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The energy flux lines near singular points of an acoustic field--dislocations and saddle points 
of the phase front, at which the amplitude and gradient of the field phase, respectively, 
vanish-are analyzed. The energy flux lines near dislocations are closed curves. There is a 
region near dislocations in which the energy flux (the Poynting vector) is directed 
opposite the predominant propagation direction. The concept of an average isolated dislocation 
with a characteristic wave-field distribution is proposed for a multimode waveguide. The 
mean distance between a field zero and a saddle point is calculated. The mean energy "trapped" 
by an isolated dislocation is also calculated. The ratio of the trapped energy to the total 
propagating energy in the waveguide is calculated. The particular features of the behavior of 
the Poynting vector near a dislocation can be used successfully to detect wavefront 
dislocations in underwater acoustics in experiments on dislocation tomography. Composite pv 
detectors can be used in such experiments. 

1. INTRODUCTION 2. ENERGY FLUX LINES 

Dislocations of the phase front are a surprising feature Our basic purpose in the present study is to learn about 

of the interference structure of wave fields. A feature of this the the flux density of the time-average acous- 

SO* arises near zeros of the wave field, where the constant- tic power near a singularity in an acoustic field character- 
phase surfaces are severely distorted. The picture of the ized by the Poynting vector 

phase front is reminiscent of dislocations in a solid. The 
term "wavefront dislocations" was first introduced by Nye 
and  err^' back in 1974. The very first publications in this 
field'-9 revealed some interesting properties of dislocations. 
In particular, it was found that when a field zero is cir- 
cumvented along a closed contour the phase increases by 
2a  or -2a, depending on the sign of the topological 
charge of the dislocation. In the present paper we go more 
deeply into the physics of this phenomenon. Specifically, 
we establish the relationship between phase-front disloca- 
tions and the energy fluxes of acoustic fields. The behavior 
of these energy fluxes near dislocations gives rise to a new 
method for detecting dislocations. It turns out that near 
dislocations there is always a region in which the Poynting 
(or "Umov-Poynting") vector is directed opposite the pre- 
dominant energy propagation direction in the waveguide. 
A dislocation can therefore be identified by means of a 
"fluxmeter," i.e., a device which measures energy fluxes. In 
acoustics, such measurements are carried out by a pv de- 
tector. In principle, a corresponding method could be used 
to detect dislocations in the phase front of an electromag- 
netic field. Unfortunately, there is no satisfactory instru- 
ment available for measuring the Poynting vector in this 
case. An important part of dislocation tomography is iden- 
tifying and observing  dislocation^.'^ Dislocation tomogra- 

Here p ( r )  is the acoustic pressure, v(r) = Vp(r)/ipw is the 
vibrational velocity of the particles of the medium, p is the 
density of the medium, and w is the fixed sound frequency. 
In the acoustic case, a composite pv detector presents us 
with a direct and simple way to measure the vector quan- 
tity I(r) .  Such a detector detects separately the pressure p 
and the vibrational velocity v in the sound wave. We are 
thinking of the practical problem of detecting dislocations 
in hydroacoustic waveguides. For simplicity we assume 
that the waveguide is two-dimensional; i.e., we write 
r =  (x,y), where x and y are, respectively, the horizontal 
and vertical coordinates (Fig. 1 ). 

In an isotropic and nonabsorbing medium, the vector 
I ( r )  satisfies the following equation away from the source: 

A graphic picture of the spatial distribution of the 
power flux I ( r )  is constructed by the set of energy flux 
lines, i.e., by the set of lines along which the acoustic en- 
ergy of the field is propagating. Energy flux lines can be 
determined well nearly everywhere in space. They are in- 
tegral curves of the following first-order differential equa- 
tion: 

phy is based on the detection of variations in the phase, 
since it is the phase of a field which is most sensitive to Y = ~ Y , Y ,  1 )  = (3) 

various perturbations of the waveguide specifically near In the nondegenerate case, a single integral curve of 
wavefront dislocations. An energy method for observing differential equation (3) passes through each ordinary 
dislocations is another weapon in the arsenal of dislocation point in the r =  (x,y) .plane. By virtue of Eq. (2), the en- 
tomography. ergy propagating between two neighboring flux lines is 
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FIG. 1 .  Energy flux lines near zeros (dots) and saddle points (circles) in the symmetric case. The dashed lines are separatrices. The general energy 
propagation direction is along they axis. a-E= 1.5; b-1; c--0.5; d - 0 .  

