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Resonance vibrational states of a new type that can be realized in intermediate-valence 
semiconductors (IVS) is proposed. Owing to the exceptional softness of local valence 
fluctuations in IVS, there arises a pseudo-Jahn-Teller exciton-photon interaction and 
exciton-polaron states of two types are formed: coherent exciton-polarons, manifested in the 
vibrational spectra as additional modes which interact strongly with LA phonons, and 
harder self-localized excitations, forming at sufficiently high temperatures defects of the force 
constants and creating dispersion-free local modes in the gap between the acoustic and 
optical branches of the spectrum. The model explains the origin of the "excess" modes in the 
inelastic neutron scattering spectra of Smo,75Yo,25S and SmB,, and describes the 
experimentally observed sharp temperature dependence of these modes. 

1. INTRODUCTION 

It is well known that the strong electron-photon inter- 
action in rare-earth semiconductors with intermediate va- 
lence (IV) is due mainly to the closeness of the character- 
istic lattice-vibration time (rph) to the characteristic 
valence fluctuation time (rVf) : 10-l2 sec < rph , rvf < 10- l3 

sec.'12 The effect of valence fluctuations on the phonon 
spectra of SmS, TmSe, and SmB6 has been investigated 
well both experimentally and theoretically (see, for exam- 
ple, the review3). However, the unusual softness of collec- 
tive electronic modes (valence fluctuations) in these com- 
pounds suggests not only that the normal vibrational 
modes are strongly renormalized but also that specific res- 
onance effects appear in the lattice dynamics. Indeed, ad- 
ditional modes in the vibrational spectra of Smo.75Yo.25S 
(Refs. 4 and 5) and, apparently, TmS (Ref. 6) were al- 
ready revealed by the first experiments on inelastic neutron 
scattering. Similar modes were later also found in s ~ B ~ . ~  
The existence of these excitations cannot be explained by 
the standard mechanisms of formation of local defect- 
induced lattice modes, and this circumstance together their 
unusual temperature dependencegp9 make it necessary to 
search for a nontraditional mechanism, due precisely to the 
specific nature of intermediate-valence compounds, for the 
appearance of local modes in the vibrational spectra. 

In the present paper we propose a new mechanism for 
the formation of local vibrational modes. This mechanism 
is associated with the softness of the local excitations of the 
electronic subsystem in the intermediate-valence semicon- 
ductor phase. We have previously constructed a theory of 
the electron-phonon interaction in these systems, based on 
taking into account the effect of soft exciton-like excita- 
tions in the intermediate-valence phase on the lattice 
vibrations.'&12 This theory made it possible to explain the 
anomalies observed in the acoustic spectra of all semicon- 
ductors with an intermediate phase, but it did not give a 
satisfactory quantitative description of optical spectra and 
it did not explain the appearance of an additional mode in 
the vibrational spectrum, though it did indicate the source 

of this mode-soft fully symmetric fluctuations of the va- 
lence of Sm ions. The theory is insufficient because it is 
based on the adiabatic description of the electron-phonon 
interaction, using the model of charge-density distortions 
which adjust adiabatically to the motion of the ions.13 Ac- 
cording to optical data,14 however, the exciton mode either 
falls into the gap between the acoustic and optical phonons 
or it is in resonance with the optical phonons, so that the 
adiabatic approximation, which is to some extent applica- 
ble to acoustic phonons, definitely breaks down for optical 
modes. This "nonequivalence" of the different modes of 
the vibrational spectrum with respect to one of the elec- 
tronic modes is a distinguishing property of intermediate- 
valence semiconductors and requires a special analysis. 
Moreover, the characteristic electron energies in these sys- 
tems are lower than room temperature, and this circum- 
stance must be taken into consideration when describing 
an experiment. 

Thus it is necessary to re-examine the standard theory 
of electron-phonon interaction as applied to intermediate- 
valence semiconductors, and this re-examination must 
start with a revision of the standard adiabatic approxima- 
tion. 

2. ADIABATIC APPROXIMATION FOR THE ELECTRON- 
VIBRATIONAL SYSTEM UNDER EXCITON-PHONON 
RESONANCE CONDITIONS 

The object of our theoretical constructions are samar- 
ium sulfide SmS(G, in the gold phase under pressure or its 
cation-substituted analog Smo,75Yo,25S with a crystal lattice 
of NaC1-type, and also samarium hexaboride with a 
CaCu6-type lattice. In studying the low-lying phonon 
branches on which the anomalies are observed the samar- 
ium hexaboride structure can be regarded, owing to the 
high rigidity of B6 octahedra, as consisting of two struc- 
tural elements, Sm ion and B, octahedron, which form a 
lattice of the CsCl type.' 

It was noted already in the first theoretical papers 
anomalies of the phonon spectra of these 

semiconductors that the fully symmetric displacement Tr 
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FIG. 1. Breather mode r't in the vi- 
brational spectra of SmS and SmB6. 

