong crystalline field completely de- non-Heisenberg. We also transform the kinetic-energy 

stroying atomic states. This assumption, however, is not Hamiltonian to the spin and orbital angular momenta rep- 

justified in some cases since the Coulomb interaction is resentation. 

fairly strong. 
In this paper we examine systematically the real mech- 

anisms of the exchange interaction between magnetic ions 
with degenerate atomic configurations and unfrozen orbital 
magnetic moments. Use of the technique of irreducible ten- 
sor operators in the second-quantization representation13 
enabled us to derive' the Hamiltonian of the Heisenberg 
model for the direct exchange interaction by reasoning 
along lines more simple than those used in Ref. 3, and to 
represent the result in a more compact form. Although the 
case of direct exchange is of interest mainly from the meth- 
odological point of view, examining this simple example 
reveals the structure of the Hamiltonian, which remains 
intact in more complex situations. Contrary to the usual 
approach, we use in addition to spin operators S operators 
of total orbital momentum L, which makes it possible to 
study the orbit-dependent anisotropic contributions to the 
Coulomb and exchange interactions. 

We consider the limits of weak spin-orbit coupling 
(Sec. 3) and strong spin-orbit coupling (Sec. 4) in the 
Russell-Saunders coupling scheme, that is, the approxima- 

2. THE MULTIELECTRON HAMlLTONlAN OF THE CRYSTAL 

Let us examine the Hamiltonian of the system of in- 
teracting electrons in a solid: 

with V(r) the periodic crystalline potential. With a view to 
considering orbit-degenerate configurations weakly per- 
turbed by the crystalline field, we use the tight-binding 
approximation with the atomic wave functions 

where I is the magnetic quantum number (for the sake of 
brevity we drop the principal quantum number), and s is 
the spin coordinate. 

When going over to the second-quantization represen- 
tation, we must use orthogonal wave functions. Generally, 
this condition is not valid for functions (2) at different sites 
Y.  Nonorthogonality constitutes a fairly difficult problem 
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in the theory of magnetism.' Here we use Bogolyubov's 
orthogonalization procedure,14 which in the lowest order 
in the overlap of wave functions at different sites yields 

Then, after second quantization, the Hamiltonian ( 1 ) as- 
sumes the form 

H= C ~ ~ $ m a v ~ m u  
vlmu 

where we used the fact that the spin functions ~ , ( s )  are 
orthogonal, 

is the energy of single-electron levels in the potential v(r) 
of a given site (we ignore the effect of potentials of neigh- 
boring sites, i.e., crystalline-field effects), 

are the transport integrals between sites vl and v2, and 

X *v3r3m3(r) *v414m4(r' ) (7) 

are the matrix elements of interelectron electrostatic inter- 
action. 

To analyze the m-dependence of two-site matrix ele- 
ments, it is convenient to expand the wave functions 
$,,,(r) in terms of functions centered at site vl.  Following 
Ref. 15, we perform the Fourier transformation 

with kl(k)  the Fourier transforms of the radial functions, 
and expand the plane waves in spherical harmonics: 

exp(ikr) = 4 ~  2 iAjA(kr) Ep(k) yAp(i), (9)  
AP 

where jl(x) are the spherical Bessel functions. Integration 
yields 

(10) 

where the quantities 

= JOT sin ~ d ~ J o 2 T d ~ ~ r n l ( f )  y12m2(f) y13rn3(f) 
2 2 ' 3  3 

(11) 

are the matrix elements of spherical functions and are non- 
zero for even-valued 1' +I2 +I3 (see Refs. 2 and 16), the 
quantities C are the Clebsch-Gordan coefficients, and 

Rrn(r,p) = Jom k2dkRl(k)iAt1'jr (kr) jr(kp). ( 12) 

Substituting ( lo)  into (6), we obtain 

where we have again retained only the potential of site vl, 
a procedure justified in the case of a rapidly decreasing 
v(r) (in this approximation there are no nonorthogonality 
corrections to the transport integral14), with 

Clearly, for even-valued 1' - l2 (in particular, at 1' = 1,) A is 
even, while for odd-valued l1 -I2 (e.g., for the matrix ele- 
ments of s-p, p-d, and d- f hybridization) an angular de- 
pendence with A = 1 may emerge. 

In what follows we use Eq. ( 13) with l1 = l2 when we 
examine superexchange and double exchange. Now we 
proceed with the analysis of electrostatic interaction. 

