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We use the method of averaging over local fields to examine the magnetic properties of an 
Ising binary alloy of magnetic and nonmagnetic atoms. The concentration dependence 
of the Curie temperature is studied for different values of the interatomic interaction potential 
in the case of hexagonal lattice. We show that magnetic interaction can lead to separation 
of the system into phases with different concentrations of magnetic atoms. 

1. Study of the properties of ferromagnets whose crys- 
tal lattice contains nonmagnetic impurities began many 
years ago. l4 In most cases, however, researchers focused 
on the effect of what became known as "frozen-in" impu- 
rities, randomly located at the lattice sites without corre- 
lations and not in thermodynamic equilibrium with the 
lattice. Usually the time it takes thermodynamic equilib- 
rium to set in exceeds the spin-relaxation time and is much 
longer than the observation time. However, there are phe- 
nomena for which the effects related to the setting-in of 
impurity equilibrium can be significant. For instance, vari- 
ation of the magnetic properties of a material related to the 
redistribution of impurities may affect the formation of 
magnetization in rocks, a process taking place over a long 
time  interval.'^^ 

In our previous paper7 we described a method for con- 
structing a self-consistent equation for the magnetization 
of a ferromagnetic with randomly located nonmagnetic im- 
purities. It is worth noting that the results obtained there 
for a crystalline ferromagnet can be arrived at by employ- 
ing the method of differential Our approach, 
however, is apparently more universal since it can easily be 
generalized to include more complicated models of mag- 
netic systems, say, the Heisenberg model of a diluted fer- 
romagnet with any given dependence of the exchange in- 
tegral on the atom separation. 

In this paper we study within the Ising model a ferro- 
magnet with impurities in thermodynamic equilibrium 
with the lattice by the method of averaging over the 
exchange-interaction fields. 

2. Let us examine a crystal lattice, with a coordination 
number Z, whose sites can contain magnetic and nonmag- 
netic atoms (atoms of type 1 and 2, respectively). With 
each magnetic atom there is associated the Ising spin 
Si= 1, so that the energy of exchange interaction of two 
magnetic atoms with spins Si and Sj is - JSJ, if the atoms 
occupy neighboring lattice sites and zero in all other cases. 
We assume, as is done when studying binary alloys, that 
interatomic Coulomb forces act in the system and that 
their range is limited to the first coordination sphere. We 
denote the potential of these forces by UaB, with a,B= 1,2. 
By assigning to each lattice site a variable ui equal to Si if 
the given site contains a magnetic atom and is zero other- 
wise, we can write the system's exchange energy as 

and the Coulomb interaction energy as 

or, to within an additive constant, as 

(summation is over all pairs of nearest neighbors). 
Allowing for the fact that the number of magnetic at- 

oms in the lattice is 8,4, we write the grand partition 
function as 

where p is the chemical potential, and summation is over 
all possible configurations {oil. We denote the mean value 
of ui in the equilibrium state by pm and the probability of 
ui being zero by 1 -p; clearly, these quantities are indepen- 
dent of i since all lattice sites are equivalent (in the ther- 
modynamic limit). The quantities p and m have a simple 
meaning: p is the probability that the given site is occupied 
by a magnetic atom (concentration), and m is the mean 
value of the spin of this atom. 

We consider ( 1 ) to be the partition function of a sys- 
tem with the Hamiltonian 

X= - C (JU,O,+ ~ 4 4 )  - (f +P) X 4 (2) 
(ij) i 

and use the method developed in Ref. 7 to find m. We 
define the local exchange field Hi and the crystalline field 
Ni acting on the given site as sums over all neighboring 
sites: 
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Hamiltonian (2) can then be written as the sum 

We think of all ui as being independent and random 
quantities that assume a zero value with a probability 1 -p, 
a + 1 value with a probability $( 1 + m), and a - 1 value 
with a probability $( 1 - m) . In this approximation the 
crystalline and exchange fields are also random quantities 
and independent of the site number. Hamiltonian (2) can 
be written as a sum of independent terms of type (3), and 
the partition function ( 1) can easily be calculated. For 
given N and H the mean value of spin per site is given by 
the formula 

E ( + l )  E(  - 1) 
pm= exp - -exp -- [ 1 k ~ T  1 1 k ~ T  I ]  

E(+1)  E ( - l )  
X [ exp [ -- kBT ) +  exp(-T) 

and the configurational mean value is 

(pm) = pm W(H,N)dHdN. S (4) 

