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This paper suggests a method for calculating the single-particle Green function and the 
density of states in the multielectron theory within the framework of a generalized tight- 
binding approximation that allows for strong electron correlations. The densities of 
states for the Cu02 plane undoped and lightly doped within holes are calculated, and states 
are shown to emerge with the insulator gap under doping. 

1. INTRODUCTION 

There is a large class of compounds in which electron 
correlations are strong and, hence, determine the basic 
physical properties. Among these are Mott-Hubbard insu- 
lators and insulators with a gap caused by charge-transfer 
processes.' Not only copper oxides belong to this class but 
so do other transition-metal oxides and many other com- 
pounds of transition and rare-earth  element^.^ Copper ox- 
ides have been chosen because studying their electronic 
structure in the insulator state and the variations of the 
structure caused by doping is important for understanding 
the mechanisms of high-T, superconductivity. 

Owing to the strong electron correlations, traditional 
methods of calculating the band structure such as the local 
density functional are inapplicable. For instance, for un- 
doped insulators La2Cu04, Nd2Cu04, and YBa2Cu306, 
the band theory gives a metallic state with a half-filled 
band (see Ref. 3 for a review). The band theory is equally 
inapplicable to lightly doped systems with a low concen- 
tration of carriers of the p- or n-type, for which there is 
experimental evidence of the existence of states in the gap 
of the deep-impurity-level type.4 

At present there are no band-structure calculations 
that start from first principles and allow correctly for 
strong electron correlations. A generalized tight-binding 
method has been suggested to allow for strong correlations 
in a semiphenomenological setting.5 In this method strong 
correlations are taken into account exactly, and the multi- 
band model in the Hubbard-operator representation is re- 
duced to a generalized Hubbard model with a large num- 
ber of multielectron states per site. 

A dispersion equation for the spectrum of single- 
particle Fermi excitations (holes for the Cu02 plane) was 
obtained in the generalized tight-binding method in Ref. 6. 
This equation was later used7 to calculate the band struc- 
ture of undoped La2Cu04 and Nd2Cu04. 

The cited papers5-7 do not consider the density of 
states, since its calculation with allowance for strong cor- 
relations is much more complicated than finding the dis- 
persion law. The physical reason for these difficulties lies in 
the fact that the statistics of single-particle states in 
strongly correlated systems depends on the occupation 
numbers. For instance, in the undoped cases, even allowing 

for twofold degeneracy in spin, each Hubbard band con- 
tains only one electron rather than two as in the case of free 
electrons. Doping only complicates matters because the 
number of states in each band becomes a function of the 
electron concentration. All this leads to a situation in 
which simple integration over constant-energy surfaces, as 
is done in single-electron band theory, does not permit 
finding the density of states. Mathematically the problem is 
that calculating the spectrum requires knowing only the 
dispersion equation, that is, only the denominator of the 
Green function, while calculating the density of states re- 
quires knowing the entire Green function. Since the Green 
functions in the multilevel Hubbard model are high- 
dimension matrices (e.g., for the CuO model5 with six or- 
bitals per unit cell in the limit of Ud= oo and Up= a, in the 
undoped case, one is forced to deal with a 44-by-44 matrix, 
and in the doped case the dimension of the matrix increases 
sharply), calculating the imaginary part of the Green func- 
tion and its integral over the Brillouin band requires a 
much greater volume of calculations than simply solving 
the dispersion equation. 

In this paper the Green function is found explicitly by 
a method that does not involve calculating high-dimension 
inverse matrices. Moreover, in this approach the dimension 
of the system of linear equations whose solutions determine 
the Green function does not depend on the electron den- 
sity; it is rather given by the number of orbitals in a cell, as 
in ordinary band theory. The solution method is based on 
employing the multiplicative nature of the intercell inter- 
action potential. Such an approach was used earlier in the 
theory of anisotropic Heisenberg magnetic substances. 

2. THE MULTIELECTRON MODEL OF COPPER OXIDES 

Photoelectron data suggests that the conduction-band 
bottom and the valence band at a depth of 6-7 eV are 
formed by the p-orbitals of oxygen and d-orbitals of cop- 
per, with the other filled states lying lower and the vacant 
states higher. For this reason we limit our discussion to the 
calculation of hybridized p-d-states of the Cu02 plane, as- 
suming that for vacant and filled bands the strong- 
correlation effects are insignificant, that is, the bands can 
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be taken from standard band calculations and simply su- 
perimposed on the p-d-bands of strongly correlated elec- 
trons. 

