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The transfer matrix is used to calculate the resistivity correlation function for two conductor 
ensembles in which the random fields differ only locally (in regions whose size is of the 
order of magnitude of the lattice constant or the electron wavelength). The correlation function 
is shown to depend exponentially on the conductor's length. It is also found to depend 
on the position of an impurity with altered characteristics. Under an impurity displacement 
the correlation function oscillates, but it is a monotonic function of variations in the 
impurity-potential amplitude. A geometric interpretation of the high sensitivity of the 
resistivity is given based on analysis of the topology of the phase space. Finally, possible 
manifestations of the sensitivity in experiments with conducting channels are discussed. 

Mesoscopic conductors are actually quantum interfer- 
ometers in which a small variation of the random field may 
drastically alter the interference structure of the coherent 
state of an electron on scales substantially exceeding the 
microscopic and, hence, considerably change the conduc- 
tance of the sample. 

On the metallic side of the Anderson transition, when 
the impurity shift is small, the variation of conductance is 
a power function of the characteristic sample dimension. 
In a magnetic field the conductance correlation function 
for a film proves to depend on the position of an impurity 
in the sample.3 

With a one-dimensional conductor we should expect 
an enhancement in the resistivity's sensitivity to random- 
potential variations. Qualitative considerations clearly 
show that a diffusing particle "visits" a selected impurity 
many times. Quantum interference enhances the interac- 
tion with the impurity, and a change in the impurity's 
characteristics has a profound effect on the resistivity's 
magnitude. 

Localization effects in one-dimensional conductors 
have been thoroughly ~tudied,"~ but a detailed investiga- 
tion of the effect of local perturbations on the various char- 
acteristics of conductors has yet to be carried out. 

This paper is devoted to the study of the effect of vari- 
ations of the local characteristics of a random field on the 
magnitude of the resistivity of a one-dimensional conduc- 
tor. The T-matrix method is used to calculate the resistiv- 
itv correlation function for three models: the random- 

2. REPRESENTING THE RESISTIVITY CORRELATION 
FUNCTION IN TERMS OF T-MATRICES 

A disordered conductor can be considered a scatterer 
and characterized by a T-matrix connecting the amplitude 
of the electron waves to the left and right of the ~catterer.~" 

The resistivity of a one-dimensional conductor is ex- 
pressed in terms of a T-matrix via the well-known 
formula6" (Landauer's formula) 

The structure of the T-matrix follows from conservation of 
the probability flux and symmetry under time reversal, 
which we write in the form 

where ox and a, are Pauli matrices. From (2) it follows 
that 

that is, the T-matrix depends on three real parameters. 
If the conductor is "divided" into N elementary seg- 

ments, the T-matrix is given by the expression 

The matrix T, of an elementary segment can be found by 
solving the appropriate Schrodinger equation. It obeys (2) 
and has the structure of (3). 

For instance, in the case of a point impurity "lumped" 
near point x, , 

matrix model, the Anderson model, and the point-impurity i n  -ju,e-2'kxn 

model. The exponential function is found to depend expo- .( iu,e2jkxn 1 + iu, , ,- 

nentially on the conductor's length; it oscillates under im- 
purity shifts and is a monotonic function of the variations where k is the wave vector, and u, the dimensionless 

impurity-potential amplitude. of the random-potential amplitude. A geometric interpre- 
For the Anderson model we have4 

tation is given of the resistivity's sensitivity and demon- 
strates the universal nature of the discovered behavior. T,= QM,Q-l, (6) 

803 JETP 77 (5), November 1993 1063-7761 /93/110803-05$10.00 @ 1993 American Institute of Physics 803 



where 

with d the lattice constant and E, the random site energy 
(for the Anderson model the resonance tunneling integral 
is taken as the unit of energy). 