Here W(H,N)dHdN is the probability that the values of 
the exchange and crystalline fields acting on the given site 
lie inside the intervals (H,H+dH) and (N,N+dN). 
Equation (4) must be supplemented by one more self- 
consistent equation for the quantity 1 -p: 

The function W(H,N) for the given system can easily be obtained by simple combinatorial reasoning: 

where ( i )  and (F) are binomial coefficients, and S(x) Dirac's delta function. Using (6) and (3), we obtain from (4) and 
(5) 

where t=kBT/J, q= U/J, x=exp{- (f + u)/kBT)/2, and 

A"~,x) = 1 6) i 
[(k-1)/2] -(i-m) exp(qk/t)sinh( (k- 21)/1) 

C (-1)" 
m=o I= ' rn (1) (:) ( 2 ( i y +  I )  exp(qk/t)cosh( (k-2l)/t) +x ' 

The system of equations for determining the Curie 
temperature can be derived from (7) with m=O and 
T=T,. Note that at p= 1 the system (7) has the same 
solution for m(t) as the equation for magnetization in the 
case of a random impurity distribution [see Eq. (7) in Ref. 

71. 
3. We restrict further analysis to the case of 2 = 3  (a 

hexagonal lattice). Let us examine the behavior of m as a 
function of p as t+O. It can easily be demonstrated that, 
whenq> -1, theonly solutionof (7) ast-Oism=l.The 
physical interpretation of such a solution is obviously the 
following: if the Coulomb forces lead to attraction of the 
magnetic atoms or to repulsion with an effective potential 
lower than the exchange-interaction energy, the system at 

a fairly low temperature contains a percolation cluster in- 
corporating, as T-0, all magnetic atoms. If we put in (7) 
q= - 1, the function m (p) behaves in the following man- 
ner as t+O. For p ~ [ O , p , ~ ] ,  where p,,-0.451, m(p)=O. 
For p > p , ,  the function increases monotonically with p 
and reaches a value of unity at p =  1. This means that when 
the Coulomb forces lead to repulsion of magnetic atoms 
with the effective potential equal to the exchange- 
interaction constant, a percolation cluster forms in the sys- 
tem only for p > P , ~ .  The quantity pc,l should, apparently, 
be interpreted as the approximate value of the threshold of 
percolation over the sites of the given lattice, since in this 
case the state with the lowest energy is independent of the 
location of the magnetic atoms. 
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For - 3(q < - 1 the function m (p) vanishes at TJTe(1) 

p=pc,2-0.539. For q < -3, finite values of m satisfying - 

(7) in the limit as t+O exist for p~ ( ~ , ~ , 0 . 6 7 )  and for 
PE (pcV3, 1 ), where P,,~ ~ 0 . 6 8 9 .  A solution in the interval 
(p,,,0.67) is physically meaningless because if there is 0.8 - 
magnetization in the system for a certain value of p, there 
must be magnetization at all higher values. Hence, m=O 

0.6 - should be taken as the true solution in this interval. (A I 
I 

zero solution exists for all p and T; in deriving (7) this 
I I 

solution was discarded.) I 
0-4 - I 

Thus, in the adopted approximation, when q < - 1, I 
I 

there are two values of critical concentration, p,,, and P,,~ I 
I 

for - 3(q < - 1 and q < - 3, respectively. At first glance 0,2 - 
I 
I 

such a solution seems strange, since for q < - 1 the ground I 
I 

state of the system is independent of q. Indeed, in the 
I 
I 

0 ,  ground state the spins of any neighboring atoms are par- 
I 

I I P 
allel and the energy of this state is Eo- - (1 -q)n,, where 0,4 0,6 0.8 1,O 

n, is the number of neighboring magnetic atoms. Hence, 
with q < - 1, the ground state is such that n, is minimal. 
Obviously, there is a certain concentration p, at which a 
percolation cluster appears in such a state. FIG. 1. Thepdependence of the Curie temperature for different values of 

q: curve I, q= - 1; curve 2, q= -2; curve 3, q= -5. 
However, if the concentration of magnetic atoms ex- 

ceeds the site-percolation threshold but is lower than p,, 
the percolation cluster, which is absent at T = 0, appears at 
a certain temperature T > 0, and, as T - co , the probability 
of a given magnetic atom belonging to an infinite cluster 
tends to the respective probability for the site problem. If 
such a cluster forms at a fairly low temperature, the spins 
entering into the cluster have no time to become random- 
ized in direction, and at certain values T > 0 the system 
acquires magnetization. 