We write the Hamiltonian of p- and d-electrons of the 
Cu02 plane in the hole representation as follows: 

where E~ and ed are the single-particle energies of p- and 
d-holes, Up(Ud) and Vp(Vd) the matrix elements of the 
interatomic Coulomb repulsion on the same and on differ- 
ent orbitals of oxygen (copper), Jp(Jd) the Hund exchange 
integrals, TAU and td the matrix elements of p-d- and p-p- 
hopping between nearest neighbors, and VAa and JA, the 
matrix elements of the Coulomb and exchange interaction 
between the copper-oxygen nearest neighbors. The first 
two terms in Eq. ( 1 ) describe interatomic p-d-hopping and 
interactions and p-p-hopping. The important orbitals are 
d,2-,~ (A = 1 ) and dg (A = 2) for copper and p, ( a  = 1 ) 
and py (a =2) for oxygen. We introduce the notation 

3. THE TIGHT-BINDING METHOD WITH ELECTRON 
CORRELATIONS 

As is known, correlations are well accounted for in the 
atomic limit of models of the Hubbard type, and inter- 
atomic hopping in the band limit. A cluster method of 
calculation was developed in Refs. 5 and 6 to account for 
correlations and covalent effects in a meaningful manner. 

In the generalized tight-binding method, band- 
structure calculations are done in two stages. In the first 
the lattice is divided into nonoverlapping clusters (elemen- 
tary cells) within each of which the eigenvalue problem for 
Hamiltonian ( 1 ) is solved exactly and Hubbard operators 
are constructed in whose representation the cell Hamil- 
tonian is diagonal. In the second stage, intercell hopping 
and interactions are reduced exactly to hopping between 
the sites of the multilevel Hubbard model. The resulting 
model can then be studied by various methods known to be 
valid for the ordinary Hubbard model. 

For laminar copper oxides the simplest cell consists of 
a Cu02 cluster 0-Cu-O. In the hole representation the 
vacuum state 10) with n=O holes corresponds to the 
p6d10p6 configuration. In the stoichiometric compounds 
La2Cu04 and Nd2Cu04 there are n= 1 holes assigned to 
each cluster, and the eigenstates are various mixtures of 
p5d1Op6 and p6d9p6 configurations. In hole doping there ap- 
pear clusters with n=2 holes in which p6d8p6, p5d9p6, 

5 10 5 4 10 6 p d p , and p d p configurations are mixed. Let I n,l) be 
the set of eigenstates of Hamiltonian (1) with energies 
E(n,l) for a cluster with n holes, with the index 1 desig- 
nating all other quantum numbers, including orbital and 
spin quantum numbers. Knowing the complete set of states 
of a cluster makes it possible to construct the Hubbard 
operators XPg= Jp) (g 1 in whose representation the intra- 
cell part of Hamiltonian ( 1 ) has the form (for the cell with 
number f ) 

The creation of a single-particle Fermi excitation 
(hole) is related in the multielectron approach to the tran- 
sition of the system from the n-particle state to the (n + 1 ) -  
particle state. In building a consistent theory of perturba- 
tions in intercell hopping it has been found convenient (see 
Ref. 9)  to assign to each pair consisting of an initial and 
final state a root vector, namely, 

where the subscript m numbers the various Fermi excita- 
tions. We denote the Hubbard operator in compact form as 
follows: 

In the Hubbard-operator representation the operators rep- 
resenting the annihilation and creation of a hole in cell f 
on orbital A and with spin projection o are then 

with the matrix elements 

For a Cu02 cell there are six different orbital states in the 
Hamiltonian model ( 1 ) : 
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FIG. 1. Double-sublattice partitioning of the CuOz plane: X--copper; 
0-xygen. The wavy and dashed lines correspond to intercluster 
copper-oxygen and oxygen-oxygen hopping. 