Let us consider two ensembles of conductors. The first 
is characterized by a set of random parameters with a re- 
spective distribution function; say, the set of parameters 
(u,,x,) in the case (5) or the E, in the case (6). Suppose 
that the second ensemble differs from the first in that the 
parameters of the scattering potential have been locally 
altered but are functionally related to the respective pa- 
rameters of the potential of the first ensemble. This relation 
occurs if the positions of the diffusing atoms are correlated. 
Thus, in the approach considered, a change of the local 
characteristics of the random field leads to the transforma- 
tion T,-+TA. According to (4), this changes the total 
T-matrix and the conductor's resistivity, p-+pl. The sta- 
tistical relation between the resistivities of the conductors 
is characterized by the correlation function 

~ = ( ( p - p ' ) ~ ) .  (8) 

Using Eq. (1 ) and the identity 

Tr(A)Tr(B) =Tr(A e B), 

with A e B the direct product of matrices, we can write (8) 
in the form 

To calculate the correlation function we must average 
in (9) over the conductor ensemble with allowance for the 
statistical dependence of the characteristics of individual 
scatterers. 

3. THE RANDOM-MATRIX MODEL 

We calculate the correlation function in the weak- 
scattering approximation, where the mean free path I is 
large compared to the electron wavelength (1% k-') . If the 
segment size exceeds k-' considerably, the phases of the 
complex-valued a, and fl, become random quantities and 
are uniformly distributed in the interval (0,27r). The 
random-matrix model introduced in this manner reflects 
correctly all localization effects in a one-dimensional 
condu~tor."'~ Within this model it is natural to assume 
that a variation in the segment parameters leads to the 
transformation T,+ TA. We assume for the simplicity that 

where matrix v satisfies the same conditions (2) as the 
T-matrix, that is, 

Transformation (10) simply means that variations in seg- 
ment n are characterized by three real numbers. Below we 

show that this relationship holds true also in more realistic 
situations, where the local parameters of the potential vary. 

The ideal of further calculations is illustrated using the 
last term in (9) ,  

We write the matrices T and T' in the form of products: 

where TL  contains the matrices of the segments numbered 
1 to n - 1, and TR the matrices of the segments numbered 
n + l  to N. 

We write ( 11 ) as 

where 

To calculate UL and UR we represent Urn for m seg- 
ments in the form 

The recurrence formula 

yields 

- 
where A = 2(p  + 21, with jj and + p2the first and 
second resistivity moments of an elementary segment. The 
solution to ( 15) is 

Am=4(2ilm+ l ) ,  ~ ~ = f ( i l ~ -  I ) ,  (16) 

where il=3A+ 1. 
Substituting UL and UR with coefficients determined 

through (16) into (13) and allowing for ( lo) ,  we can 
easily carry out the last averaging. Transforming the other 
terms in (9) in a similar manner, we obtain 

where 

From Eq. ( 17) it follows that for large N the correla- 
tions are exponentially high, 

and the growth exponent 

coincides with that of the resistivity's  dispersion.'^* 
For matrices v of class (2) we have Vo> VI, and the 

contribution to the correlation function from the term that 
depends on the position of the segment with altered param- 
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eters is always negative, that is, the correlations decrease as 
the altered segment is displaced toward the edges of the 
conductor. 

The random-matrix model becomes exact when the 
length of the segment is equal to, or is an integral multiple 
of, half of the electron wavelength. Suppose that each such 
segment contains only one point impurity. Scattering by 
the impurity is described by (5). If the impurity coordi- 
nates are uniformly distributed over the segments, the 
phases P are uniformly distributed over the interval (0, 
2 ~ ) .  When the position of the impurity in the number n 
segment changes, that is, x,-.x,+Sn, so will phase P, 
which can be accounted for by selecting the elements of 
matrix v in the form 

The correlation function, only in the case where the 
scattering by impurities is weak (u2 4 1 ), is given by 

If the length of a segment is of the order of several half- 
waves, the function K oscillates upon variations of the po- 
sition of the impurity in this segment. Clearly, oscillations 
occur when the impurity is displaced, while changes of the 
impurity-potential amplitude result in monotonic variation 
of K. Section 5 discusses these properties in greater detail. 