Accordingly, the fact that for q < - 1 there are two 
values of critical concentration can be interpreted as fol- 
lows. For small q values ( - 3 (q < - 1 ) and for a concen- 
tration p >P,,~, the magnetization m (p,T) is positive for 
certain T>O, with the function m(p,T) experiencing a 
discontinuity at T=O. The size of the discontinuity de- 
creases with p and vanishes ar p=p,,. But if q < -3 
(strong repulsion), the rate of formation of a percolation 
cluster as T increases is not sufficient and, for each T > 0, 
the spins entering into the cluster are randomized in direc- 
tion. In this case magnetization with T -0 appears only for 
p>p,; thus, we relate the value of pk to Pk,2. In other 
words, the existence of magnetization at low temperatures 
is due to the balance of two factors: the tendency of a 
percolation cluster to form as T grows, and the tendency of 
the spin directions to become disordered. For - 3 (q < - 1 
the first factor prevails, and for q < - 3 the second. 

For finite values of 1/T the solution m ( t )  of (7) de- 
creases as the temperature grows and vanishes at a certain 
temperature T =  T,(p) known as the Curie temperature. 
For q( - 1 the function Tc(p) vanishes at certain critical 
values of p. 

If q( -1, the chemical potential p calculated via (7) is 
a monotonically decreasing function of p at any given tem- 
perature. But if q > - 1, then at temperatures lower than a 
certain temperature T*, which is q-dependent, p ceases to 
be a monotonic function of p and there is a region where 
dp/dp is negative. In this case (7) must be supplemented 
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by the well-known Maxwell constr~ction,~ according to 
which there is a segment [pl,p2] on which p(p) should be 
considered constant, pp =,u (p, ) = p (p2). Here, at concen- 
trations p such that p, < p  <p2 the system is a mixture of 
two phases: a "liquid" with concentration p2 and magneti- 
zation m2 = m (p2, T )  , and a "gas" with concentration pl 
and magnetization m, = m (p, , T )  . The mean magnetiza- 
tion rTi of the entire system is determined in accordance 
with the "lever rule" 

P2 -P lii=xm,+(l-x)m2, where x=-. 
P2-P1 

FIG. 2. Phase diagram at q=O: I-paramagnetic region; II- 
ferromagnetic homogeneous region; 111-ferromagnetic heterogeneous re- 
gion. 
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FIG. 3. Phase diagram at q=4: I, paramagnetic homogeneous region; 11, 
ferromagnetic homogeneous region; 111, ferromagnetic heterogeneous re- 
gion; IV, paramagnetic heterogeneous region. 

It can easily be demonstrated that pp is determined via the 
"equal-areas" principle. 

As the temperature grows, the difference p2-p, de- 
creases, and p2 =pl =p* at T = T* (q) . For instance, 
p*=0.312 and T*-0.322Tc(l) at q=O, where Tc( l )  is 
the Curie temperature of the system at p =  1. 

Thus, the properties of the system under investigation 
are determined by the value of parameter q, that is, the 
ratio of the effective Coulomb potential U equal to 
U, + U22 - 2 U12 to the value of the exchange integral J. 

If q<- 1, the system does not separate into phases 
with different number densities of magnetic atoms, but the 

Curie temperature as a function of concentration vanishes 
at different critical values of p depending on the value of q 
(Fig. 1 ). 

But if q > - 1, within a certain range of temperatures 
and concentrations the system is a mixture of two phases 
with different number densities of magnetic atoms. At 
moderate values of q the separation into phases occurs 
primarily owing to exchange interaction (Fig. 2). At large 
values of q the separation into phases may begin earlier 
than the emergence of spontaneous magnetization, and the 
phase diagram has the appearance of Fig. 3 

4. Thus, the method suggested in Ref. 7 makes it pos- 
sible to obtain reasonable results as applied to systems of 
nonmagnetic impurities that are in equilibrium with the 
lattice. This, in turn, offers the possibility of estimating the 
effects of magnetic memory in disordered crystalline mag- 
netic substances. 
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Translated by Eugene Yankovsky 

This article was translated in Russia and is reproduced here the way it 
was submitted by the translator, except for stylistic changes by the Trans- 
lation Editor. 
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