In the intracell Hubbard-operator representation the 
intercell-hopping Hamiltonian has the form6 

where the A and B matrices correspond to p-d and p-p 
hopping (below these are given explicitly). Here we have 
gone over to a double-sublattice elementary cell consisting 
of two Cu02 clusters (Fig. I),  and Xk and Yk are the 
Fourier transforms of the Hubbard operators in the sub- 
lattices F and G. We introduce the double-lattice Green 
function 

whose determinant yields the hole spectrum. The occupa- 
tion numbers, which determine the end factors, are ex- 
pressed in a standard manner in terms of the imaginary 
parts of the diagonal elements of the Green function (5) 
and can be found together with the chemical potential by 
solving the self-consistency equation 

where nh is the hole concentration per cluster. In our case 
nh = 1 +x .  Since 1 < nh < 2, only single-particle and two- 
particle states In,l) contribute to the equation for the 
chemical potential. In contrast to the Hubbard model with 
four states at a site ( 1 O), 1 + 1/2), 1 - 1/2), and 1 2) ), in 
our theory the number of states in a cell is large. For 
instance, in model ( 1 ) with six atomic orbitals there is one 
vacuum state 10) and twelve single-hole states (with al- 
lowance for spin). For n = 2; even in the simplest limit of 

6 Ud= UJ and Up= U J ,  the number of states is 2 2 ~  (2) =60. 
The dimension of matrix (5) is determined by the number 
of nonzero matrix elements y (a,) and end factors F, . In 
the undoped case for the Cu02 model with n= 1 the di- 
mension is 44 by 44, while in the doped case new allowed 
transitions emerge and the D-matrix is 56 by 56. Since to 
calculate the density of states an integral is evaluated in the 
k-space, finding the Green function at each point of the 
k-space requires a large volume of calculations. In Sec. 4 
we will find for Eq. (9) an explicit solution which greatly 
simplifies the calculation of the density of states. 

4. CALCULATING THE GREEN FUNCTIONS 

The zeroth-order Green function for Hamiltonian (2) can 
be calculated exactly: 

where the intracluster excitation energy 

and the end factor F, differs from unity because of the 
complicated commutation relations existing for the Hub- 
bard operators, 

In the diagrammatic technique for the Hubbard 
operators? the Hartree-Fock approximation is simply the 
well-known Hubbard-I approximation. In this approxima- 
tion the Green function (5) can be found by solving the 
equation 

A A 

b - I = b c 1 - ~ - g ,  (9) 

At T=O only the occupation numbers of the ground 
states are nonzero. At n=  1 the wave function of the 
ground level is (a= +, - ) 

The energy of state I 1,a) is Eln=tzd+ l/2(S-Y). The 
two-particle states of a cluster were found in Ref. 5 with 
exact allowance for all Coulomb matrix elements and p-d- 
hybridization in the limit of Ud= UJ and Up= U J ,  while 
exchange interactions were taken into account in first- 
order perturbation theory. The intratomic matrix elements 
Jp and Jd are positive (according to Hund's rule). For 
interatomic exchange both variants, Jpd > 0 and Jpd < 0, are 
possible. The two-particle ground state 12,O,S,M) may be 
a spin singlet S=O, M=O or triplet S= 1, M =  + 1,- 1,O. 
The wave functions of the singlet and triplet are 
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The energies Eo and El of, respectively, the singlet and 
triplet are 

The parameter Jpd is the effective exchange parameter, 
determined by both the direct exchange matrix element 
and indirect antiferromagnetic exchange of the Zhang- 
Rice type." Allowing for an additional weak p-p-hopping 
leads to the appearance of new contributions to the effec- 
tive exchange depending on the sign of tpp (see Refs. 12 and 
13). Exact analysis of the conditions for the two-particle 
ground state to be a spin singlet or for it to be a triplet 
requires determining a certain region in the multidimen- 
sional space of parameters of the Hamiltonian. Solving 
such a problem lies outside the scope of the present paper. 
We allow for both states, and if variation of parameters 
leads to crossover between the states, the occupation num- 
bers vary self-consistently, too. This leads to a difference 
between the density of states for the singlet and the triplet, 
which is discussed below. 

The excited states for n=0,1,2 can be written in a 
similar manner. For one thing, two-particle excited states 
contain contributions from the configurations of neutral 
oxygen and trivalent copper. These states are not written 
here; the interested reader can find them in Ref. 5. Know- 
ing the explicit form of the wave functions with n=0,1,2 
makes it possible to calculate the fractional parentage co- 
efficients in (3). It can easily be shown that the intercell- 
hopping Hamiltonians ~ @ ] d ~  and tpfl]pj have the form 
(4), and the p-d-hopping matrix A and the p-p-hopping 
matrix B can be written as sums of split matrices: 

the coefficients ui and vi (i=0,1,2) obey the relationships 

and a= * 1/2 corresponds to the two spin projections. The 
band index A in yA(m) stands for the following orbitals: 

The number m of Fermi states listed in Table I corresponds 
to all possible hole states with nonzero matrix elements at 
T=O. For T#O, generally speaking, the occupation num- 
bers of the excited states with n = 1 and n = 2 are nonzero, 
which means taking into account the contributions of all 
states. But if we ignore the exponentially small contribu- 
tions -exp(-AE/T), where AE is the level separation, 
only the states listed in Table I will be left. 