3. INTERATOMIC COULOMB AND EXCHANGE 
INTERACTIONS AND DERIVATION OF THE HEISENBERG 
HAMlLTONlAN 

By employing Eqs. (3) and ( 10) we can examine the 
electrostatic interaction between two shells of different at- 
oms by analogy with the intra-atomic interaction (see Ref. 
2). The contribution to (7) with vlII = v313 and v212 = v414 
describes direct Coulomb interaction. Since this contribu- 
tion is not small in the wave-function overlap, nonorthog- 
onality can be ignored. Using the expansion 

Eq. ( 11 ), and the formula for multiplying spherical har- 
monics 
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and transforming the product of Clebsch-Gordan coeffi- 
cients via the 9j-symbol, we find that 

where 

are the Slater integrals for two-site interaction, 

fiA) is the irreducible tensor operator with components 
YAP, the double irreducible tensor operator kKk) is exam- 
ined in the Appendix, and the irreducible tensor product of 
rank c and the scalar product are defined as in Ref. 16: 

Equation (17) clearly shows that p, A, and A1 +A2 assume 
only even values (b is also even in view of invariance under 
time reversal), p(2ll, b<212, and A<2(ll+l2). 

For a state with fixed S and L we can now use the 
representation (A8) of orbital angular momentum opera- 
tors: 

with the reduced matrix elements defined in (A9). Apply- 
ing the recurrence formula 

[ L ( ~ - ~ ) x  ~ ( p ) ] ( ~ ) = ( - l ) ~ ( [ k - p ]  [p ]  [L])lI2 

and factorizing the spherical harmonics via Eq. (16), we 
can proceed from irreducible tensors to the ordinary vec- 
tors L1 and L2. For one thing, we have 

As a result we arrive at a multipole expansion of the form 

where the coefficients QaBY are linear combinations of 
Slater integrals. The total powers of each operator Ll  and 
L2 and of the direction vector fi  in each term are even, with 
a+y<2I1 and P+y<2I2. Interestingly, the Hamiltonian 
has terms of the type (24) that depend on the orientation 
in the lattice of only one vector, L1 or L2, owing to the 
absence of conservation of orbital angular momentum in 
the crystal. Note that the expansion contains no terms with 
vector products since16 

The exchange contribution in (7) (vlll=v414 and 
v212= v313) is of the second order in the overlap of the wave 
functions at different sites, with the result that we must 
allow for corrections of the same order caused by 
nonorthogonality. (The direct-exchange problem without 
allowance for nonorthogonality was studied in Ref. 11.) 
Employing (3) and successively applying ( lo) ,  (16), and 
(11) we get 

where the effective exchange parameters are 
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[I21 [7711 
1 /2 rll 772 k x ( -  1)i1-4[k11 [k21 [All [Ail (T) 1 7 7 1 7 7  1 

Il 

Here we have introduced the generalized Slater integrals contains, in comparison to other corrections, an additional 
smallness caused by the fact that the Coulomb interaction 

G ( ~ )  (l11277lrl2A1A2) decreases with distance. 
The values of the indices in (27) are limited by the 

=e2 j 6drl4dr2~l,(rl)~t~~~~(r2,p) (f</<+l) conditions that k1 <21,, k2<212, A<2(I1 +I2), and KG 1, 
with A, +A2, A, and k1 + k2 even-valued. In contrast to the 

XR/2?l,nl(ri,~)R,l(r2), (29) Coulomb contribution, k1 and k2 separately can be odd- 
valued. Thus, the exchange Hamiltonian acquires terms 

and the nonorthogonality integrals 

The last contribution in (28) (the one in square brackets) 
is the most complicated and is caused by the term that 
contains, after ( 3 )  has been substituted into (7), the prod- 
uct of pairs of wave functions at different sites but with the 
same argument, that is, possessing the structure of a Cou- 
lomb integral, which is transformed into (32). Being of the 
same order in the wave-function overlap, this contribution 

linear in the scalar products ( Ll  L2) and dipole-type terms 
proportional to 

etc. At the same time, for the "even" terms of the types 
(23) and (24) the Coulomb term must be predominant. 
The presence of orbital contributions to the exchange and 
Coulomb Hamiltonians can play a significant role in deter- 
mining the properties of the crystal, for instance, their 
anisotropy .' 