of the nearest neighbors of Sm ions in the anionic sublattice 
(Fig. I) ,  which induces local Sm valence fluctuations of 
Sm of the same point symmetry I'f, makes the main con- 
tribution to the electron-lattice interaction. This interac- 
tion softens the longitudinal acoustic phonons, the soften- 
ing being most pronounced along the [ I l l ]  direction of the 
Brillouin zone in lattices of the NaCl type. On the other 
hand, it was shown in Refs. 18 and 19 that local fully 
symmetric valence fluctuations play a decisive role in the 
mechanism of the phase transition into the intermediate- 
valence state: according to the theory developed in these 
papers for excitonic instability, a new phase arises as a 
result of softening (for example, under pressure) of the 

is not satisfied for at least one electronic (excitonic) mode. 
The left-hand side of this inequality is the maximum char- 
acteristic frequency of lattice vibrations and the right-hand 
side is the excitation energy of the electronic subsystem (in 
our case-the energy of a local valence fluctuation). In 
order to solve the problem of lattice vibrations, the eigen- 
functions of the Hamiltonian of the electron-ion system 

are usually sought in the form of the expansion 

fully symmetric exciton mode. The phase transition occurs 
when an almost degenerate situation arises-the energy of In the Hamiltonian (2) H(r)  describes the total energy of 

this mode differs from the ground-state energy by an the electrons and all interelectronic interactions; V(r,Q) is 

amount comparable to the Coulomb and/or electron- the ion-ion and electron-ion interaction operator, and 

lattice interaction energies. If the electron-electron interac- T(Q) is the kinetic energy operator of the nuclei. The 

tion predominates, then we are dealing with an excitonic eigenvalues E, ( Q) and the eigenfunctions cp, ( rye )  of the 

instability, which is removed by coulombic restructuring of electronic subsystem depend on the coordinates Q of the 

the spectrum of low-lying electronic excitations. If, how- nuclei as parameters. 

ever, the interaction with the lattice predominates, then the If the electronic subsystem contains two almost degen- 

phase transition can be interpreted as a cooperative erate low-lying electronic levels E ~ ( Q ~ ) = O  and 

pseudo-Jahn-Teller effect2' in which the proximity of the &JQO) =2A, corresponding to some equilibrium configu- 

electronic system to degeneracy is removed by an isostruc- ration of the lattice coordinates Qo, then, according to the 

tural transition. In reality, both contributions are signifi- general theory of the pseudo-Jahn-Teller effect, the 

cant, and the new intermediate-valence phase inherits in- electron-ion potential must be represented in the form 

dications of both an exciton dielectric and a pseudo-Jahn- 
Teller crystal. This is manifested in the fact that soft 
excitons are also present in the intermediate-valence 
phase,10"4 and the presence of soft excitations in the elec- 
tronic subsystem induces a pseudo-Jahn-Teller interaction 
(see, for example, Ref. 21 ). As will be demonstrated be- 
low, it is this interaction that determines the mechanism 
responsible for the appearance of additional modes in the 
vibrational spectrum. 

Thus our problem is to find the equations which de- 
scribe the vibrational spectrum of the system in the case 
when the adiabaticity condition 

and the adiabatic approximation must be reformulated for 
vibrations corresponding to these two levels, retaining in 
the expansion (3) only the electronic eigenfunctions of 
these states, 

Here cpg) ( r )  = qgB,(r,Qo) with the normalization condition 

after which the problem of the adiabatic vibrational spec- 
trum must be solved. 
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The eigenfunctions x,(Q) of the vibrational subsystem 
are now determined from the system of equations 

where m,n =e,g, and the matrix U,,(Q) contains both 
diagonal 

and off-diagonal 

elements, which admix the excited electronic state to the 
ground state. Thus, in contrast to the standard method of 
charge-density distortions (CDD) l 3  employed in Refs. 10- 
12, when in the case of almost degenerate states of the 
electronic subsystem adiabaticity breaks down with respect 
to one of the electronic modes, this mode, instead of con- 
tributing to the dynamical matrix (through the polarizabil- 
ity of the electronic subsystem) in second-order perturba- 
tion theory, changes in a resonant manner the potential 
relief for ion vibrations. The problem of the vibrational 
spectrum of the system under conditions of resonance in- 
teraction of phonons with the continuum of valence fluc- 
tuations was studied in Refs. 22 and 23 on the basis of 
many-body perturbation theory. In our case there are 
grounds for assuming that valence fluctuations are de- 
scribed by a solitary mode, so that the nonadiabaticity of 
the electron-vibrational system is removed, to a significant 
degree, by the pseudo-Jahn-Teller restructuring of the lat- 
tice, and a modified form of the adiabatic CDD method 
can once again be employed. 

In order to introduce fully symmetric CDD, corre- 
sponding to the pseudo-Jahn-Teller lattice distortions, into 
the dynamical matrix, we first determine their contribution 
to the interaction between ions in a neighborhood of a 
particular Sm atom, and consider next the problem of 
propagation of vibrations in a periodic sublattice. To this 
end, we select from the complete set of configurational 
coordinates the mode that is responsible for the pseudo- 
Jahn-Teller interaction in the cluster depicted in Fig. 1, 
namely, the above-mentioned "breathing" mode I'f. We 
separate in the effective potential of the excited state8 the 
term that is linear in the configurational coordinate Q and 
characterizes the dependence of the energy of the excited 
state on the fully symmetric deformation 

where 

Then, diagonalizing the potential-energy matrix (assuming 
for convenience Qo = 0) 

we obtain for the vibronic spectrum of the system the equa- 
tions 

(12) 

These equations determine the potential relief, modified by 
the pseudo-Jahn-Teller contribution from the soft elec- 
tronic mode, for vibrations of atoms in the vicinity of the 
distinguished Sm ion. After the resonance interaction with 
this slow mode is taken into account exactly, we can hope 
that in the new electronic-vibrational nomenclature the 
adiabaticity criterion (1) will hold, at least in the zeroth 
approximation, for the other excitations of the electronic 
subsystem, and the remaining deviations from adiabaticity 
can be taken into account with the help of perturbation 
theory. 