conserved along these lines: The integral curves in the 
(x,y) plane can be treated as impenetrable boundaries for 
the energy. 

An important point is that the energy flux lines coin- 
cide with phase trajectories in the (x,y) plane, i.e., with 
lines of the phase gradient. To demonstrate this point, we 
denote by D(r)  the amplitude and by @(r )  the phase of 
the field: 

We denote by s a natural parameter on an energy flux line; 
this parameter increases along the direction I/ I I I . Substi- 
tuting (4) into definition ( 1 ), we find 

The phase of the field increases monotonically along an 
energy flux line; i.e., this phase introduces a natural param- 
etrization on a flux line. 

In the simplest case of a plane wave, exp(ikr), the 
energy flux lines are straight lines parallel to the wave 
vector k. In a lossless, horizontally uniform waveguide the 
picture of flux lines for one separate mode is also extremely 
simple: It is a set of straight lines running parallel to the 
boundaries of the waveguide. A critical restructuring of the 
picture of energy flux lines occurs when dislocations- 
singular points of the field with a singular behavior of the 
phasearise. Let us recall the conditions for the occur- 
rence of field singularities. 

3. FIELD SINGULARITIES: DISLOCATIONS AND SADDLE 
POINTS OF THE PHASE FRONT 

The acoustic field satisfies the wave equation 

In other words, the direction of the Poynting vector is hp(r) +k2p(r) =0; p ( r )  = u ( r )  +iv(r); h=v2 ,  (7) 
along the phase gradient V@, and all the phase trajectories 

where k=w/c is the wave number, c is the sound velocity, are energy flux lines. 
The phase of the wave field and the natural parameter and u and v are the real and imaginary parts of the field: 

d e  thus related by the following differential equation on an u=Rep, v=Imp. 
We assume that the field p ( r )  is formed by a large energy flux line: 

number of waves which arrive from various directions; e.g., 
d@= IV@lds. ( 6 )  we might be dealing with a sum of modes in a vertical cross 
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section of a waveguide. In the (xg)  plane there are thus 
always singular points corresponding to dislocations 
(xd ,yd) and saddle points (xs,ys) in the distribution of the 
field phase: 

d ( r )  =u2(r)  +v2(r) =0  (dislocations, r=rd), (8)  

D#O (saddle points, r=rs). (9) 

Both types of field singularities-the dislocations in 
(8) and the saddle points in (9) of the phase surface-are 
structurally stable formations, and they have conserved to- 
pological characteristics.'-3 As the field parameters are 
varied, the dislocations move in space, while the saddle 
points "dance around" near field zeros.3 

The behavior of the constant-phase lines near field ze- 
ros is completely different from that near saddle points. 
The constant-phase lines emerge radially from a field zero 
(the field phase is not defined at the zero itself). As the 
zero is circumvented along a small closed contour, the 
phase acquires an increment of * 27r, the sign being deter- 
mined by the first topological characteristic: the charge of 
the dislocation. Near a saddle point, the gradient of the 
field phase changes the sign of the projection onto the ra- 
dius vector emerging from the saddle point an even num- 
ber of times (at the saddle point itself, the field gradient 
vanishes). There is also a second topological characteristic 
of the singular points: the PoincarC index, which takes on 
the value - 1 for a saddle point and the value + 1 for a 
zero of the f ielc~.~'~ 

