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We study the behavior of a periodic system of quantum wells placed in a transverse electric 
field in the range of resonance of the frequency of an optical phonon and a Stark- 
transition quantum eEa, with E the electric field strength and a the lattice constant. The well- 
to-well transition of an electron is accompanied by emission and absorption of optical 
phonons of the barrier regions. In the resonance approximation the problem of a single electron 
interacting with phonons in a linear chain of quantum points can be solved analytically. 
We show that at exact resonance the electron-phonon interaction leads to delocalization of the 
electron. In the nonresonance case the spectrum becomes Stark-like with a quantum 
uo-eEa, with wo the optical phonon frequency, and the states become localized. When the 
temperature is finite, the problem of states can be reduced in the adiabatic 
approximation to the one-dimensional strongly coupled model with off-diagonal disorder, 
which results in localized states even at exact resonance. We also consider the problem of the 
spectrum of an electron on a Stark ladder in the presence of a variable field. 

INTRODUCTION 

We consider a strongly coupled linear chain placed in 
a homogeneous constant electric field (Fig. 1 ) . In addition, 
the electron interacts with either an electromagnetic field 
or optical phonons. We assume that the frequency of pho- 
nons (or that of the variable field) is close to the Stark 
quantum: 

where a is the lattice constant. These problems are de- 
scribed by the following Hamiltonians: 

where n and m are the number of a level of the Stark ladder 
and the number of a localized phonon state, c; and b; the 
electron and phonon creation operators, and E,  = - eEan 
the Stark level energy (e= - 1 e 1 ). The electric field points 
in the direction -z, where z is the chain's axis. 

A model corresponding to ( 1) emerges, for instance, 
when we consider the phototransport of electrons in a pe- 
riodic lattice of plane quantum wells placed in a homoge- 
neous electric field directed transversely to the planes. In 
the second problem it is assumed that the motion of elec- 
trons and phonons is limited in the plane perpendicular to 
the lattice's axis. The main contribution to the process of 
transition of an electron from well to well accompanied by 

emission or absorption of phonons is provided by the in- 
teraction with phonons inside the barrier. In the real situ- 
ation of GaAs-AlAs-based superlattices, the phonons from 
the AlAs barrier are localized inside their layer, since their 
frequency differs considerably from that of the GaAs pho- 
nons. The transition of an electron from the (n - 1 )st well 
to the nth is accompanied by emission of a phonon of the 
nth barrier. Such processes are described by the last two 
terms in Hamiltonian (2). This Hamiltonian, however, 
cannot be employed in the case of a two-dimensional sys- 
tem because of the longitudinal electron momentum. In 
pure form, Hamiltonian (2) corresponds to a Stark ladder 
in a periodic chain of quantum points of the type depicted 
in Fig. 2. 

We demonstrate that Hamiltonians ( 1 ) and (2) admit 
of exact solutions, localized and discrete beyond resonance 
and delocalized at exact resonance of the variable field or 
optical phonons and the Stark quantum. 

The resulting coherent state of electrons and phonons 
can be thought of as a new type of quasiparticles in a solid, 
a Stark-phonon resonance, which is a mixed state of one 
electron and phonons, with the weak electron-phonon in- 
teraction (in the sense that W(wo) at resonance 
(eEa=wo) leading to the formation of a new spectrum. 

In this paper we also examine more complicated states 
of the system, where in addition to phonons created by 
electrons the wells initially contained phonons. If only one 
excess phonon is excited, we must speak of a bound state of 
a Stark-phonon resonance and a phonon. This problem can 
easily be reduced to that of a bound state of an electron in 
a one-dimensional strongly coupled chain with a single de- 
fective bond that has a transition amplitude differing from 
the general amplitude. If phonons in all the barriers are 
excited, the problem is reduced to that of a strongly cou- 
pled disordered chain with off-diagonal disorder. 
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FIG. 1 .  The periodic potential of a sequence of quantum wells in a 
constant electric field. The 0 stand for localized phonon states. 

The resonance of Stark states and optical phonons was 
studied earlier experimentally by Schneider, Wanger, Fu- 
jiwara, and ploogl and theoretically by Bryxin and ~ i r s o v . ~  
However, in contrast to the ideas of this paper, Bryxin and 
Firsov assumed that optical phonons enhance the dissipa- 
tive process of electron drift along the electric field. In our 
setting the role of the resonance is to create the possibility 
for the existence of a collective state of one electron and 
optical phonons. 

We limit ourselves here to the wave function of the 
electron-phonon system, but the results can be used to 
calculate the optical properties of Stark ladders. Resonance 
mixing between the wave function of an electron and pho- 
nons may play an important role, say, in band-to-band 
Raman scattering on ~ o - ~ h o n o n s . '  In the particular case 
of a system with two quantum wells such a problem was 
studied in Ref. 3. 