3. LOCAL VALENCE FLUCTUATIONS AND THE PSEUDO- 
JAHN-TELLER MODES 

As we have already mentioned, according to the theory 
proposed in Refs. 18 and 19 for excitonic instability, the 
mechanism of the normal semiconductor-intermediate- 
valence semiconductor phase transition and the anomalous 
properties of the intermediate-valence phase itself are as- 
sociated with the fully symmetric local valence fluctua- 
tions, and the effect of the intermediate valence itself con- 
sists of the fact that a double-well potential is formed for 
the "last" electron in the f-shells of Sm ions in the cationic 
sublattice, so that the wave function of the ground state of 
the intermediate-valence semiconductor has the following 
structure: 

=A" [cos 8 1 & , 7 ~ 0 )  +sin 8 1 f:~: , 7 ~ o ) ] .  
m 

(13) 

The parameter 8 characterizes the value of the intermedi- 
ate valence, A" is the antisymmetrization operator, and 
B: is a linear combination of electron-hole pairs with sym- 
metry that makes it possible to construct a singlet fully 
symmetric state 7 ~ 0 ,  centered on the node m, from the 
electrons of the fi core and a weakly coupled electron, 
distributed between the central site and the nearest neigh- 
bors: 

B:= C F(j)a&+jaf,m (&,7J'o). (14) 
j 

Here a (a:) is the operator annihilating (creating) an 
electron in the f-shell (conduction band) and F ( j )  is the 
envelope, extending at least to the nearest neighbors of the 
cationic sublattice. 
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For 8 > ?r/4 local valence fluctuations are exciton-like 
excitations with charge transfer "back" to the central Sm 
ion, and are described by antibonding linear combinations 
of the same type as the site functions appearing in Eq. 
(13): 

The strong electron-phonon interaction in the 
intermediate-valence phase is associated with the response 
of the lattice to these charge  fluctuation^.^"^"^ We shall 
show here that the same interaction leads to the appear- 
ance of additional modes in the vibrational spectrum. By 
virtue of their local nature, excitonic excitations interact 
primarily with the nearest-neighbor environment of the 
central ion, inducing pseudo-Jahn-Teller restructuring of 
this ion as defined by Eqs. (12). Correspondingly, the elec- 
tronic wave function determining the adiabatic potential 
relief for vibrations of ions in this cluster is given by Eqs. 
(5) and (6). 

The matrix elements in Eq. ( 12) have a quite compli- 
cated form, and expressions for them are unknown. How- 
ever, the basic properties of the potential relief can be seen 
even in a simplified analysis, taking the seed potential en- 
ergy of the ground and excited electronic states in the form 
of a quadratic potential with third- and fourth-order an- 
harmonic corrections (Fig. 2a) 

K Y X  
~ ( Q I  - ug(Q) =I @+5 @f4 01; Y <  (O,K)O 

(16) 

and the linear combination for the off-diagonal matrix el- 
ement 

where 

In this case the vibrational potential energy has the form 

FIG. 2. Configurational diagrams for 
pseudo-Jahn-Teller vibrational modes 
determined by Eqs. (16)-(a) and 
('9)-(b). 

For sufficiently strong Jahn-Teller coupling (17) the 
adiabatic potential (19) acquires three minima, corre- 
sponding to the three possible vibrational modes for the 
configurational coordinate Q with different positions of 
equilibrium and frequencies (Fig. 2b). In the standard 
problem of the pseudo-Jahn-Teller effect the bottom sheet 
of the potential energy has two wells if 

In the real case, when anharmonicity is present and the 
exciton energy depends on the coordinate Q (S#O), a 
more stringent condition than (19) on the coefficient a 
may be required in order for two wells to appear in the 
bottom sheet of the potential (20). If, however, it is as- 
sumed that the main interaction in the system is pseudo- 
Jahn-Teller mixing, then the condition (20) does not 
change much. Taking into account anharmonicity and the 
correction S ( 1 1 ) , we obtain, to lowest order, the following 
parameters of the potential wells. 

The minima of the top and the two bottom wells lie at 
the points (Fig. 2b) 

with energies 

and force constants 

(Here ~ = A / K " ~ ) .  
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The lowest state of a cluster corresponds to one of the 
minima of the bottom sheet of the adiabatic potential. We 
shall assume that the left-hand well has the lowest energy 
at the minimum E!) < B Y ) ,  which is equivalent to the con- 
dition 

It is this well that will determine the electronic ground 
state and the normal phonons after the cluster is embedded 
in an infinite lattice. As is evident from Eq. (23), the force 
constant in the right-hand bottom well is always less than 
in the left-hand well. The ratio of the force constants of the 
left-hand bottom and top wells depends on the values of 
the parameters. We assume that the system in the ground 
state has the highest force constant, i.e., in the bottom 
left-hand well 

which is possible if 

which holds, together with the inequality (24), in the case 
of a sufficiently strong fourth-order anharmonicity. 

The other two wells of the configurational curves dis- 
played in Fig. 2b determine the excited states with transfer 
of the charge of the electronic subsystem; the additional 
vibrational modes correspond to these states. In order to 
clarify the character of the propagation of these modes, it 
is necessary to know the spatial distribution of the electron 
density determined by the expansion coefficients in the 
wave function (5). In the two bottom minima of the adi- 
abatic potential these coefficients are given by the expres- 
sions 

For states in the top well we have 

Thus the electronic state in the top well is localized much 
more strongly than the states in the two bottom wells, and 
it is close to the seed exciton ( 15) in a rigid lattice. The 
ground state of the system, taking into account the pseudo- 
Jahn-Teller relaxation of the lattice, is characterized by a 

wave function of the type ( 13), in which the local orbitals 
in the positions of equilibrium have the form 

cos 8 ' = X g ( ~ ? ) ~ ~ ~  8-X,(~!!))sin 8, (29) 

where cos 8' determines the true value of the intermediate 
valence taking into account Jahn-Teller restructuring. 