4. GENERAL PROPERTIES OF THE BEHAVIOR OF ENERGY 
FLUX LINES NEAR PHASE SlNGULARlTlES 

Points at which the flux density of the acoustic power, 
I ( r )  [see (5)], vanishes are singular points of differential 
equation (3). They are thus simultaneously zeros of the 
field [see (8); dislocations] and saddle points of the phase 
surface [see (9)]. Equation (3)  for the energy flux lines is 
completely equivalent to the equation for the phase trajec- 
tories of the autonomous system." The behavior of the 
integral curves of Eq. (3) near singular points (8) and (9) 
is thus determined by the values of the roots (ql and 9,) of 
the characteristic quadratic equation," which in the case at 
hand takes the form 

a(rx  ,rY) 
q2-q div I ( r )  +-- 

~ ( x , Y )  -07 

where all quantities are taken at the value I (r )  =O. 
Using (2) and (7)-(9), we find from ( 10) that near a 

saddle point ( r  =rs) the roots of the characteristic equation 
are real and differ in sign: 

In the case of a field zero (r=rd),  in contrast, the roots ql 
and q2 are purely imaginary: 

In this case the field zero is a center, and the energy flux 
lines are closed curves circumventing this center. 

The closed nature of the energy flux lines of course 
does not violate energy conservation: Energy "flows into" a 
vortex region during the transient process by which the 
dislocations form (see Ref. 12 for an example of a pattern 
of circulating energy fluxes). 

5. EXAMPLE OF AN EXACT SOLUTION 

Let us examine the behavior of the energy flux lines 
near dislocations for the particular case of the following 
example3 of an exact solution of wave equation (7): 

k: 2kx 
E -  ( ~ x ) ~ - T  (kyI2+- (kx) (ky) 

kY kY 

where k=  (k,.,ky) is the wave vector of the carrier wave, 
and E is an adjustable parameter. 

For E >  0, solution (13) describes two oppositely 
charged dislocations. The zeros of the field are on the x 
axis, at the points * 6. These two dislocations have two 
conjugate saddle points. In the limit E-0 all four field 
singularities move close together, and at E = O  they merge 
at the origin of coordinates, forming an isolated field zero. 
Finally, at E < 0 the field has no singularities. In the par- 
ticular case in which the carrier wave exp(iky) is propa- 
gating along they axis (k,=O) the field pattern becomes 
symmetric. 

The change of variables kx-x, ky-y puts Eq. (3) for 
the flux lines in the following form: 

An integral curve of differential equation14 which 
passes through a nonsingular point r =  ( g , ~ )  is determined 
by the real values of the function 

Y(x,~,V) = f [ ( g V 2 + ~ ( g )  -F(x)  )/x] '/~, (15) 

where 

Singular points of the family of energy flux lines in 
( 15) are the following zeros and saddle points: 

Each dislocation is surrounded by a region in which 
the energy flux circulates along closed trajectories (Fig. 1 ) . 
The circulation directions are different for dislocations of 
unlike charge. In part of the volume, the direction of the 
energy flux is opposite to the propagation direction of the 
fundamental wave (as shown by the broad arrow in Fig. 
1). 
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The separatrix, i.e., the extreme closed integral curve 
which always passes through a saddle point in (18) (it is 
shown by the dashed line in Fig. I ) ,  separates the circu- 
lating energy flux from the energy flux which goes off to 
infinity. At E >  1 the saddle points are separated by a dis- 
tance 2 m, and there is an energy flux between disloca- 
tions along the propagation direction of the carrier wave 
(Fig. la).  At &=I ,  this flux comes to a halt (Fig. lb) .  
When the dislocations disappear at E <0, the regions in 
which the Poynting vector is directed opposite to the wave 
vector of the carrier wave also disappear. 