FIG. 2. A linear chain of quantum points based on the GaAsAlAs 
system. Electron motion occurs in the z direction when AlAs layers in- 
teract with optical phonons. 

1. THE STARK LADDER IN A VARIABLE EXTERNAL FIELD 

Let us examine a one-dimensional strongly coupled 
chain (Fig. 1)  placed in an external electric field directed 
along the chain's axis and consisting of a static component 
E and a variable component Re(F exp{iot)). The system 
is described by the following Hamiltonian: 

where V, is the elastic tunneling amplitude, the transition 
amplitude U= Re( V exp{ - iot)) is expressed in terms of 
the matrix element V= (+!I,+ I F d  1 +!In) of the interaction 
with the electromagnetic field, with d the dipole moment, 
and +!I, is the state in the number n well. If the frequency of 
the electromagnetic wave is close to the energy eEa of a 
Stark quantum, the variable field increases considerably 
the transition amplitude. In this situation the transition 
amplitude V, not related to the variable field can be ig- 
nored. The result is reduced to Hamiltonian ( 1 ), which 
defines the equation 

- i&,c, + i( V exp{iot)c,- + VY exp{ - iot)c, + ) . 
(3) 

The transformation c, expi-inwt)=a, reduces the equa- 
tion to 

where En= n (w - eEa) . Equation (4) does not contain the 
time explicitly. Hence, it is equivalent to the strongly cou- 
pled Hamiltonian with an overlap integral V in an electric 
field Eer=E-w/ea but without an electromagnetic field. 
The solution of Eq. (4)  is obvious if we employ the Fourier 
transformation in time, a, = a: exp{i~t). However, c, is not 
a stationary electron state and E has the meaning of 
quasienergy rather than energy, since it is defined to within 
no. Indeed, Eq. (4) is invariant under the transformation 
n + n + l  and E-E-W. 

In the particular case of exact resonance, Hamiltonian 
(2) transforms into the periodic-lattice Hamiltonian in the 
tight-binding approximation. Obviously, its states are de- 
scribed by Bloch functions a:=exp{ign) with a spectrum 
E = 2 V cos qa. Out of resonance these states are Stark 
states, but the Stark quantum is replaced by eEa-a, that 
is, E = (eEa - o) n. The states have a localization range 2 V/ 

1 o - eEa 1 . As resonance is approached, the degree of lo- 
calization and the level separation decrease. 

Thus, at exact resonance, Stark localized states are 
transformed into delocalized Bloch states. The reason is 
that an electron in resonance can draw from the field a 
limitless energy, climbing up the Stark ladder, or may emit 
energy in a stimulated manner, climbing down the ladder. 
Both processes lead to unlimited motion up or down and, 
respectively, to the right or left. If the frequency does not 
coincide with the separation of Stark levels, the resonance 
defect makes it possible for the electron to move virtually 
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to a neighboring site, although the defect buildup due to 
multiple jumps first stops the electron and then forces it to 
move in the opposite direction. This localizes the state. 

2. ELECTRON-PHONON STATES ON THE STARK LADDER 

Here we discuss the problem of the Stark-phonon res- 
onance spectrum for a system consisting of a linear chain 
of quantum points and phonon states localized in barriers 
between wells. Such a system can be realized by lithogra- 
phy and etching using the GaAs-AlAs semiconductor su- 
perlattice as a base. The system is schematically shown in 
Fig. 2 and consists of a "column" on the surface of the 
substrate. Figure 1 depicts the potential of the system in 
the z-direction, with the circles designating phonon states. 
Electron states are localized within GaAs layers (the cen- 
ters of these layers have the coordinates z=na, with 
n = 0,1,2,. ..,N), and phonons are localized in AlAs layers 
centered at points z= (m -:)a, with m = 1,2,3, ..., N. We 
assume that the electron and phonon states are nondegen- 
erate for each layer. 

Let us place an electron at the level n = O  and consider 
this system near the resonance eEa= wo. In the nearest- 
neighbor approximation for the electron's motion, the sys- 
tem Hamiltonian has the form (2), where 
W= (qn+ I Qn+ I qn)  is the amplitude of tunneling of the 
electron with emission of a phonon localized between elec- 
tron quantum wells, and @, the phonon potential in the 
respective barrier. The amplitude W is assumed to be in- 
dependent of the number of a quantum point. This opera- 
tor allows for the contributions of electron-phonon inter- 
action, which are essential near the resonance eEa=oo. 
Nonresonance contributions to the Hamiltonian yield only 
a small polaron shift in the levels of the Stark ladder of the 
order of ( (4, I @, I llr,) 2 /w~.  

