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A general solution is derived for the 1 D single-phase Stefan problem with a surface heat 
source for constant values of the thermal properties and the absorption coefficient. This 
solution is used to describe the dynamics of the heating and evaporation of a plane 
target by a laser pulse of arbitrary shape. A family of isotherms is plotted in the plane of 
dimensionless coordinates which do not depend on the thermal properties of the target 
material. Also plotted in this plane is a line which separates the plane into two parts: 
one dominated by the thermal-conductivity losses and one dominated by evaporation losses. 
Laser pulses of arbitrary shape are constructed in the same coordinates. Their 
intersections with isotherms and characteristic lines give a clear picture of the changes in the 
surface temperature during the heating, of the time of the transition to rapid evaporation, 
and of the nature of the vapor outflow. Pulses of this sort of microsecond and millisecond 
length are constructed for a copper target. 

The problem of the heating and evaporation of metals 
by laser light dates back a long way. Many aspects of this 
phenomenon are discussed in monographs and reviews.'" 
The evaporation of metals by the lasers available at the 
time, with pulses of definite shape and differing greatly in 
length has been studied. The depth of the evaporation has 
been measured as a function of the incident-energy surface 
density for various metals. ~ e a d ~ '  points out that pulses 
with lengths in the nanosecond range are relatively ineffec- 
tive in causing evaporation. The reason is that the evapo- 
ration begins not immediately but only after a certain time 
interval, once the target has warmed up to a certain tem- 
perature. This particular temperature is determined by the 
dynamics of the heating and is not known at the outset. 
Anisimov et al. have found simple formulas for the "delay 
times" after which rapid evaporation begins for pulses of 
constant intensity. The meaning here is that the energy of 
the laser beam is expended primarily on evaporating par- 
ticles from the condensed phase and partly on transferring 
kinetic energy to these particles. The energy losses due to 
thermal conductivity are small in this regime. For pulses of 
arbitrary shape, in contrast, there is no simple method of 
this sort for determining the time at which rapid evapora- 
tion begins. As a result, it is difficult to obtain information 
on how effective one laser or another will be on a target, 
information on the losses due to thermal conductivity, etc. 
The situation becomes particularly serious when the lasers 
in question are relatively of low power and designed for 
technical operations involving the evaporation of target 
material. 

In the present paper we use the standard formulation 
of the 1 D problem of heating a plane target by laser light 
under the assumption that the thermal coefficients and the 
absorption coefficient remain constant. This formulation of 
the problem dates back to Ref. 2. We write a time- 
dependent heat-conduction equation with a boundary con- 
dition which incorporates evaporation (the Stefan prob- 

lem). We derive a formal solution of this problem, which 
reduces to a nonlinear integral equation for the surface 
temperature. This equation does not contain spatial deriv- 
atives. In this approximation the term associated with 
evaporation is an exponential function of the temperature. 
A modified method for expanding an exponential function 
was developed in the course of the present study in order to 
find an approximate solution of equations of this sort. This 
method is a refinement of the exponential expansion 
method which is widely used in problems of the theory of 
combustion and explosions.7 The solution yields an alge- 
braic expression in dimensionless variables which relates 
the intensity q of the laser light, the quantity 

which depends on this intensity, and the surface tempera- 
ture at an arbitrary time t. Using this expression, we con- 
struct a universal family (i.e., one independent of the par- 
ticular metal) of isotherms in the plane of the 
dimensionless variables L and q. The intersection of the 
curve describing (in the same coordinates) the actual laser 
pulse, on the one hand, with the isotherms, on the other, 
gives us definite information about the target-heating dy- 
namics. Since the evaporation rate is exceedingly sensitive 
to the temperature, one can draw in the L, q plane a line 
which divides this plane into two parts. In the first part, the 
energy of the laser beam is carried off primarily by the heat 
flux (this is the thermal-conductivity regime). In the sec- 
ond part, the energy is expended on evaporation (this is 
the rapid-evaporation regime). '" The point at which the 
laser pulse intersects this line corresponds to the beginning 
of the evaporation regime. The boundary corresponding to 
the onset of rapid evaporation in the L, q coordinates is a 
universal boundary. To determine the time at which rapid 
evaporation begins during the application of a laser pulse 

774 JETP 77 (5), November 1993 1063-7761 /93/110774-07$10.00 @ 1993 American Institute of Physics 774 



of arbitrary shape, it is sufficient to plot the pulse in the 
same coordinates. This has been done for some character- 
istic laser pulses with lengths in the microsecond and mil- 
lisecond ranges. As an example we calculate the boundary 
of the region of rapid evaporation, in dimensional vari- 
ables, for the case in which a millisecond pulse is applied to 
a copper target. It is important to note that the threshold 
intensity is a decreasing function of the time, and the val- 
ues of this intensity early in the process can be fairly high. 
This circumstance sheds some light on the low efficiency of 
evaporation by short-pulse lasers. 