Employing double irreducible tensor operators makes 
it possible to express the bilinear spin- and orbital- 
exchange Hamiltonians in terms of the single-electron ex- 
change integrals (28) without resorting to the multielec- 
tron representation. Assuming that kl = k2 =O and A =O 
and employing (A2) and (A3), we arrive at the ordinary 
Heisenberg terms of the Hamiltonian, which does not con- 
tain orbital angular momentum operators: 

C e C h ( ~ l v 2 )  = --9(1112000) [ n l n 2 + 4 ( ~ , ~ 2 )  I .  (35) 
K 

The sign of the exchange interaction is determined by the 
relations between the integrals (29)-(33). For instance, 
for the hydrogen molecule the resulting interaction is an 
tiferromagnetic, since the contributions caused by 
nonorthogonality dominate over common ferromagnetic 
exchange. ' 

Similarly, putting K = 0 and k1 = k2 = 1, we find the 
orbital-exchange Hamiltonian: 
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The contributions to the exchange Hamiltonian with 
k + ~  > 1 can be considered for a specific state with given S 
and L values after going over to the irreducible tensor 
operators (A7) and (A8). Proceeding further, as for the 
Coulomb term, to ordinary vectors, we arrive at the fol- 
lowing multipole expansion: 

Here a+p  is even-valued, a+ y<21,, P+ y<212, and K=O, 
1. Note that the powers to which orbital operators can be 
raised are bounded from above not only by the "kine- 
matic" value of 2L but also by the value of 21. For spin 
operators the maximum power is K =  2s= 1. Higher powers 
can emerge only if we allow for higher-order overlap cor- 
rections; they are of the appropriate smallness. This fact 
must be taken into account when using phenomenological 
Hamiltonians containing invariants with K > 1 (Ref. 17). 

The above discussion of the two-center problem is gen- 
erally insufficient for obtaining the exchange Hamiltonian 
of the crystal (see Refs. 1 and 17). Indeed, in Eq. (3) we 
must allow for terms with v'#v1,v2 (cf. Ref. 14). How- 
ever, neglect of multisite contributions is justified in the 
neatest-neighbors approximation. Corrections to the two- 
center approximation are especially important if some 
nearest neighbors form equilateral triangles in the lattice 
(say, in close-packed face-centered and hexagonal struc- 
tures). In this case the contributions of three-center inte- 
grals and the last term in the square brackets in (28) have 
a smallness caused solely by the fairly weak decrease in the 
strength of the Coulomb interaction with distance, rather 
than by the exponential decrease in the wave-function 
overlap. 

we find the relationship between the irreducible tensors, 

[ scK)  x L ' ~ ' ]  'p' = ( [s] [ L ]  [ J ]  [p]  ) 'I2 

(40) 

where 

and s'") and K ( ~ )  are defined in (A7) and (A8). In Eq. 
(40), k + ~ + p  is even-valued (otherwise the 9 j-symbol 
vanishes owing to symmetry properties16), and 1 k 
-K 1 < p < k + ~ .  At k=O or K = O  the 9j-symbol simplifies: 

J S L  
S'K'=(-l)~+s'Ltr([Sl[Jl)1/2[ S J K  (42) 

J L S  
L ' ~ ' = ( - ~ ) J + ~ + ~ + ~ ( [ L ]  [J]) ln[  (43) 

L J k  

For one thing, at K= 1 and k=  1 we have 

where 

4. STRONG SPIN-ORBIT COUPLING 

Let us now examine the case of strong (in comparison 
with the crystalline field) spin-orbit coupling, when the 
spin and orbital angular momenta are coupled via the 
Russell-Saunders scheme. The respective wave functions 
are 

Doing the summation 

is the Land6 factor. 
In the Coulomb term, the transition to the 

J-representation is done by substituting (43) into (2 1 ), so 
that the structure of expansion (25) is retained when Ji is 
substituted for Li. 

In the exchange term we must carry out additional 
summation of the Clebsch-Gordan coefficients. As a result 
we arrive at the following substitution in (27): 
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Reasoning in the same way as with (25) and (37), we find 
that 

where a+y<211, B+y<2l2+ 1, and a + B  is even-valued. 
In the limit of strong spin-orbit coupling considered 

here, terms with the Dzyaloshinskii-Moriya structure, 

can be obtained for certain lattices if one allows for the 
crystalline field;""2 here the components of the pseudovec- 
tor KI2 are determined by the matrix elements of electro- 
static interaction in the local system of coordinates. 