Here m= 1 corresponds to creation of a hole in the 
vacuum state accompanied by the 10) -, 1 1 ,a)  transition, 
while the other values m > 1 correspond to creation of a 
hole accompanied by a transition to the two-particle state, 

I l,ll,o) + I 2,12,a). The energy of all excitations, Ro can be 
found from a cluster calculation. 

The functions Ai  and Bi in ( 10) are 

A I = ~ T ~ c o s  k g ,  A2= -i2Tpdsin k g ,  

B1 =4tPp(cos k g  + cos k ~ ) ,  B2= - i4tpp sin k,a, 
(11) 

B3=-i4tppsinkg, B4=B;f, B5=Bt ,  

B6 = tpp( exp i k g  + exp ik,a ) , 

To calculate the Green functions, we employ a method 
suggested in Ref. 8 for solving problems with a split 
intercell-interaction matrix. In the case at hand we must 
deal with sums of split matrices ( lo) ,  which requires a 
simple generalization of the method of Ref. 8. 

We introduce the auxiliary Green functions 

where the matrix elements yA(m) are listed in Table I, in using which we can write the system of equations for the 
which Green functions (5)  in the approximation of the 
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TABLE I. The matrix elements needed for representing the Fermi operators in terms of Hubbard 
operators; a= * 1/2. 

Hubbard-I type (or in the Hartree-Fock approximation 
using the diagrammatic technique of Ref. 9) in the follow- 
ing manner: 

Multiplying Eqs. (12) term by term into yL(m) and sum- 
ming over m, we arrive at the following system of linear 
equations for the functions D& and D&: 

where D is the column vector corresponding to the row 

and the matrix M can be expressed in terms of the function 
(its explicit form is given in the Appendix). What is 

important is that the dimension of matrix M is determined 
by the number of atomic orbitals considered rather than by 
the number of various cluster states. The first number is 
much smaller than the second and independent of the 
choice of cluster. 

Thus, instead of calculating the inverse matrix (9), we 
have reduced the problem to solving the matrix equation 
(13), whose dimension is much lower. Substituting the 
solution to ( 13) into ( 12), we find the Green functions 
(5). It can easily be verified that the dispersion law for 
quasiparticles is the same whether we determine it from the 
determinant of ( 13) or of (9). The additional factors 
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a(m) in ( 13) corresponding to local cluster modes are 
unimportant since they contribute nothing to the density of 
states. 

5. THE DENSITY OF HOLE STATES 

In terms of the initial atomic orbitals, the partial den- 
sity of states is 

- 3 - 2 - 1  0 1 2  3  4 5 6 7 8 9 

- I 

2 

Since representation (3) is exact, it yields the sum rule 

- 

which ensures conservation of the total number of states 
when calculating the density of states in the Hubbard- 
operator representation: 

This is directly verifiable if we substitute the zeroth-order 
Green function (6) into ( 15) : 

I 

I 

The final expression for the total density of hole states 
is 

FIG. 2. Density of hole states of an undoped CuOz plane. 

A package of programs named QPDOS was imple- 
mented to calculate the density of states following the al- 
gorithm for Green-function calculations described above. 
The sum over the quasimomemtum was calculated by in- 
tegrating over the Brillouin zone, and all delta functions in 

FIG. 3. Variation of the density of states caused by an in- 
crease in resolution. The dashed curve corresponds to &=0.1 
and the solid curve to &=0.05. 

hole energy, eV 
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( 17) were replaced by Lorentzian curves with a half-width approximation is valid, the bond-to-band transition prob- 
E. The majority of calculations were performed with E=O. 1 ability is low and we have the following expression for the 
eV, which corresponds to the highest-possible resolution of gap: 
such methods as photoelectron spectroscopy. 

Figure 2 depicts the density of hole states for the un- E,=$-~T~ - 2 ~ ~ ,  (19) 
doped Cu02 plane, and the model parameters correspond7 
to undoped La,CuO, (in electron volts): where I$ is determined by intracluster energies: 

S=2, Ad=~dt-~d2-y2=l.5, A p = ~ p x - ~  =0.8. 
PY 

A detailed discussion of these parameters and their com- 
parison with the data of other researchers can be found in 
Ref. 10. The hole energy is measured from the atomic level 
of the dxz-3 orbital, E ~ = O .  