Thus, the main effect of pseudo-Jahn-Teller relaxation 
is that instead of the renormalization of phonon frequen- 
cies ( a  < 1) that occurs in the simple CDD method, the 
nomenclature of the vibronic states changes significantly 
( a  > 1 ). Assuming that the amplitudes of the vibrations in 
the ground and excited electronic states are small, we can 
describe in the zeroth approximation the corresponding 
vibronic states of the cluster by the wave functions 

q ) , ( r , Q )  = ~ [ 2 ) , ( Q - ~ ' f ' ) q l f l ) ( r ) ,  (30) 

with energies E?)= E(')+fio(')[n + 1/21 and 
),= E:) +h:)[n + 1/21, where the frequencies of the 

vibrational quanta are determined by the force constants 
(23), and the electronic components have the form 

The approach proposed above preserves the advantages of 
the simple CDD method for calculating the phonon spec- 
trum, though the change in the dynamical matrix does not 
reduce to a simple renormalization of its coefficients. The 
force constants F!!) (23) determining the normal phonons 
are calculated in the zeroth approximation by the standard 
method by differentiating expression ( 12) for the configu- 
rational energy E-(Q) with respect to the small displace- 
ments relative to the equilibrium position Q!). 

4. EXCITON-POLARON STATES IN THE LATTICE 

Having determined the parameters of the cluster we 
must embed the cluster into a translationally invariant sys- 
tem and study the behavior of the excited states in the 
lattice. We now consider vibrations of the system in elec- 
tronically excited states near the additional minima of the 
configurational curves (19) at the points QY) and Q("). 
Near the excited ion the lattice is in a polarized state char- 
acterized by equilibrium positions which are shifted com- 
pared to the ground state E!)(Q), and by altered force 
constants of the interatomic interaction. The exciton 
(exciton-polaron), together with the polarization field ac- 
companying it, can either propagate coherently through 
the lattice or it can be localized near a particular node, 
depending on the conditions of excitation of the system and 
on the ratio of the kinetic and potential energies of this 
polaron.24 In the latter case it is a local level in the elec- 
tronic spectrum and a defect of the force constants for the 
vibrational spectrum. 
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To determine the propagation regime of the exciton- 
polaron it is necessary to know the resonance overlap in- 
tegral for the excitonic wave functions. This integral, in 
turn, is determined by the hole q{'l)(r) and electronic 
wave functions q{t) (r) and q(')(r) (31). Since both ex- 
citons are singlet, i.e., they do not have multipole mo- 
ments, the corresponding overlap integrals J(')(R) and 
4':) (R) are of purely exchange origin: 

The exchange integrals are small, since they are deter- 
mined only by the overlapping of localized electron wave 
functions. It can thus be expected that for both excitations 
the condition for the existence of a small-radius exciton- 
polaron can be satisfied: 

J/Eb < s, (33) 

where s is a numerical factor that depends on the geometry 
of the lattice and is of order unity, and Eb is the exciton- 
polaron binding energy. For small-radius polarons above 
the temperature for which the exciton-energy uncertainty 
due to inelastic scattering is greater than the polaron- 
renormalized narrowing of the excitonic band 
J exp( -Ed&), where w is the frequency of the optical 
phonons), there arises an incoherent propagation regime in 
which displacement from one site to another is by 
hopping.24 

The degree of overlapping of the hole wave functions 
q[!!)(r) is the same for both types of exciton, and the 

electronic states corresponding to the excitation into the 
right-hand lower well overlap significantly more strongly 
than in the upper pseudo-Jahn-Teller minimum, where the 
electronic component is practically localized in the f -shell 
and overlaps weakly the neighboring sites. For this reason 
we assume that 

The binding energies for both types of exciton-polaron, 
which we designate as EPI and EPII respectively, are 

These energies are virtually equal, so that on the basis of 
the inequality (34) a transition into the incoherent regime 
is most likely for excitation into the upper well (the EPI 
state). We now consider the condition under which this 
excitation is localized. 

If the parameters J, Eb,  a ,  and Aw ( Aw is a measure of 
the dispersion of optical phonons ) characterizing the 
exciton-polaron satisfy the conditions 

for EPI, then the temperature of its transition into the 
incoherent regime is determined by the following 
relation:24 

We take as the upper limit of the overlap integral the ex- 
citon excitation energy, which, as we have already men- 
tioned, is comparable to the energy fiw of optical phonons. 
Then, setting a - 3 and A/Fw - 3 and taking into consid- 
eration the fact that Aw/o- 1 in S~,,5Yo,2sS and SmB6, 
we estimate the temperature of the transition into the in- 
coherent regime as 

Thus at temperatures above 20 K the state EPI be- 
comes incoherent, i.e., its stay near one site is significantly 
longer than the characteristic time of optical lattice vibra- 

tions. From the standpoint of lattice vibrations such a state 
of the exciton-polaron is the complete analog of a defect of 
the force constants. It is evident from the conditions (25) 
that the force constants in the vicinity of a localization site 
of an incoherent exciton are smaller than the force con- 
stants of an ideal lattice. An exciton in the lower right- 
hand well is an exciton-polaron which has an intermediate 
radius and propagates coherently through the lattice. 