5. SUPEREXCHANGE INTERACTION 

In reality the exchange interactions between magnetic 
ions are realized not through direct exchange but by other 
mechanisms. In magnetic insulators, superexchange 
through the valence band is usually the dominant interac- 
tion. As related to the simplest nondegenerate Hubbard 
model, this mechanism was examined by ~ n d e r s o n , ' ~  who 
arrived at the following expression for the Heisenberg 
Hamiltonian in second-order perturbation theory in trans- 
port: 

= E (B:lv2/u) [ --1+4(S1S2)-1], (48) 
"l"2 

where U is the parameter of the intratomic Coulomb in- 
teraction, and P is the operator of projection on singly 
occupied states. 

We examine the Hubbard model with a degenerate 
I-shell. This model contains an electron-transport term and 
a term representing the intratomic Coulomb interaction. 
When the latter is strong, it is convenient to go over to the 
representation that uses Hubbard X-operators 

x ( r , r l )  = 1 r ) ( r l l ,  (49) 

in which the interaction Hamiltonian is diagonal: 

+ E v v 2  r n I v 2 r n 2  (50) 
vl"2ml"'2~ 

Here the energies of the states r={SLpM) are indepen- 
dent of the projections of spin and orbital angular mo- 
menta and are given by the following expression: 

where 

= d d ~ r ~ r ~ )  ( / 1 )  (52) 

[calculations are done in the same manner that led to ( 17); 
cf. Ref. 21. In the case of an insulator (integral-valued 
occupation), in the zeroth approximation all atoms are in 
states corresponding to the lowest state r , ,  so that pertur- 
bation expansions in interelectron transport can be em- 
ployed. Excluding the transport by applying a canonical 
transformation, we arrive at the following second-order 
effective Hamiltonian: 

Here summation over rt) stands for summation over the 
( r n l a & , ~ r n - l ) =  -,GZnLn csnPn L r F n  

projections of the angular momenta corresponding to state sn-IL~-I s n - l p n - l , $ ~ c ~ n - ~ ~ n - ~ ~ ' m ~  

r n .  (54) 
The matrix elements of the Fermi operators have the 

form19 where the G are Racah's fractional parentage coefficients. 
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After substituting (54) into (53) we sum over the projec- 
tions of the spin Clebsch-Gordan coefficients: 

Allowing for the m-dependence of the transport integrals 
(13) and summing over the product of six orbital 
 coefficient^,'^ we obtain 

( & I )  L(k2) ( A )  ( A )  x ( [ L 1  2 I Y ( 8 1 2 )  

Here ill ,  A,, A, and kl + k2 are even-valued, 11,2<21, and 
kl,2,k<min{21,2L). The multipole expansion of Hamil- 
tonian (56) has the same form as in (37). 

The sign of the contribution of the pair of states r,-l 
and I?,, to the superexchange interaction is determined 
by the values of their spins. 1f s,+~ =s,-~ = ~ & f ,  the vir- 
tual electron transitions lead to a situation in which anti- 
parallel orientation of local spins is advantageous. If 
S,, -S,- = 1, the interaction is ferromagnetic. 

Similar rules for the interaction of orbital angular mo- 
mentum can be obtained by substituting the appropriate 
expressions for the 6j-symbols. Orbital exchange 
(k, = k2 = 1 and A, =A2 = A  =0) is "antiferromagnetic" if 
the signs of the two differences, 

coincide, and "ferromagnetic" if they do not. 
Note that generally the method of double irreducible 

tensor operators (A1 ) in the single-electron representation 
does not hold true for the degenerate Hubbard model, 
since the energy denominator in (53) depends on the mul- 
tielectron quantum numbers S and L characterizing the 
virtual states r,- and r,+l. The method, however, can be 
used if we leave in (51) only the term with p=O, so that 
the energy of a state, Er = n (n - 1 ) F(O)/2, depends only on 
the number of electrons. Then at ki=O or at ki= 1 and 
K = O  we can sum over the fractional parentage coefficients 
in (56) by employing Eqs. ( A l l )  and (A12), and we 

arrive at the Hamiltonian of spin or orbital exchange in the 
form (35) or (36). For instance, putting 
kl = k2=A1 =A2=0, we obtain 

In this approximation the exchange is always antiferro- 
magnetic. 

As in the case of direct exchange, multisite corrections 
are especially important for lattices in which nearest neigh- 
bors form triangles, but in this case the corrections contain 
an additional smallness owing to the fact that the potential 
of a lattice site decreases with distance. If we use Eq. ( 13) 
for the transport integral, such corrections lead to exces- 
sive accuracy, since in deriving this equation we ignored 
the potentials of all sites except the central one. 