In the steady state, the separatrix separates an energy 
flux which is circulating in a bounded region near the field 
zero, and it "disconnects" this energy flux from the energy 
flux carried by the carrier wave. The energy flux "trapped" 
by each of the dislocations is 

where we have used Ix(x,O) =O. This value of the first 
integral is obviously independent of the end point of the 
integration, provided that it lies on the separatrix. The 
equation for the separatrix in this case is 

In the more general case of an arbitrary propagation 
direction for the carrier wave, exp[i(kp+k,y)], the pat- 
tern of energy flux lines loses it symmetry with respect t oy  
reversal, but in all cases in which there are dislocations we 
find that some regions appear near these dislocations in 
which the Poynting vector is directed opposite the propa- 
gation direction of the carrier wave, k. This property can 
be utilized for an experimental observation of dislocations. 

6. DISLOCATIONS AND SADDLE POINTS IN A 
HYDROACOUSTIC WAVEGUIDE 

We consider a two-dimensional model of a uniform 
hydroacoustic waveguide of constant depth H with an ab- 
solutely rigid bottom. We direct the x axis horizontally 
along the waveguide, and the z axis vertically downward 
(Fig. 2). We write the field in the waveguide as the sum of 
N  modes: 

N 

p(z,x) = C an*n(z)exp(ihs). 
n=l 

(21) 

Here h, = Jk2-a; and a n = r ( 2 n  - 1)/2H are, respec- 
tively, the horizontal and vertical wave numbers of the nth 
mode, a, are real amplitudes, and $,(z) =a sin a s  are 
"vertical" wave functions, normalized by the condition 

We are interested in the case in which a statistical 
approach can be taken, and in which we can speak in terms 
of a "typical" or "average" dislocation with a characteris- 

FIG. 2. Typical pattern of constant-phase lines in a cross section of an 
acoustic waveguide. The lines are spaced at intervals of 28. 

tic field distribution near the amplitude zero. For this case 
we consider a fairly large part of the waveguide, H X  L, 
L ) xmax, where 

is the greatest spatial period of intermode beats. We make 
the further assumption that the number of modes is large: 
N )  1. 

Numerical  calculation^^^ show that the field p(z,x) in 
the region HX L obeys Gaussian statistics with a zero 
mean, with a uniform phase distribution over the interval 
(0,277), and with a Rayleigh amplitude distribution at val- 
ues as low as N > 5-6. The normalization corresponds to 
the case in which the spatial frequencies are incommensu- 
rate, and the phase of the modes at large distances under- 
goes numerous subdivisions by an interval (0,277). 

The probability distribution is of course quite different 
from Gaussian near caustics or near sharp amplitude 
spikes which occur by chance as a result of constructive 
interference of some of the modes with large amplitudes. 
Falling in the category of these "bad" regions are the rel- 
atively small surface zones in which the average sound 
amplitude falls off linearly, reaching zero at z=0. We will 
ignore all these effects here. 

For our purposes, a linear expansion of the field near 
an amplitude zero at (zd,xd), i.e., 

is not a good choice as a characteristic field of an average 
dislocation. Expansion (23) has a very small range of ap- 
plicability along the x direction (this range is much shorter 
than the sound wavelength A =277/k), and it does not de- 
scribe the field near the saddle point which always accom- 
panies an amplitude zero. We will make use of energy 
considerations, which allow us to overcome both of these 
obstacles, while keeping the picture of the field of the av- 
erage dislocation in the multimode waveguide extremely 
simple. 
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We write the field in the waveguide (2 1 ) , as a specific 
product of two waves pc(x) and pd(z,x) (we are introduc- 
ing a constant factor p; ' for convenience) : 

p(z,x) =pc(x)pd(z,x)/po. (24) 

The first of the waves, pc(x), which we call the "car- 
rier," is a plane wave: 

pc(x) =po exp ( ihs ) ,  ho= const. (25) 

It does not contain dislocations. The second wave pd(z,x), 
in contrast, contains all the dislocations of the original field 
p(z,x) in (21): 

N 

P~(z,x) = C an$n(z)exp(ihns), hno~hn-ho- (26) 
n= 1 

The zeros of this function coincide with the coordinates of 
the zeros of the field p(z,x). 