4. THE ANDERSON MODEL 

In the Anderson model the T-matrix is given by (6). 
Let us calculate the resistivity correlation function for the 
case where the Fermi energy coincides with the center of 
an unperturbed band (E=O). Instead of the matrices T, 
we can employ M, [see Eq. (6)], since Q does not appear 
any more in ( 1). To simplify the calculations we assume 
that the distribution function for the site energies is sym- 
metric, P(E) = P( - E) . A random-parameter local varia- 
tion, &,-&A, changes M, to Mh. As in Sec. 3, we write the 
average 

that enters into the correlation function in the form 

To calculate UL and UR we must solve the following re- 
currence equation 

The solution to (21) is sought in the form 

From Eq. (21) follow the recurrence equations for the 
coefficients: 

where the bar stands for averaging with P(E).  It is conve- 
nient to write the correlation function as follows: 

where F, = A, + C, + 2 0, . To obtain an explicit expression 
for K we must solve the recurrence equations (23)-(26) 
and use (27). Simple formulas can be obtained in the cases 
of small 2 $- 2 $- 1 ) and great (2 4 2) disorder. 

In the case of small disorder it is sufficient to retain in 
Eqs. (23)-(26) only the terms linear in  he eigenvalues 
of the matrix of the recurrence equations are 

If we now find the eigenvectors of this matrix with required 
accuracy, we can write the general solution to Eqs. (23)- 
(26) as a linear combination of these eigenvectors. Then, 
knowing the solution at an arbitrary recurrence step, we 
can find K via (27). After straightforward cumbersome 
calculations we arrive at 

This expression is valid for an arbitrary ratio of localiza- 
tion length to conductor length. The correlation function 
depends on the position of the site with an altered param- 
eter value. As with the example discussed in Sec. 3, corre- 
lations diminish when the selected site is shifted to the edge 
of the sample. For large values of N, terms with A1 (ill > 1 ) 
become significant. 

In the case of strong disorder - we must retain in Eqs. 
(23)-(26) terms proportional to tz4. In this approximation 
the coefficient - B, is small and can be dropped, while A, 
= cn= D , , = ~ ~ , a n d  

The meaning - - of this expression can easily be understood 
since for E~ 4 E~ the resistivity behaves like 

2 2 . .  .&;. . .&i ,  P=E1&2 (30) 

from which Eq. (29) immediately follows. The correlation 
function is independent of the site with an altered param- 
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eter, since in the strong-disorder approximation the local- 
ization range of the wave function ( - aflnp) is actually 
of the order of the lattice constant and interference effects 
are suppressed. 

5. A POINT IMPURITY 

The characteristics of the scattering potential in a one- 
dimensional conducting channel may vary because of dif- 
fusion hopping of an impurity along the channel and be- 
cause of substitution by an impurity of another type. To 
model such processes and establish how they affect the 
resistivity we study the T-matrix variation brought about 
by displacement of a scattering center by 6x and by vari- 
ation of the dimensionless amplitude of the potential, 
u-.ul. In the first case it is expedient to write 

where 

and in the second case, 

T A  = et(x,) 
iu' l+iul e(xn). 

Theoretically, calculation of the correlation function in 
these cases can be done according to the above scheme. 
Since the matrix U generally contains five tensor struc- 
tures, it is possible to analyze the resulting equations only 
numerically. To obtain results that are easily interpreted, 
we assume the scattering weak and the impurity displace- 
ment small compared to the mean impurity separation. 
Here, if kl(l, the parameter k6x may vary in a wide 
range. 