Biquadratic exchange and the higher-order terms in 
spin operators can be obtained in the higher orders of per- 
turbation which correspond, as they do in the 
case of direct exchange, to the higher orders in the overlap 
of different-site wave functions, since the transport integral 
is of the first order in the overlap.I4 

6. DOUBLE EXCHANGE INTERACTION 

Let us now examine the case where the number of 
electrons per atom is a noninteger, n < c < n + 1, so that the 
there are current carriers in the conduction bands. Owing 
to the degeneracy of the ground state (in the zeroth ap- 
proximation the "excess" of electrons can be at any site), 
perturbation theory does not work in this situation. To 
describe such a system in the limit of a strong intratomic 
interaction, we can use the Hubbard model with allowance 
only for the lowest atomic states r N = { ~ I )  and 
r,,, ={S'L'). Here the diagonal Hamiltonian of the in- 
teraction can be dropped, since allowing for it only shifts 
the point of reference of the electron energy. We then have 

The d-operators can again be expressed in terms of 
single-electron operators and the operators of spin and or- 
bital angular momenta corresponding to the state r n .  To 
this end we use the following formula for isolating one 
ele~tron:~ 
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Substituting (59), (60), and (13) into (58) and rearrang- 
ing the indices in the products of Clebsch-Gordan coeffi- 
cients via 6j- and 9j-symbols, we obtain 

where 

1 
Pvuu,=- ( [ S ' ] S , ~ + ( - ~ ) ~ - ~ ' + ' / ~ ~ ( S  .u I ) )  

2[SI v uu 9 

(62) 

the u are the Pauli matrices, A<21 are even-valued, and 
k, ,k2<min{21,2L). The Hamiltonian (61 ) describes the 
interaction of carriers with the spin and orbital angular 
momenta in a narrow conduction band. The respective 
"double" exchange interaction between localized spins 
cannot be described by a Heisenberg-type Hamiltonian. 

Now we turn to the case where the carriers and the 
localized magnetic moments are formed from states be- 
longing to different shells. Assuming for simplicity that 
L =O and that the carriers are described by s-functions, we 
arrive at the s-d exchange model. Here the value S' = S : 
corresponds to a large positive (negative) s-d exchange 
parameter A. Then instead of Eqs. (58) and (59) we ob- 
tain 

This formula for d$ was obtained by Kubo and 0hata20 
via a canonical transformation. Substituting (64) into 
(63), we find the quantum Hamiltonian for a narrow-band 
conductor: 

The terms with vector products of spin and orbital 
operators in (6 1 ) and (65) describe anisotropic scattering 
and are of interest when kinematic effects are considered, 

for instance, the anomalous Hall effect. These terms can 
also play an important role in describing states with un- 
usual "chiral" order parameters in a two-dimensional sit- 
uation. At present such states are under intensive investi- 
gation within the Heisenberg model and the t-J model 
in connection with the problem of high-T, 
superconductivity.21~22 

7. CONCLUSION 

We have studied various exchange mechanisms for sys- 
tems with multielectron atomic shells. A detailed study of 
the simplest mechanism, the direct exchange interaction, 
has revealed the structure of the multipole expansions for 
the Coulomb and exchange Hamiltonians. Note that the 
structure obtained in Sec. 4 for the case of strong spin-orbit 
coupling remains valid for the RKKY mechanism (indi- 
rect exchange between rare-earth ions via conduction elec- 
trons). Of particular interest is a detailed analysis of the 
respective anisotropic contributions to the magnetic prop- 
erties of rare-earth metals and their compounds. The dis- 
cussion can easily be extended to incorporate the jj- 
coupling (actinide compounds). 

The problem of the existence of multielectron quantum 
numbers L in crystals with d-elements is complicated. Ap- 
parently, in pure metals the crystalline field dominates the 
intratomic Coulomb interaction and disrupts the multielec- 
tron states. However, in d-compounds, especially in those 
with narrow conduction bands, this situation may change. 
Moreover, the size of the Coulomb interaction may be es- 
sentially different for different atomic configurations of the 
dn- and s(p)dn- '-type, which are mixed by the crystalline 
field. From the experimenter's view, the simplest direct 
manifestations of the existence of orbital angular momenta 
are the magnetic anisotropy and the deviation of the 
g-factor from 2. In most d-metals this deviation amounts to 
roughly lo%, but it is large for vanadium and titanium.23 
A promising path of research is the analysis of x-ray and 
optical spectra, in which the selection rules in L for differ- 
ent transitions to the d-electron bands manifest themselves. 