We have found thus that from the standpoint of the 
vibrational subsystem the local valence fluctuations are de- 
fects of the force constants. Vibrations which are a re- 
sponse to these fluctuations can be regarded as additional 
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FIG. 3. Vibrational spectra of the SrnS 
(a) and SrnB, (b)  types with local 
modes. 

modes in the spectrum of lattice excitations, and the char- 
acter of the propagation of these modes is different for 
different types of valence fluctuations: "weak" valence fluc- 
tuations with low excitation energy (EPII) correspond to 
the coherent regime of the polarization wave in the lattice 
and the harder "strong" EPI fluctuations correspond to 
incoherent excitations of the lattice which at not too low 
temperatures behave as local lattice modes. 

The systematic analysis of the nonadiabatic (reso- 
nance) electron-phonon interaction in intermediate- 
valence semiconductors has led thus to the appearance of 
two types of additional states, such as defects of force con- 
stants in the vibrational spectrum, in contrast to preceding 
attempts in which the additional lattice mode was regarded 
as a two-phonon bound state, whose energy and symmetry 
depended significantly on the phenomenological parame- 
ters intr~duced,'~ or the valence fluctuations were assigned 
a fictitious mass, whose origin was not substantiated in any 
manner.26 In the concluding sections of this paper we shall 
describe the properties of the additional local states. 

5. LOCAL RESONANCE MODE 

We now consider the problem of a defect of force con- 
stants that is associated with an EPI-type electronic exci- 
tation. We solve this problem by the standard method of 
lattice Green's functions." 

In this technique the equation of motion for a defect in 
an ideal lattice has the form 

Here ua(l;t) is the a component of the displacement of an 
ion of the lth elementary cell of the sublattice t, G is the 

Green's function of the ideal crystal, and A is the matrix of 
perturbation of the ideal crystal by the defect. 

where 1 is an elementary-translation vector, t is the index of 
the sublattice, M is the ion mass, and e$ is the projection 
of the polarization vector of the tth ion of thejth phonon 
branch with wave vector k and frequency mkj on the a axis. 

where @(') and are matrices of the force constants of the 
ideal and defective lattices, respectively. 

The intermediate-valence systems of interest to us have 
effectively diatomic cubic lattices with a force-constant de- 
fect that is located at the position of an ion of the heavy 
sublattice. The crystal lattices have different structures, but 
these systems differ mainly by the fact that the ratios of the 
force constants of the intersublattice (Sm-S, Sm-B6) and 
intrasublattice (Sm-Sm, S-S, B6-B6) interaction are dif- 
ferent. In sulfides the Sm-S intersublattice interaction con- 
stants are significantly larger than all intrasublattice con- 
stants (Sm-Sm, S-s), and this leads to the usual (for the 
rock salt lattice) phonon spectrum (Fig. 3a), which we 
refer to below as a spectrum of the SmS type. The inter- 
sublattice force constants in hexaborides (Sm-B6) are sig- 
nificantly smaller than the force constants of the interac- 
tion between the structural elements of the light sublattice 
B6-B6. For this reason, the phonon spectrum of 
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hexaborides is characterized by strong dispersion of optical 
phonons and by acoustic branches with large flat sections 
(Fig. 3b). We shall call such a phonon spectrum a spec- 
trum of the SmBs type. 

If both compounds are modeled by a one-dimensional 
diatomic lattice (Fig. 4) with short-range force constants 
A!) and A:) of the interaction between the nearest neigh- 
bors of different sublattices and nearest ions of the light 
sublattice 1, respectively, then we obtain the SmS phonon 
spectrum (Fig. 3a) for fl!))fl:) and a SmB6 spectrum 
(Fig. 3b) for A!)&). In this model the defect under 
consideration can alter three force constants of the inter- 
action with the nearest neighbor environment (Fig. 4), i.e., 
it can decrease the values of the two constants f12 and the 
constant fll below the ideal-lattice values: 

In this model the defect space is bounded by the indi- 
ces 

and Eq. (39) for the frequency and displacement vector of 
the additional local vibrations acquires the form 

FIG. 4. One-dimensional model of 
the force interactions in two- 
sublattice rare-earth semiconduc- 
ton. 

The system (44) can be significantly simplified on the 
basis of symmetry considerations, since for the defect un- 
der consideration only vibrations having the breather and 
dipole symmetry are possible with displacements in the 
defect space 

respectively. Substituting these displacement vectors into 
the system of (44) we obtain the frequencies and displace- 
ments of local vibrations of both types. 

The frequency of the local breather vibration is found 
from the equation 

The displacements of ions have the form (45a) inside the 
defect space and are determined outside the defect space by 
the expression 
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To determine the frequency of the dipole mode we obtain 
the equation 

The displacements in the defect space have the form (45b) 
with the ratio of the parameters b and c 