Within the framework of the above assumptions, the 
sections to the left and right of an impurity can be exam- 
ined by the method of Sec. 3. Combining (31) with a 
combination of the type (13) and determining the coeffi- 
cients of U via (16), we can easily determine the correla- 
tion function for a displaced impurity: 

We see that the correlation function oscillates under an 
impurity displacement. In contrast to the two-dimensional 
case,Is2 the oscillation amplitude does not diminish under 
the displacement of an impurity. The presence of oscilla- 
tions is explained by the fact that the wave function of a 
weakly localized state is extremely sensitive to the position 
of the scatterer. Indeed, for kl) 1 the wave function rap- 
idly changes over a distance of the order of k-', while its 
envelope changes over a distance of the order of unity. If 
the conductor's dimension L is much greater than I, the 
electron state can be interpreted as a well-localized mode in 

a cavity with a high Q-factor. When the impurity is dis- 
placed by a distance of the order of k-', the localization 
condition for this mode changes, which leads to a strong 
variation of the resistivity. Note that oscillations occur in 
any realization; for this reason K oscillates. If the sections 
to the left and right of the impurity are described by the 
exact matrices 

and the impurity is described by matrix (3 1 ), we can easily 
write an expression for the square of the difference of re- 
sistivities and see that the following always holds true: 

where W(x) is a function depending on the resistivities 
and phases to the left and right of the selected impurity. 
For example, if u ( 1, 

where 

with j = 0,1,2. Thus, the correlation function always con- 
tains an oscillation factor, which does not vanish as a result 
of averaging. 

If the impurity-potential amplitude varies, then 

Here there are no oscillations, but the correlations function 
depends on the position of the impurity. It is worth noting 
that there are contributions that depend on the fourth 
power of the potential. These cannot be found if one re- 
mains within the perturbation-theory framework. 

6. CONCLUSION 

The above calculations indicate that the resistivity of 
mesoscopic conductors is highly sensitive to variations in 
the random-field realizations. In the case of weakly local- 
ized states the explanation is that small local variations of 
the random field alter the conditions of localization of the 
wave function, which leads to dramatic changes in resis- 
tivity. Qualitatively such a sensitivity is due to the multi- 
plicative nature of the resistivity, so that variation of sep- 
arate factors leads to a sizeable variation in the product of 
the random quantities. It is important that the correlation 
function depends on the position of the impurity, whose 
characteristics have changed. Displacement of the impu- 
rity leads to oscillations in the correlation function, and the 
oscillation period is determined by the wavelength of an 
electron with the Fermi energy. 

These conclusions are drawn without resorting to 
perturbation-theory techniques. Many are model- 
independent. They can be interpreted purely geometrically 
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on the basis of analysis of the structure of the phase space 
of the system. Instead of matrix T, we introduce three real 
variables: 

tm=i~r(T:~,) ,  

which represent the state of the conductor at the mth re- 
currence step. From the properties of the matrix it follows 
that 

We can express the resistivity p, in terms of these vari- 
ables as 

Addition of a segment leads to displacement of the repre- 
sentative point over the hyperboloid (37): 

(the equations can be found in Refs. 14 and 15). A con- 
ductor partitioned into N segments is represented by a 
trajectory on the hyperboloid. The terminal point of the 
trajectory corresponds to the resistivity pN = i(tN - 1 ), and 
an ensemble of conductors is represented by a set of such 
trajectories. In the event of a local variation of random- 
field parameters the trajectories of two ensembles coincide 
up to segment number n, but after the nth step they un- 
dergo a small distortion and part exponentially fast in view 
of noncompactness of the phase space. The growth expo- 
nent A is a Lyapunov exponent, which characterizes a 
takeoff process, and the correlation function K determines 
the rms distance between the projections of the terminal 
points on the t axis. Thus, the sensitivity and dependence 
of correlations on the impurity's position must occur in 
systems with one-dimensional topology. 

A convenient object for observing the sensitivity of 
resistivity is the quasi-one-dimensional conducting channel 
based on the GaAs/AIAs heterostructure with planar 
electrodes.16 With a channel width of roughly 100 A, a 

single-channel current flow is obtained. To vary the real- 
izations, a small potential difference must be applied to the 
planar electrodes to cause a shift in the conducting channel 
relative to the fixed impurities and defects. In this manner 
a representative sampling of the conductor ensemble can 
easily be obtained. Local variations of the potential can be 
carried out with an additional electrode. Similar effects will 
occur in single-mode optical fiber, where the backscatter- 
ing coefficient acts as resistivity. 
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