1. SOLUTION OF THE I D  STEFAN PROBLEM 

A heat flux which is a given function of the time, q(t),  
is supplied from the left to the surface of the material, 
x=O; the material fills the half-space x > 0. As a result, the 
surface warms up, begins to evaporate, and recedes at a 
velocity v,. The heat-conduction problem in the coordinate 
system moving with this interface can be written as follows 
under the assumption that the thermal properties and the 
absorption coefficient remain constant: 

where T(x,t) is the temperature and x is the thermal dif- 
fusivity. We supplement Eq. ( 1 ) with the boundary con- 
dition 

where ~ = x p C  is the thermal conductivity, p and Care the 
density and specific heat of the condensed phase, is the 
dimensionless fraction of the heat which is absorbed by the 
surface, and AH is the difference between the specific en- 
thalpies of the solid and gaseous phases, given by 

We impose the initial condition T(x,O) =O. The quantity 
A in (3) is the specific heat of vaporizatioh at T = O  K, and 
C' is the specific heat of the gas phase. The quantity vl in 
(2) is the velocity at which the gas escapes from the sur- 
face directly behind the Knudsen layer.' The magnitude of 
this velocity depends on the ambient pressure, and it 
should in general be found from the solution of the prob- 
lem of the motion of vapor in a surrounding gas. 

In limiting cases, however, there is a simpler way to 
find the values of vl .  If the vapor pressure at the surface is 
high in comparison with the ambient gas pressure, we have 
the Chapman-Jouguet condition: 

where (4) is the Chapman-Jouquet condition, y is the 
ratio of specific heats, R is the universal gas constant, A is 
the atomic weight of the medium, and T1 is the gas tem- 
perature behind the Knudsen layer ( T1 = 0.67TS, where 
Ts= T 1 ,,, according to Ref. 1). Setting CU=3R/A, and 
assuming a monatomic gas, we find 

In the other limiting case, vl ( ( yR Tl/A) 'I2, there are no 
discontinuities in the thermodynamic properties in the 
Knudsen layer; in this case we have 

The latter value was used in Ref. 1. We see that the differ- 
ence between (5) and (6) is small. We can thus treat the 
problem of the surface evaporation and the problem of the 
vapor-expansion dynamics separately. The system of equa- 
tions ( l ) and (2) is supplemented by an expression for the 
surface-evaporation velocity. This velocity can be found 
from the equation of state of the metal; the result is 

v - v  -exp -- ,- 0: ( ,",) 
where vo is a quantity on the order of the sound velocity in 
the cold metal, and Tb is the boiling point for the given 
pressure of the surrounding gas. 

Equation ( 1 ) with boundary condition (2) can be re- 
duced to a single equation for the temperature T,. We 
integrate Eq. ( 1) from over x from 0 to co, and we make 
use of boundary condition (2). We find 

where b=3-a, and a is the numerical coefficient in Eq. 
(5) or (6). 

To evaluate the integral in (8), we find a solution of 
Eq. ( 1) for an arbitrarily varying temperature Ts(t). Gen- 
eralizing the calculations in Ref. 8 to the case of a heat- 
conduction equation with a moving interface, ( 1 ), we find 

where Ax ( t) = J~v,(r) d r  is the displacement of the evap- 
oration front over a time t. In the absence of such a dis- 
placement, expression (9) becomes the solution given in 
Ref. 8. Substituting (9) into (8), integrating over x, and 
then differentiating with respect to t, we find 

Closed equation ( 10) gives the Ts(t) dependence of the 1 D 
Stefan problem. 

The nature of the solution of Eq. (10) is clear at a 
qualitative level. Jtl the early stages, the evaporation is 
negligible, and we have the purely thermal-conductivity 
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solution. As the heating proceeds, the term associated with 
evaporation grows exponentially, and at some time we find 

This is the well-known condition for rapid e ~ a ~ o r a t i o n . ' , ~ , ~  
Under these conditions, the terms on the right side in (8) 
are large in comparison with the integral term. The latter is 
determined from the difference between two large quanti- 
ties. Since the evaporation rate is an exceedingly strong 
function of the temperature, the transition from one regime 
to the other occurs in a narrow interval of parameter val- 
ues. 