Displacements outside the defect space are given by 
the expression 

We find the SmS spectrum on the basis of the model of 
Fig. 4 with a single nonzero intersublattice constant f [;) 
and masses corresponding to the masses of samarium and 
sulfur ions. The frequencies of the local vibrations arising 
as the two force constants fi2 are decreased (Fig. 4) by 
excitation of an exciton were found by solving Eqs. (46) 
and (48) numerically. A defect of this type leads to sepa- 
ration of a local fully symmetric vibration, whose fre- 
quency falls in the gap between the acoustic and optical 
phonons, from the phonon spectrum of the ideal lattice. 
The dipole vibration does not split from the spectrum. The 
position of the frequency of the local mode in the gap as a 
function of the ratio fi2/ f 1;) is presented in Fig. 5. Even 
for fi/ f ii) = 0, however, the frequency of the local mode 
cannot be (see Ref. 28) lower than the limiting value 

while the experimentally obtained frequency of the reso- 
nance mode lies significantly lower. The reason is that the 
simple model with only one intersublattice constant f ii) 
does not completely reflect the characteristic features of 
the SmS spectrum, which is characterized by an apprecia- 
ble contribution of the force constant f l y )  of the interac- 
tion between the nearest-neighbor ions of the light sublat- 
tice and the force constant of the breather mode.12 For 
certain values of the force constants f l;) and f ly) and the 
force constant of the breather mode G ': we obtain dis- 
persion curves (Fig. 3a) similar to the spectrum of 
Sq,75Yo,25S in the direction [ I l l ] .  Assuming that the lat- 
tice expansion due to excitation into the EPI state, in the 
neighborhood of a site breaks the bond between sulfur ions 
(fi = 0) and decreases by a factor of two the value of the 
intersublattice constant f;C, = f 1;)/2, we obtain the reso- 
nance mode in the position corresponding to experiment 
(Fig. 3a). In the resonance mode the ion vibrations are 
localized in the neighborhood of an exciton within the lim- 
its of several elementary cells (Fig. 6a). 

FIG. 5. Energy of the local mode determined by Eq. (46) versus the ratio 
of the force constants. The arrow indicates the experimental position of 
this mode in S ~ , ~ Y , , , ~ S ? . ~  

An entirely different situation is realized in the SmB, 
spectrum which we modeled with the help of the interac- 
tion constants f l y )  between ions of the light sublattice, 
which are much greater than the intersublattice force con- 
stants f !;). In a spectrum of this type only local dipole 
vibrations can be split off. As is evident from Eq. (48 ), the 
frequency of the split-off dipole vibration depends only on 
the changes in the intersublattice constant f f;), the fre- 
quency decreasing with the ratio f12/f{;). Even if fi2 
= 0 in the neighborhood of an incoherent excitation, how- 
ever, the frequency of a local vibration lies near the top 
edge of the gap (Fig. 3b), in complete agreement with the 
experimental data.' The localization radius of ion vibra- 
tions in the resonance mode is quite large and amounts to 
several tens of unit cells (Fig. 6b). 

Thus the "extra" mode observed in the inelastic neu- 
tron scattering spectra is due to transitions between levels 
of local vibrations of a defect of the force constants. For 
this reason, in accordance with e ~ ~ e r i m e n t , ~ ~ ~ , ~  this mode 
is dispersion-free and is seen in both the longitudinal and 
transverse neutron-scattering geometries. 

According to our calculations the lattice modes in- 
duced by valence fluctuations are even in NaC1-type lat- 
tices and odd in SmB6-type lattices. The symmetry of the 
dispersion-free mode cannot be determined from neutron 
experiments, but it can be determined by analyzing the 
selection rules for defect-induced phonon Raman 
scattering,29 which allow first-order processes only for even 
local vibrations. In the compounds Sml-,YXS with an 
NaC1-type lattice first-order Raman scattering of the fully 
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FIG. 6. Displacement of ions in local modes in compounds with SmS (a) 
and SmBs (b) type spectra. 

symmetric character rr is observed at energies near the 
resonance mode.6 We can therefore conclude that, irre- 
spective of whether light scattering occurs on the coherent 
or incoherent local mode, local vibrations in such lattices 
are even. On the other hand, the Raman scattering exper- 
iment performed in samarium hexaboride3' completely ex- 
cludes first-order scattering of even symmetry in the energy 
range of the resonance mode. 

6. RESONANCE COHERENT MODE 

Vibronic states corresponding to the right-hand well of 
the pseudo-Jahn-Teller configurational diagram (EPII) 
are intermediate-radius exciton-polarons propagating with 
wave vector q through the lattice. The EPII wave function 
can be written in the form 

where 10) is the vacuum state, B i  is a linear combination 
of electron-hole pairs of the type ( 14), and Dq(m) char- 
acterizes the lattice vibrational spectrum deformed in a 
neighborhood of the site m: 

where hj is the operator annihilating a j-branch phonon 
with wave vector k. 

In reality, however, the lower branch of the configu- 
rational diagram in Fig. 1 is a two-well potential for co- 
herent excitations in the system, and excitations in each 
valley of this potential are independent only to the extent 
that the states in each valley are adiabatic. Since in con- 
structing the complete three-well configurational diagram 
we took into account exactly only the fully symmetric adi- 
abatic interaction of the electronic subsystem with the op- 
tical phonons, all other contributions to the vibronic inter- 
action, as well as the nonadiabatic part of the fully 
symmetric interaction with optical vibrations, lead gener- 
ally spealung to the fact that excitation of EPII-type states 
influences the spectrum of normal phonons and vice versa, 
the nonadiabatic interaction with phonons must be taken 
into account for excitation of EPII. In particular, the EPII 
excitation energy in SmBs is close to the energy of acoustic 
phonons at the boundary of the Brillouin zone, and the 
corresponding nonadiabatic renormalization of the vi- 
bronic states must be taken into account first. 