We introduce the operation of taking a spatial average 
over a rectangle of length L and height H, and we denote 
this operation by a superior bar: 

ioH dZ1 IItL dxl f (zl,xl). f (z,x) =- 
H L  (27) 

We denote by pi the mean square magnitude of wave field 
(21): 

We require of the fields p, and pd that their mean 
square magnitudes be equal to each other and to pi: 

It is reasonable to suggest that a dislocation wave 
pd(z,x) which describes vortex motion of energy in the 
waveguide has a zero average energy flux: 

This vector relation can also be written as the two equa- 
tions 

Here and below, the curly brackets mean an average over 
the waveguide modes, i.e., an average with the square of 
the mode amplitude as a weight function: 

Since the horizontal energy flux is zero, we conclude 
that the magnitude of the "wave vector" of the carrier 
wave, ho, should be taken to be equal to {h,): 

For this choice, the average energy flux of the acoustic field 
in the waveguide, 

is equal to the energy flux in the carrier wave, 

(34) I,= (2pw)-1p~o=IC,= (2pw)-' Imp: - 
axa 

The average vertical energy flux is identically zero: 

~ P C  Jz=~i= (2pw)p1 Imp: -=o 
az . (35) 

It is by no means necessary that each of the waves p, 
and pd satisfy the wave equation and the boundary condi- 
tions. Only their product p=pcpd/po has these properties. 
The multiplicative representation used here for the field, 
with a zero average energy flux for the dislocation part, 
turns out to be useful in statistical problems. It goes a long 
way toward simplifying the calculation of average values in 
a random field: average values of the dislocation density, of 
the overall length of the zero lines, of the mean square 
velocity of the motion of these lines, etc.14 

We expand the dislocation part of the field, pd(z,x), in 
a series in the small deviation (kg)  as in (23). Using 
pd(zd ,xd) = 0, we write the total field p =pcpd/po near the 
zero as 

The derivatives of the dislocation parts which appear here, 

are calculated at the point (zd , x d )  Expressions (36) and 
(37) give a characteristic field distribution for an average 
dislocation. Estimates found below for these derivatives 
show that the value of b in the paraxial approximation is 
fairly small in comparison with the wave number k: 
1 bl<k. In this case, Eqs. (36) and (37) can describe the 
field over a distance of many wavelengths along the 
x direction. 

The coordinates of a saddle point (zs,xs) are found by 
equating the phase gradient to zero: 

where 

We denote by S= 1 Azsl the vertical line segment be- 
tween the field zero and the saddle point (the correspond- 
ing horizontal coordinates are the same). We can then 
write 

bs= - QS, (40) 

where 

is the first topological characteristic, i.e., the charge of the 
dislocation, which we have already mentioned. It is as- 
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sumed that the phase of the field acquires an increment of 
2rQ when a field zero is circumvented in the positive di- 
rection. In the case Q= + 1, the saddle point is closer to 
the surface, and in the case Q= - 1 it is closer to the bot- 
tom of the waveguide, than the field zero (zd,xd). 

The horizontal component of the energy flux on seg- 
ment S is 

so the energy flux trapped inside the separatrix is 

The squared modulus of the field at the saddle point is 

7. AVERAGE CHARACTERISTICS OF DISLOCATIONS AND 
SADDLE POINTS IN A WAVEGUIDE 

The simplicity of the equations derived here, and also 
certain aspects of the behavior which seem surprising at 
first glance (e.g., the result that the zero and the saddle 
point lie in the same vertical line), stem from the statistical 
description of the dislocations. 

Let us examine the statistical characteristics of dislo- 
cations and saddle points in more detail. 