2. HEATING AND EVAPORATION OF A PLANE SURFACE 
BY LASER LIGHT 

Let us examine the effect of laser light with an intensity 
q(t) on a plane metal surface. We assume that the vapor is 
transparent to the light. We also assume vJ 4 &t, i.e., 
that the "thermal wave overtakes the evaporation wave" 
(if the opposite inequality held, the regime of rapid evap- 
oration would set in immediately, and the thermal conduc- 
tivity would be unimportant). In this case we can omit the 
exponential function from (10); this simplification is 
equivalent to ignoring the term with v, in ( 1 ) (but not in 
the boundary condition). 

We use some dimensionless variables: AA/R for the 
temperature, Apvdc for the intensity, and 9x/v; for the 
time. For copper with c=0.05 we have M / R  =40 600 K, 
Apvdc=2.4 10'' w/cm2, and 9x/v;= 10" s. In terms of 
these dimensionless variables, Eq. ( 10) takes the following 
form, after the simplifications we just mentioned: 

where T( t )  = T,(t). We will suppress the index s below, 
since only the surface temperature is involved in the dis- 
cussion. We see that in terms of these dimensionless vari- 
ables the dependence on the thermal properties of the ma- 
terial has disappeared. It is easy to show that we can 
rewrite ( 12) in the equivalent form 

In order to determine the time evolution of the surface 
temperature we thus need to solve one of these nonlinear 
integral equations, either ( 12) or ( 13). However, there is 
yet another approach. We introduce the auxiliary function 
O(t,r), which satisfies the integral equation 

1 
- [ 1 +bO(t,rf ) lexp -- ( t , )  (I4)  

The temperature T( t )  in which we are interested is obvi- 
ously related to O(t,r) by 

T( t )  =limO(t,r). 
7- t 

(15) 

The meaning of this auxiliary function becomes clear when 
we differentiate ( 14) with respect to r .  Doing this, we find 
the differential equation 

which holds for 0 < r<t. The problem then reduces from 
one of solving integral equation (13) to one of solving 
differential equation ( 16) and taking the limit in ( 15). The 
latter approach is simpler. 

3. SOLUTION OF EQUATION (16) 

Equation ( 16) belongs to a class of equations analyzed 
in the Appendix. The method described there can be used 
to solve it. We set 

Since Eq. ( 14) is compatible with homogeneous boundary 
conditions, the solution is given by Eq. (A8). Substituting 
the corresponding A and B into it, we find 

where 

The function L(t,r) depends on only the shape of the laser 
pulse. The differential equation 

also holds for this function. Using (19), we can eliminate 
drf/(t-7') 'I2 from the integral in (17). The function 
e x p [ L ( r ' ) / ~ ~ ]  has an extremely strong time dependence. 
Therefore, the function q ( r l )  in the integral which results 
can be taken outside the integral sign at the upper limit, 
r=t ,  without any great error, since this integral is domi- 
nated by values of r close to this limit. Evaluating the 
integral in this manner, and taking the limit r+ t, we find 
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where L(t)  =limL(t,r) as r+t .  Here are some values off 
and f / T  for certain temperatures: 

T 0.07 0.08 0.0866 0.12 . 0.15 
f 0.86 0.85 0.84 0.79 0.70 

f / T  12.3 10.7 9.7 6.6 4.7 

Expression (20) gives T as a function of q and L and 
does not have an explicit time dependence. Using (20), we 
can easily write the dimensionless evaporation velocity in 
the form 

If we take the limit L -+ T, which corresponds to the tem- 
perature variation in the purely thermal-conductivity re- 
gime, in ( 19), we find exp ( - 1/T) + 0. If, however, the 
argument of the exponential function satisfies 
( f / ~ ~ )  (L-  T)  > 1, then we have 

This is the case of rapid evaporation. The transition from 
one regime to the other occurs very sharply, because of the 
large quantity f / ~ ~  in the argument of the exponential 
function. Setting ( f / ~ ' )  ( L - T )  z 1, we thus find 

as the value of L at which the regime of rapid evaporation 
is effectively established. Since we have T/ f 4 1, the quan- 
tity L is only negligibly higher than the values correspond- 
ing to the purely thermal-conductivity regime. A universal 
family of isotherms has been plotted in the plane of the 
dimensionless variables q and L on the basis of (20) in Fig. 
1 (here b=2.5; the isotherms are labeled with the corre- 
sponding values of T/A). We see two asymptotes: one 
vertical and one horizontal. The former corresponds to 
T =  L, i.e., to the purely thermal-conductivity solution. 
The latter corresponds to condition ( 1 1 ), i.e., to the regime 
of rapid evaporation. The dashed curve was plotted 
through a joint solution of Eqs. (22) and (23); it forms the 
boundary between these two regimes. We see that the tran- 
sition region is narrow. We can say that the thermal- 
conductivity solution is valid on the left, while the rapid- 
evaporation solution is predominant on the right. 