Using the standard formalism of the theory of 
electron-vibrational interaction (see, for example, Ref. 3 1 ), 
we expand the EPII wave function in a complete set of 
adiabatic wave functions of the ground g and excited 
YJ(r,Q) states: 

+ z [ s ~ x ~ ( Q ) v ~ ( ~ , Q )  1). (54) 
P 

where g, q is the electronic state, f l  is the phonon quantum 
number, and the coefficients csS and CB are determined by 
solving the system of equations 

The matrix element ~ g '  = .39g~~ is diagonal in the 
phonon quantum numbers fl. For this reason, in accor- 
dance with the law of conservation of momentum, it is zero 
for q#O and it cannot mix the ground electronic state with 
a coherent vibron having a nonzero wave vector. The only 
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matrix element of the nonadiabatic interaction mixing dif- 
ferent electronic states is the matrix element of the opera- 
tor dg  , where the state differs from the state 8' by the 
occupation number of one of the phonons: 

Here T ~ ' ~ ~ Y * '  is the matrix element of transitions from 
the electronic ground state into the state qz ,,(r,Q). 

9''. 
When calculating the vibronic wave function it is nec- 

essary to take into consideration the fact that the excitation 
into EPII (52) is not only a change in the electronic state 
of the system but it is also a restructuring of the vibrational 
state (53) of the system. Thejibrational component of this 
vibron (53) is a local mode e at the site m with possible 
polarizations e = 1 ,..., W, which accompanies propagation 
of an electron density wave produced by the fully symmet- 
ric exciton B i  ( 14). The displacement of ions near a cen- 
ter have a back effect on the electronic component of the 
coherent vibron. This effect is especially pronounced in the 
form of CDD in SmB6, since in this system the I'E sym- 
metry of the local vibration is different from the symmetry 
I': of the seed exciton. For this reason, the dipole compo- 
nent Aer159{1:, ( r  - RE) ;@) is added to its fully symmet- 
ric wave function 9{$) ( r  - ~ 2 ) )  (3 1 ) . 

Thus the wave function of the coherent vibron can be 
written as a Bloch superposition of local vibronic states 

where the electron-vibrational function of the node m has 
the form 

The matrix elements of the transition from the ground 
electronic state into the coherent-vibron state (58) is ob- 
tained by the standard procedure of expanding the 
electron-ion potential in the displacements. In the linear 
approximation only transitions with a change in the occu- 
pation number of one phonon n,, by 1 are possible. In the 
case of a transition from the ground state into the 
coherent-vibron state the phonon-produced distortion of 
the electron-ion potential should not only excite an exci- 
ton, but should also produce a wave packet consisting of 
vibrational functions of the phonons and describing a local 
vibration. In calculating the matrix elements of the nona- 
diabaticity operator it is convenient to project the coherent 
phonons of the ground state on the local basis with the 
help of van Vleck coefficients, thereby forming the wave 
packet g ( g ) .  The standard procedure for calculating the 
matrix element of the nonadiabaticity operator must also 

be modified accordingly for the case of a transition with a 
change in the nomenclature of the vibrational states. 

We present here only the computation results for the 
particular case of electron-polaron excitation in SmB6. The 
matrix element of the transition from the electronic ground 
state into the EPII state, whose local yibrational state is 
described by the wave function ,y!O)(E), with a unity 
change in the occupation number of one phonon, has the 
form 

where 

and the C Y ( r )  component of the operator of the distortion 
of the electron-ion potential is 

where t is the sublattice index. 
Thus, compared to the standard expression for the ma- 

trix element of the operator V f ~ ( r ) ,  in our case there 
arises a? additional integral over the coordinate of the local 
mode e and a dipole correction to the electronic wave- 

function her&pi?, (r;@) . These peculiarities influence 
significantly the dependence of the matrix element (60) on 
the wave vector. The dipole symmetry of the local vibra- 
tion x p ) ( E )  causes the fully symmetric contribution 

F:: to vanish, and the dipole component F::; contrib- 
utes only to the extent of the dipole correction to the wave 

function ~ ~ ~ ~ ~ l ~ ,  (r;@). 
The additional interaction arising in the double-well 

system due to the matrix elements of the type (57) leads to 
renormalization of the wave functions and energies of the 
seed states. One of the most pronounced manifestations of 
nonadiabaticity is the appearance of additional (compared 
to the usual adiabatic situation) signals in nuclear inelastic 
neutron scattering. Consider the process in which a vibron 
with wave vector q is excited in the case of inelastic scat- 
tering by the same wave vector. It is obvious from the law 
of conservation of momentum that the phonon occupation 
numbers do not change in this process and we can thus 
represent the inelastic neutron scattering as a process cou- 
pled with a transition between exact states of the type (54), 
corresponding to a change in the quantum numbers 
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We consider now the important, for comparison with ex- 
periment, case when the phonon state B' in the matrix 
element (57) is different from P in that one occupation 
number nqy is reduced by 1 and 

In this case the principal interaction can be singled out of 
the infinite system of equations (55), and the system for 
determining the coefficients g assumes the simple form 

Correspondingly, we find the following expression for the 
electron-vibrational wave functions between which the 
transition occurs: 

where the mixing coefficients 

depend on the resonance energy difference 

AEqy= E d -  EgD-hqY  (67) 

and the matrix element (57), in which, for simplicity, we 
consider the case, important for analysis of an experiment, 
when only one term with definite l' and e makes a signif- 
icant contribution to the sum (60): 

Since the electronic adiabatic functions with given Q are 
orthogonal to one another, we find that in a nonadiabatic 
system there appears an inelastic scattering peak with en- 
ergy Ed - EgS in a polarization identical to that in the case 
of scattering by the phonon the exchange of which pro- 
duces nonadiabatic mixing (68). It is this mechanism that 
explains why the inelastic neutron scattering spectrum in 
SmB6 contains an additional peak of longitudinal polariza- 
tion with energy close to the energy of LA phonons.9 Ow- 
ing to the change in local symmetry of the exciton-phonon 
interaction from fully symmetric to dipole the resonance 
mode, in contrast to the breather mode I'f, the maximum 
interaction of which with the acoustic phonons occurs mid- 
way between the directions [I101 and [I1 11 (see Ref. 7 ), 
interacts mainly with phonons at the boundary of the Bril- 
louin zone. 