The values of the derivatives a and b in (37) depend on 
the coordinates of the field zero (zd,xd). For Gaussian 
random fields, the mean values of quantities which are 
closely related to the field zeros can be calculated on the 
basis of the concept of "averages on a zero ~arrier". '~ In 
the particular case of a one-dimensional zero carrier [lines 
intersecting the plane at the points (zd,xd)], the mean 
value of the quantity 3 is given by 

Here q represents the set of field derivatives 
q= (dpd/az,~pd/~x), and W(pd ,q) is the normal probabil- 
ity density of the joint distribution of the dislocation part 
of the field, pd, and of its derivatives. The quantity nd is the 
dislocation density (the density of field zeros): 

If there are a large number of propagating modes, 
N) 1, the correlation coefficient between the field pd and its 
derivative apd/dz becomes a small quantity. As a result, the 
probability density breaks up into a product of six un- 
known Gaussian distributions with respect to each argu- 
ment, with zero mean values and variances. They can be 
calculated under the assumption of a spatial ergodicity.15 
This assumption means that an average over an ensemble is 
equivalent to an average over space: 

Here the averaging of a: and hi over modes is carried out 
in accordance with (32). From (45) and (46) we find that 
the average density of dislocations in a multimode wave- 
guide is 

Expression (47) is a waveguide analog of the expres- 
sion for the dislocation density in a cross section of a 
paraxial laser beam, which was derived in Ref. 6. 

Now replacing 9 again in (44) by expressions for 
quantities calculated earlier, (39), (43), and (42), we find 
the mean distance between a zero and a saddle point, 

the mean value of the square magnitude at a saddle point, 

and the mean energy flux trapped by one dislocation, 

The total energy (kinetic plus potential) Ep of the 
acoustic field in the area H X  L is 

E ~ = ( ~ I V ~ ~ / ~ + I ~ I ~ / ~ ~ C ~ ) H L = ~ ~ H L / ~ ~ ~ .  (51) 

The energy trapped by all the dislocations in the same area, 
Etr , can be found from 

Etr=nd HL(Itr) T, (52) 

where T=2?r/w is the vibration period. Dividing the 
trapped energy Et, by the total energy Ep from (51), we 
find 

The ratio y is the ratio of the energy which is drawn 
into rotation around the dislocations to the energy moving 
in the horizontal direction. 

8. ESTIMATES OF MEAN VALUES 

We assume that the total number of modes which can 
potentially propagate in the waveguide is large: 
No=kH/?r% 1. We consider two particular cases. 

1) Relatively few of the modes actually propagate: 
N(NO but N, 1. This case corresponds to the paraxial 
approximation, in which Brillouin rays of the modes prop- 
agate within a narrow angular sector a - arcsin S - S, 
where S - N/No 4 1. From (33 ) we find, in order of mag- 
nitude, 

The mean values of the quantities in (47)-(50) are then 
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FIG. 3. Behavior of the x and z components of the Poynting vector along 
the horizontals 6 and at a certain distance from a field zero. 

Caution must be exercised in estimating Sand y in this 
case, since at a high dislocation density it is difficult to 
accept the proposition that the dislocations can be consid- 
ered to be isolated from each other and that it is sufficient 
to retain only the linear terms in expansion (36). 

9. ACOUSTIC MEASUREMENTS 

The vector energy flux density changes direction near 
dislocations. This circumstance can be utilized to detect 
dislocations. 

Figure 3 shows the behavior of the z component of the 
Poynting vector on the horizontal < near a dislocation. The 
value of I ,  vanishes and changes sign at a certain value 
(=<,. The change in the sign of I ,  is characteristic of 
proximity to a dislocation in the horizontal plane. In a 
similar way, the vanishing of the horizontal component I ,  
may be of assistance in finding a dislocation along the ver- 
tical direction. 

Devices for measuring the Poynting vector are well 
known. They are "composite" or "pv"  detector^.'^'" 

From the practical standpoint, reliable detection of a 
reversal of the energy flux direction would require that the 
level of background acoustic noise, p&, near the detector 
below in comparison with the characteristic value of the 
field ( Ip (zs ,x,) 1 ') from (49 ) . 

We wish to thank M. V. Berry and J. F. Nye for in- 
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