We have used the same figure to draw some isotherms 
corresponding to the heating of the material to the boiling 
point Tb. For metals, the values of the ratio T d A  lie in the 
rather narrow interval536 0.05-0.09. The extreme values of 
this interval correspond to low-melting metals (Zn and 
Pb) and refractory metals (W and Ta). For copper we 
would have T d A ~ 0 . 0 7 .  The corresponding isotherm is 
singled out in Fig. 1. In the region below this line or to its 
left the condition T < Tb holds, and there is a diffusive 
regime of vapor outflow. The vapor diffuses slowly into the 
surrounding gas. A vapor-gas mixture forms. In the region 
above this line, T > Tb, we have a hydrodynamic regime of 

FIG. 1. Isotherms in the (L ,q )  plane. Dashed line-boundary between 
the thermal-conductivity regime (on the left) and the rapid-evaporation 
regime (on the right); I-pulse from Ref. 9 characteristic of TEA lasers; 
2-pulse from Ref. 10. 

vapor outflow. In this case the vapor displaces the gas 
around the target and forms an erosion burst of vapor of 
the target material. 

Note that a laser pulse of arbitrary shape can be plot- 
ted in the coordinates q and L. The position of the pulse in 
this plane depends on the surface material. From the in- 
tersection of this pulse with the isotherms we can draw 
conclusions about the heating dynamics, the nature of the 
vapor outflow, the time at which the evaporation regime 
sets in, and more. For pulses which vary in accordance 
with a power law, q a P, it is a simple matter to calculate 
L: 

where 

is a numerical factor which depends on the exponent a, 
and r ( x )  is the gamma function. Here are values off (a) 
for various values of a: 
a -0.9 -2/3 -1/2 0 1 2 3 4 
f 1.91 1.41 f i /2 2 8/3 16/5 128/35 256/63 

The quantity L has also been calculated for a very 
short intense pulse which is applied at the time t ,  and 
which can be approximated by a &function: 
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q(t)=ES(t-t ,) .  In this case we have L 
= E/ dm. We see that we have L - E (  T ) /  4 for a 
wide class of functional dependences q(t) .  

After this analysis it is a simple matter to determine 
the particular shape a laser pulse should have if the energy 
required to heat the target to a given temperature T over a 
time t is to be minimized. - To answer this question we write 
E as E = fi~/f,  or, for a 6-function pulse, E 
= J?r(t-tl)~. We see that from this point of view the 
pulses should have a front which initially rises slowly and 
then progressively faster: q( t)  a t a ,  a >  1. In the limit 
a- co a pulse of this sort can be modeled by a &function 
which is "turned on" at a time t, < t. The energy required 
for the heating is minimized in this case. 

For a pulse of a given shape which is not a power law 
or a &function, we need to work from Eq. ( 18). There is 
no particular difficulty in doing so with the computer fa- 
cilities available today. Figure 1 shows the microsecond- 
length pulse which was used in Ref. 9, applied to a copper 
target with c=0.05 (curve 2 ) .  This is a typical pulse for 
TEA lasers. Its total energy is 20 ~ / c m ~  at a length of 3500 
ns. The peak intensity at t=80 ns is 2.8. lo7 w/cm2. This 
intensity falls off linearly from the peak to a value of 
0.86. lo7 w/cm2 at t=270 ns, and from this value it falls 
to zero at the end of the pulse. We see that the evaporation 
regime is not reached during heating of an ideally smooth 
plane target by a pulse of this sor~.  

Also shown in Fig. 1 is the millisecond-length pulse 
which was used in Ref. 10, again for copper. Its length is 
- 1 ms, its intensity is a constant -20 M W / C ~ ~ ,  and its 
rise time is -0.1 ms. In this case the evaporation regime is 
reached immediately after the hydrodynamic regime is 
reached. This pulse would be extremely efficient for heating 
and evaporating plane targets. 

The nature of the vapor outflow and the evaporation of 
target material has been discussed in the literature for a 
long time. It has been suggested in many papers that under 
the condition T > Tb the regime of rapid evaporation and 
the regime of a hydrodynamic vapor outflow coexist. It 
follows from Fig. 1 that a rapid evaporation can occur in 
either the case T < Tb or the case T > Tb. To explain, we 
assume that a long pulse of relatively low-intensity, is in- 
cident on a target. This pulse intersects the dashed line 
before the target is heated to Tb.  Intense evaporation oc- 
curs in the course of a diffuse outflow of vapor. When an 
intense short pulse is applied to the target instead, the 
target is heated to T =  Tb,  when the laser pulse intersects 
the vertical branch of the T = Tb isotherm. However, rapid 
evaporation occurs when the pulse again intersects the 
dashed line. For a pulse of constant intensity, heating of 
the target to T =  Tb means a simultaneous transition to the 
hydrodynamic regime of vapor outflow. 