In deriving Hamiltonians that incorporate orbital de- 
grees of freedom we have ignored the effect of the crystal- 
line field. Of course, for d- and 5 f-systems this approxi- 
mation cannot be justified, generally speaking. Even in the 
case of a moderate crystalline field, a nonspherical poten- 
tial may "freeze" the orbital momenta or modify them 
drastically owing to the splitting of atomic states. In the 
latter case, however, our discussion can be generalized by 
employing irreducible point-group representations, which 
describe orbital angular quasimomenta, and the appropri- 
ate Clebsch-Gordan  coefficient^^^ (see also the study of the 
case of a strong crystalline field in Refs. 10-12). Note also 
that there is the possibility of partial "defrosting" of orbital 
angular momenta by the Coulomb interaction or by the 
crystalline field proper owing to the mixing of different 
atomic states. 

Within the framework of the multielectron scheme un- 
der discussion various physical systems can be explored 
where orbital angular momenta play an important role, for 
instance, systems where orbital ordering sets in (the prop- 
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erties of such systems are usually discussed in the single- 
electron setting; see, e.g., Ref. 25). Also of interest is the 
analysis of superexchange interaction in more complicated 
situations than the models of Sec. 5 (e.g., in the presence of 
several types of This problem may be impor- 
tant for high-T, superconductors, which exhibit a sizable 
anisotropy in magnetic susceptibility, caused by the orbital 
c~ntribution.~' 

APPENDIX: THE FORMALISM OF IRREDUCIBLE TENSOR 
OPERATORS 

Let us introduce the double irreducible tensor opera- 
tors WKk) (K=O, 1 and k=0, ..., 21) with the following com- 
ponents: 

(we use a definition that differs somewhat from that given 
in Ref. 13). Any operator of the type 

F= 2 fi, 
i 

where f i  is an arbitrary operator acting on the ith electron 
can be expressed in terms of the operators defined in (A1 ). 
For example, 

w('J0) = 2 alf;l~lma= n 
m a  

(A2) 

coincides with the operator of the number of particles in 
the Ith shell, and for the cyclic components of the opera- 
tors of total spin and angular momenta of the shell we have 

where 

Using Eqs. (A3 ), we immediately obtain the Hamiltonians 
(35) and (36) without resorting to the multielectron rep- 
resentation. 

In contrast to (A3), the operators (A1 ) with k + ~  > 1 
have nonzero matrix elements between different states. 
Employing the Wigner-Eckart theorem, we get 

where a stand for the additional quantum numbers that 
distinguish states with the same S and L (in the main text 
of the paper these were omitted). For one thing, within a 
given SL-state we have 

wF)=( [S] [L])-'/' (SLall W ( " ) I I S L ~ ) S ~ ' L ~ ' ,  
(-46) 

where we have introduced irreducible tensor operators 
with components 

L:) = z c ~ E . , ~ ~  1 S L ~ M ~ )  (SLpM'a I, (A81 
PPM' 

with 

S t=  J s ~ s ' , " ,  Lq= dL(L-tl)~b".  (A9) 

The operators (A8) are similar to the Stevens operators in 
crystalline-field theory. 

The reduced matrix elements in (A6) can be calcu- 
lated by isolating one electron in the state vectors via (60): 

=n(2[L]  [L'] [S] [S'] [I]  ) 'I2 2 G$$~G$&'~' 
{SEE) 

Comparing (A6) and (AS) with (A3) and using the ex- 
pressions for the matrix elements of angular momentum 
operators, we arrive at a relationship linking the fractional 
parentage coefficients: 

s s L  I ) ( - l ) l+L+i+i  
n z 3 L 1 L, {SEE) 

Substituting the explicit expressions for the 6j-symbols at 
S L a  =S' L'a', we obtain 

The identity (A13) was found empirically for Hund states 
in Ref. 3. Interestingly, Eqs. (A13) and (A14) may be- 
come invalid at S = O  and L =0, respectively. 

Thus, using the double irreducible tensor operators 
(A1 ) makes it possible to carry out effective summation of 
the fractional parentage coefficients and obtain the Hamil- 
tonians of spin and orbital exchange, Eqs. (35) and (36), 
in the simplest form. 
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