No such an extra neutron scattering peak with longi- 
tudinal polarization is observed in intermediate-valence 

systems with NaC1-type crystal lattices. The reason is the 
strong damping of the coherent vibron occurring in these 
systems and leading to strong broadening, absent in samar- 
ium hexaboride, of longitudinal phonon branches. 

Detailed analysis of the matrix element of inelastic 
neutron scattering corresponding to this transition explains 
also the dependence of the relative intensity of this addi- 
tional peak on the wave vector. We consider here the rea- 
sons for the unusually strong temperature dependence of 
the position and intensity of the additional peaks in the 
neutron spectra. 

7.TEMPERATUREDEPENDENCEOFTHERESONANCE 
VIBRATIONAL MODES OF SmB, 

Strong temperature dependence is typical of the vibra- 
tional spectra of SmB6 and especially of the additional 
modes.9 Thus the local resonance EPI mode with energy 
.fiw=4.5 THz is clearly seen at room temperature, but it 
virtually disappears at 1.8 K. At the same time the addi- 
tional neutron-scattering peak associated with excitation of 
a coherent EPII vibron softens sharply with increasing 
temperature, from 3.8 THz at 1.8 K to z 1.5 THz at 100 
K, and the energy of this peak changes most rapidly at 
temperatures ranging from 0 to 40-60 K. The dispersion of 
the longitudinal acoustic phonons undergoes sharp 
changes in the same temperature range. The proposed the- 
ory can explain all of these features. 

The existence of a local dispersion-free mode only at 
sufficiently high temperatures is explained by the fact that 
the formation of a defect of the force constants requires the 
presence of a real local exciton responsible for the appear- 
ance of this effect. Thus, a local mode exists only to the 
extent of temperature excitation of EPI states, and the in- 
tensity of the corresponding inelastic neutron scattering 
peak should drop continuously with no change in the ex- 
citation energy. It is this temperature dependence of the 
resonance mode that was recorded in samarium 
he~aboride.~ 

The temperature dependence of the energy of a coher- 
ent vibron is due to the sharp change in the electronic 
properties of SmB6 heated to 40-60 K. In this temperature 
interval the free-carrier density increases sharply, as a re- 
sult of which the semiconductor behavior of the conduc- 
tivity and the Hall effect changes to a behavior character- 
istic of a quasimetal.32 The appearance of free carriers 
results, in particular, in screening of the fully symmetric 
deformation potential, characterized by the constant S 
(1 1). It can be concluded from the experimentally re- 
corded decrease of the energy gap in SmB6 under pressure 
that 6 > 0.33 It is this sign of the parameter S that ensures 
a positive energy difference between the coherent vibron 
state in the right-hand lower well and the ground state of 
the left-hand lower well (24). When the constant S de- 
creases the lower wells of the adiabatic potentials become 
symmetrized (Fig. 2) and, as a consequence, the energy of 
the coherent vibron decreases sharply precisely in the tem- 
perature range from 0 to W 6 0  K. 
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8. CONCLUSIONS 

We have thus shown that the additional modes in the 
vibrational spectrum of intermediate-valence semiconduc- 
tors appear as a result of pseudo-Jahn-Teller instability of 
the electron-vibrational system with respect to the fully 
symmetric lattice mode associated with optical phonons. 
The instability-induced restructuring of the adiabatic po- 
tential results in a double-sheet configurational diagram for 
local vibrations near the intermediate-valence rare-earth 
ion. Vibronic states associated with the top sheet of this 
diagram are self-localized. They exist only at sufficiently 
high temperatures and can be regarded as local defects 
induced in the force constants in the vibrational system by 
local valence fluctuations. It is these states that are respon- 
sible for the "extra" dispersion-free modes, whose exist- 
ence in the inelastic neutron scattering spectra of crystals 
of intermediate-valence semiconductors could not be ex- 
plained theoretically for 15 years. The lower sheet of the 
configurational diagram is an asymmetric potential with 
two valleys, and the vibrations corresponding to these val- 
leys are coherent. The exciton-polaron states correspond- 
ing to vibrations in the upper valley interact nonadiabati- 
cally with acoustic phonons in the valley corresponding to 
the ground state of the system, and this interaction in a 
semiconductor with a microgap is strongly temperature 
dependent owing to the fact that at temperatures compa- 
rable to the width of the bandgap the screening of charge 
fluctuations changes from semiconducting to metallic. The 
proposed picture explains completely the complicated pat- 
tern of "extra" states in the inelastic neutron-scattering 
spectra of samarium sulfide and hexaboride single crystals. 

In conclusion we note that the existence of valence 
fluctuations with energies comparable to the Debye tem- 
perature results in another completely unusual (for the 
theory of lattice vibrations) consequence: These fluctua- 
tions interact differently with the low- and high-frequency 
branches of the spectrum, and as a result it is found that 
even in the adiabatic approximation the optical and acous- 
tic vibrations are determined by different force constants. 
The fact that the phonon branches exhibit diflerent degrees 
of nonadiabiticity with respect to valence fluctuations in 
the electronic subsystem makes the picture of phonon spec- 
tra even more nonstandard. Anomalies which occur in the 
phonon spectra and are connected with such a nontradi- 
tional exciton-phonon interaction must be studied sepa- 
rately. 
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