The lower Hubbard band in Fig. 2 (this is the conduc- 
tion band in the electron representation) obeys the disper- 
sion law 

where 

The emergence of two branches is due to the double- 
sublattice structure. The bandwidth - T1 is much smaller 
than Tpd because of correlation band narrowing. 

The upper Hubbard band is separated from the lower 
one by a gap, which in our case is infinite. Inside this gap 
lies the hybridized p-d-band consisting of a large number of 
narrow subbands and obeying a complex dispersion law. 
The width of the lower of these subbands is of the order of 
T2 = T p d ~ ~ o ( ~ ~ O +  uOv)/21/2. 

The insulator gap has a complex nature: it is formed 
both by charge-transfer processes and by Coulomb and 
exchange interactions. In conditions when the Hubbard-I 

We see that in the limit of S)Tpd, V@, the main contribu- 
tion to the gap is provided by the charge-transfer energy, 
$-6. 

The condition for the collapse of the gap is 
TI + T~-I$, in which case the Hubbard-I approximation 
becomes invalid. In the language of diagrams as applied to 
Hubbard operators this means that we must allow for 
single-loop contributions to the mass operator.g When the 
parameters are those specified in ( 18), which we assume 
typical for all undoped and lightly doped copper oxides, 
both T1 and T2 are much smaller than I$, and the crite- 
rion of applicability of the Hubbard-I holds true. 

Let us now study the filling of the bands. The lower 
Hubbard band in the undoped case n =  1 is completely 
filled. Formally the reason for this is that the factor F (m)  
= 1/2 for m= 1, and it is these states that form the band. 
Physically the explanation lies in the strong correlations 
that change the statistics, an aspect discussed in Sec. 1. 
Thus, the Fermi level lies in a gap Eg=.2 eV, and the hole 
states above the gap (the valence band in the electron rep- 
resentation) are unfilled. The total width of the p-d- 
hybridized valence band is close to 6 eV. 

Since the atomic-orbital base is limited, it is useless to 
calculate the states far from the gap. For instance, accord- 

density of states, eV- ' 
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hole-energy, eV 

FIG. 5. Density of hole states for different ground states of a cluster with 
two holes: the dashed curve corresponds to a Zhang-Rice singlet, and the 
solid curve to a triplet. 

ing to ~ickett,' the t2,-states of copper lie 4 eV below the 
top of the valence band, and in Fig. 2 they must appear in 
the dip at E= 5-6 eV. 

Figure 3 depicts the density of states as a function of 
the damping parameter E. The reader can see that an in- 
crease in resolution results in a Van Hove singularity at the 
center of the conduction band. Near the top of the valence 
band the density of states remains practically unchanged. 

The band structure of quasiparticles calculated in Refs. 
7 and 10 and the quasiparticle density of states are com- 
pared in Fig. 4 (in the electron representation). The reader 
can see that not all quasiparticle bands result in peaks in 
the density of states. For some quasiparticles F(m)#O and 
the Green functions (5) are finite, with the result that 
there is a contribution to the solutions of the dispersion 
equation, but because the matrix elements yA(m) in ( 17) 
are equal to zero there is no contribution to the density of 
states. Near the top of the valence band the main contri- 
bution is provided by the p-d-hybridized bands, in which 
the po-states have the greatest weight (up to 85%). Near 
the bottom of the conduction band there are bands of the 
same symmetry but with d,z-?-states providing the deci- 
sive contribution. 

Note that with our choice of the Hamiltonian param- 
eters ( 18) the ground two-hole state is the spin triplet R3, 

in contrast to the widely accepted notion that it is the 
Zhang-Rice singlet." Since the energy difference a3 -R2  
is small, crossover may occur at fairly small variations of 
the parameters,12 for instance, t,. Figure 5 shows two 
variants of the density of states, with the singlet and triplet 
ground states of a "hole on copper"+hole on oxygen" 
pair. An arm in the 1.4 eV < E < 2.2 eV interval, a feature 
characteristic of the Zhang-Rice singlet, should appear in 
photoelectron emission spectra. There are several argu- 
ments in favor of the triplet state,'' for instance, the nature 
of the dispersion law in the vicinity of the r-point: a min- 
imum (in the electron representation) for the triplet and a 
maximum for the singlet. Experiments in photoelectron 
emission with angular resolution usually exhibit a mini- 
mum (see Pickett's review3 and Ref. 5). 