4. BOUNDARY OF THE REGION OF RAPID EVAPORATION 

Rapid evaporation occurs when some pulse intersects 
the dashed line, which determines the threshold values of L 
and q corresponding to this regime [Eqs. (22) and (23)l. 

FIG. 2. I-Dimensionless threshold values of q as a function of 9 (curve 
1); 2, 3-pulses from Refs. 9 and 10. 

We can find the pulses corresponding to the beginning of 
the regime by dividing (22) by (23). As a result we find 

The quantity on the left in ( 17) depends on the length and 
shape of the pulse, while that on the right depends on the 
temperature. By specifying values of the former, we can 
find the temperature corresponding to the beginning of the 
evaporation regime; we can then use the latter temperature 
to calculate threshold values of L and q. For a power-law 
pulse we have L/q = @ ( a  + 1 ) / r ( a  + 3/2). In this 
case expression (24) gives the "delay time," i.e., the time 
which elapses from the beginning of the pulse to the be- 
ginning of the evaporation regime: 

In particular, for a constant density, a=O, expression (25) 
agrees within a correction T/ f with the expression given 
in Ref. 2. 

Figure 2 shows a plot of q ( 6 )  corresponding to the 
beginning of the evaporation regime, along with pulses 
from Refs. 9 and 10. Figure 2 confirms the conclusions 
which we drew above regarding the efficiency of these 
pulses. 

Figure 3 shows the dimensional threshold values of q 
as a function of a2,  which has the dimensionality of a time, 
for the case in which the pulse is applied to a copper target. 
We see that in the millisecond range we have q- 10' 
w/cm2. Initially, the values of q required for rapid evap- 
oration increase sharply. We see thus the reason why short 
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FIG. 3. Dimensional threshold values of q versus a2 for a copper target. 
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APPENDIX: MODIFIED METHOD FOR EXPANSION OF AN 
EXPONENTIAL FUNCTION 

We consider a differential equation 

The variables in ( A l )  are dimensionless; the values of T 
can be small, so the exponential dependence is very strong. 
The functions A and B are relatively smooth. The idea of 
the method is to take the exponential dependence into ac- 
count as accurately as possible in an approximate consid- 
eration of some functions which vary more slowly. 

Let us consider a point which satisfies Eq. (Al) ,  e.g., 
t l ,  T1 (point 1). We introduce the relative coordinates 
T1=T/T1. We rewrite Eq. ( A l )  in terms of these coor- 
dinates, omitting the primes: 

At the point t, , T1 we have T = 1. 
We introduce the new variable 

where f is a constant. Equation (A2) takes the form 

The variable U ranges from - oo to f/T1, and in point 1 
we have U= 0 at T = 1. We write 

We expand the function F ( U )  in a power series in U 
around the point U=O: 

F(U)zF(0)+F1(O)U.  

We find then 

We set 

Equation (A2) then becomes 

where 

We seek a solution of Eq. (A3) in the form 

U=bl l B(ft,Tl)dt+C(t),  (A41 

where C(t) is an unknown function. Substituting (A4) 
into (A3), we find the equation 

A solution of this equation is 

Substituting (A6) into (A4), and going back to T, we find 

where g=Tl / f l .  
Equation (A7) is valid if T does not deviate from one 

too greatly. We therefore expand 1 - 1/T in powers of T 
near T = l .  We find 1- l /TzT-1.  The final form ofthe 
solution depends on whether I:, ~ d t  exists as t-0. In this 
case, ( A l )  is compatible with homogeneous boundary con- 
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ditions. If this is the case, then we can set t =O and T =O in 
(A7), and we can treat point 1 as arbitrary, omitting the 
index 1 from (A7). We then go back to our original vari- 
able T. As a result we find 

x exp ( - $ Jd ~ d t  ) 
x Jd exp ($ J: ~ d t )  dt') 

If, on the other hand, j- Bdx does not exist, then the values 
of Tare close to one. We thus have exp( 1 - 1/T) =: T, and 
from (A7) we find 

t Bdt 
t = e x p ( b l ~ ,  1, ) / [ I  

Expression (A9) is written in terms of relative variables. 
The modification of the method has formally led to the 

appearance of the function f in the final results. 
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