We construct the Stark-phonon resonance creation op- 
erator in the form 

The unknown coefficients 4, are found by solving the equa- 
tion 

where 8 is the energy measured from the energy of state 
1 O), which is a state without electrons. Actually, 10) may 
contain phonons with arbitrary occupation numbers. After 
commutation we obtain 

with Nm the occupation numbers for the state (O), that is, 
b,fbm 10) = Nm 10); these numbers can be specified arbi- 
trarily. It is convenient to shift to new variables, f n  

= 4,I'I", =, dm. This yields the equation 

with the boundary conditions f n = O  at n = - 1 and n = N 
+ 1. 

Clearly, expression ( 8 ) is the tight-binding equation 
for a linear chain with the amplitudes of tunneling between 
sites n and n + 1 in the form W* Jw. In this section 
we study the case Nm=O, where expression (2) is an equa- 
tion for the Stark level with an effective electric field 
@=E-wdea in a finite chain O(n<N. At the resonance 
eEa= wo Eq. (8) can easily be solved. As a result electron- 
phonon delocalized states emerge with the following dis- 
persion law and amplitude: 

where N is the number of quantum wells in the chain, and 
q = ~ k / ( N + 2 ) a  the momentum (k= 1,2, ..., N +  1). Obvi- 
ously, in an infinitely long chain the spectrum transforms 
into a polaron band with a width of 4 W. The density of 
states in it is 

If eEaf wo, the polaron band splits into Stark levels 
(to each level we assign an integer p, with O<p<N), which 
correspond to localized states, with the mean coordinates 
( 2 )  of an electron in these states (2=a8,ncn), approxi- 
mately coinciding with up. In an infinite sample Eq. (8) 
yields a simple expression for the energy, p(wo- eEa). In a 
finite system the wave functions are not perturbed by the 
boundaries if p obeys the inequalities p % W/ 1 wo - eEa 1 
and N-p, W/ I wo-eEa 1 (here the quantity 
J ( ( i - -  0)2) L = a W/ 1 wo - eEa I acts as the charac- 
teristic electron localization range, and the localization in- 
terval of the Stark-phonon resonance wave function f n  in 
the number space is W/ 1 o0 - eEa 1 ) . 

A t p ~  W/Iwo-eEaI orN-p2: W/Ioo-eEaI thepo- 
sition of the levels shift in relation to the equidistant posi- 
tion owing to edge effects, but the distance between adja- 
cent levels is of the same order of magnitude I wo-eEa I .  

If 1 eEn - wo 1 % W, the Stark-phonon resonance state 
consists of the localized electron state in the pth well com- 
bined with p phonons in the states m ranging from 1 to p. 

We have examined the Stark-phonon resonance state 
near the energy 8 =O. Similar states appear near 8 = & I ,  

where I= 1,2, ..., N. For such states to form, an electron 
must be placed in the Ith well and released; the result is 
that it hops to the right with emission of phonons in the 
barriers. After being reflected by the boundary of the sys- 
tem, the electron moves to the left and absorbs the phonons 
emitted earlier. Thus, Stark-phonon resonance states are 
superpositions of Stark states with numbers I#n<N and 
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phonons in states I+ l#m#N. At resonance the energies 
8 = ~ / + 2  W cos qa (I= 1,2, ..., N)  can easily be obtained. 
The Stark-phonon resonance wave function f ,(q) is non- 
zero for I+ l<m<N, and q=.rrk/(N-1+2)a. For an infi- 
nitely long chain the excitation spectrum consists of a 
number of polaron bands near the Stark energies E/. 

When there is no resonance, the spectrum is deter- 
mined by the expression E/+P (coo - eEa) -- iwo + jeEa, 
where i and j are integers. The expression corresponds to a 
state in which there are p phonons and the electron is 
centered near the (p+ I) th well. Clearly, the expression for 
the energy is valid for Stark-phonon resonance states not 
perturbed by the boundaries. For a fixed p there are Stark- 
phonon resonance states with numbers p satisfying the con- 
dition O<p(N-I. This shows that out of resonance each 
polaron band splits into N-I+ 1 Stark-like levels. In the 
limit of an infinitely long chain both i and j can be arbi- 
trary. Obviously, in this case, when oo and eEa are incom- 
mensurable, the states densely fill the entire real axis. 

It is also worth noting that in conditions of exact res- 
onance (wo=eEa) the average number of phonons in a 
Stark-phonon resonance state, (8,b: b,) , is N-p, that is, 
the number of states coupled by resonance transitions that 
involve phonon emission. 

The closely related problem of a resonance emerging in 
an impurity center, when the distance between two of the 
center's levels coincides with the optical phonon frequency, 
was considered by Kogan and suris4 (see also Levinson 
and Rashba's review5). The resonance leads to the forma- 
tion of a hybrid state, with the average number of phonons 
in this state being roughly one. Let us compare this result 
with our problem. Clearly, with two quantum wells our 
problem is formally similar to the one considered by 
Kogan and Suris. But in the general case of a system of N 
wells the average number of phonons for a state with num- 
ber p is N-p, since here N-p electron states are in reso- 
nance. 