6. VARIATION OF THE DENSITY OF STATES UNDER HOLE 
DOPING 

Under doping the number n of holes per cluster is 
1+X. Solutions to the self-consistency equation for the 
occupation numbers have the form 

For the lower state with n = 2, the singlet, 

(x2,0,0,0;2,0,0,0 ) , (x2,O,l,M;2,O,l.M) = 0, 

For the lower triplet, 

Thus, the single-particle ground states of the Cu04 cluster 
are filled with a probability 1 -x and the two-particle 
states are filled with the probability x. The result are new 
Fermi quasiparticles with D(m) -x. 

Figure 6 depicts the density of hole states calculated 
with parameters ( 18) but with a new value of Vpd equal to 
1 eV. This variation was done for a more distinct separa- 
tion of the new states from the bottom of the conduction 
band. Although no common impurity effects such as po- 
tential fluctuations or fluctuations of the parameters of 
Hamiltonian ( 1 ) were introduced and the only variable 
quantity was the carrier concentration, the states that 

FIG. 6.  Variation of the density of states under hole doping. 
The long-dash curve corresponds to concentration X=O, the 
solid curve to 0.15, and short-dash curve to 0.30. 

hole-energy, eV 
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formed inside the gap were found to behave like impurity was found that, owing to variations in the parameters in 
states: the density of states on them was proportional to the vicinity of a carrier, levels appear near the top of the 
concentration X. valence band in addition to those considered above. A sim- 

According to Ref. 14, new states appear upon doping ilar calculation for an infinite crystal lies outside the scope 
for all values of the Hamiltonian parameters, but very of the present work. 
rarely find themselves inside the dielectric gap. An impor- 
tant factor in this case is the copper-oxygen Coulomb in- 7. CONCLUSION 
teraction. As Vpd increases, the lbcalized level moves from 
the edge of the gap to the center. 

Thus, in the multielectron theory the picture of a rigid 
band is not true. The fact that states appear inside the gap 
following doping in copper oxides has been firmly estab- 
lished from spectroscopic data. l5 The appearance of states 
in the gap upon doping was predicted earlier in cluster 
calculations in the process of exact diagonalization of 
model Hamiltonians of type (1) or its simpler variants.l6>l9 

The fact that under hole doping an impurity level ap- 
pears close to the bottom of the conduction band rather 
than close to the top of the valence band has no special 
meaning (although it agrees with the data of Ref. 4). The 
point is that in a more realistic approach one must allow 
for impurity effects, the simplest of which is the variation 
of the parameters of Hamiltonian ( 1 ) in the neighborhood 
of a carrier. Indeed the ion radius of 0- is smaller than 
that of 02-,  as noted by many resear~hers .~~,~ '  For in- 
stance, according to ~ u l i k , ~ l  in the octahedral surround- 
ings R (0- ) = 1.36 h;. Hence, when the carrier is on oxy- 
gen, the most obvious variation of the parameter is to 
lower Tpd. In addition, the hole levels .cp and E~ shift in the 
crystalline field. Estimates in the point-charge model point 

The suggested method of calculating the density of 
single-particle states, which allows for multielectron ef- 
fects, makes it possible to calculate the density of states of 
various copper oxides. The set of parameters ( 18) consid- 
ered corresponds to La2Cu04; for Nd2Cu04; the basic dif- 
ference (the absence of ohmic oxygen) is reduced to the 
decrease in the value of S = E ~ - E ~  (see Refs. 7 and 23). 
Thus, varying the parameters of Hamiltonian ( 1 ) makes it 
possible to model various copper oxides. 

For hole doping, the present calculation for an infinite 
crystal supports the earlier conclusion obtained from clus- 
ter  calculation^^^^^ that new states appear in the gap. As 
noted by Eskes and ~ a w a t z k ~ , ~ ~  neither the accuracy of 
calculating small clusters nor the Anderson impurity 
model is sufficient for discussing the details of the structure 
of the top of the valence band, details that are necessary for 
a more qualitative comparison with the experimental data. 
Our calculation allows for the details of the band structure 
of an infinite crystal combined with an exact cluster diag- 
onalization. 

The work was sponsored by the Krasnoyarsk Science 
Fund under Grant Number IF0014. 

to a decrease in the parameter S=.cp-.cd by approximately 
one electron volt. The role of variations of Tpd and S has APPENDIX 

been examined in Ref. 22 by the method of exact diago- All components Mij with an even sum of indices, i+ j, 
nalization of the Hamiltonian ( 1) for the Cu04 cluster. It are zero, and the nonzero components are 
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