Summarizing the ideas developed in this section, we 
can formulate the basic idea as follows: the electric field 
localizes an electron in the periodic lattice, while the inter- 
action with optical phonons lowers the degree of localiza- 
tion or leads to delocalization of states in resonance. In 
contrast to relaxation, where the electron always moves 
along the field with phonon emission, in a Stark-phonon 
resonance state it can move in the opposite direction. Note 
that a Stark-phonon resonance state differs from a polaron 
in that in the latter the electron displaces the lattice only in 
its immediate vicinity, while in the former the phonons are 
excited at any distance from the electron. 

3. A STARK-PHONON RESONANCE AT A FINITE 
TEMPERATURE 

At a finite temperature T the number of equilibrium 
phonons in the sample, N,, is finite, too. In this section we 
study Stark-phonon resonance states in the presence of 
equilibrium phonons. Let us assume that the characteristic 
phonon relaxation time is much longer than all quantum 
Stark-phonon resonance times fi/AE, with AE the charac- 
teristic separation of Stark-phonon resonance levels. In this 

case the phonons in the system can be assumed "frozen." 
We start with Eq. (8) with the random quantities N, hav- 
ing an equilibrium distribution. The probability of N, pho- 
nons being in a given barrier is exp{-N,wdT). At fairly 
low temperatures, T < w ln( L/a), where L is the Stark- 
phonon resonance size, this probability is lower than unity 
and the phonons constitute a rarefied gas. 

Two approaches to this problem are possible. For low 
phonon number densities the states of the system can be 
analyzed as bound states of one, two, etc. phonons and a 
Stark-phonon resonance. For high phonon number densi- 
ties the system can be studied via the theory of one- 
dimensional disordered systems. 

We start with the nonresonance case. If the Stark- 
phonon resonance is localized between barriers containing 
phonons, its levels coincide with those of an unperturbed 
chain, (eEa-wo)n. The states near the barriers with pho- 
nons prove to be shifted. In the limit of a strong electric 
field (eEa > W), the Stark-phonon resonance is localized 
at a single site. In Eq. (8) we can leave two states adjacent 
to the barrier that contains N phonons. The level shift is 
given by the second-order correction in the perturbation- 
theory expansion in the overlap integral: 

The number of bound Stark-phonon resonance states is 
determined by the phonon distribution 

( ""$-"I. exp -- 

As the number of phonons increases, the nonresonance 
situation transforms into a devil's ladder. Obviously, this 
problem reduces to that of a Stark ladder in a disordered 
chain. 

In the resonance case the theory of random disordered 
systems can be employed directly. We list here briefly the 
conclusions drawn from such an analysis. Obviously, the 
spectrum of the system is symmetric with respect to zero. 
The problem corresponds to a strongly coupled chain with 
off-diagonal disorder. A general statement concerning such 
systems is that all their states (with the exception of some) 
are localized and the spectrum is continuous. In view of the 
discreteness of the present model, the spectrum consists of 
separate lines (bands) corresponding to different realiza- 
tions of the set of phonon numbers in the barriers (N,). 

A bound state of a Stark-phonon resonance and a pho- 
non can be found if the phonon is localized far from the 
zeroth site (m>l) ,  by analogy with the model of an im- 
purity state in a one-dimensional strongly coupled chain. 
Equation (8) assumes the form (eEa= wo and I=0) 

The solution is f, = * exp{ - ka I n - m I ). For the energy 
of the bound state of a Stark-phonon resonance with a 
phonon at site m with N phonons we find that 
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%'I,= + w JN,+1+ N,+l ( 7 3 .  
These energies lie above or below the edges of the 

Stark-phonon resonance band. Clearly, owing to the over- 
lap of impurity states related to different sites, these states 
spread out and become an "impurity" band. 

The structure in the allowed band - 2 W < 8 < 2 W is 
determined by states with a wave function close to zero at 
points with excess phonons. This narrows the allowed band 
for weakly localized states to - 2 W1 < %' < 2 Wl , where 

with I=a exp{wdT) the average distance between barriers 
in which there are thermal excitations, and the effective 
mass of Stark-phonon resonance obeying the relation 
m-'= wa2. Between these thresholds the Stark-phonon 
resonance states are weakly perturbed. 

A special feature of a discrete system with off-diagonal 
disorder is that the spectrum has a singularity at 8 =O 
corresponding to a weakly localized state? 

Theintervals - 2 W < 8 < - 2 W l  and2W1<8<2Wcon-  
tain the exponential tails of the density of states, 
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