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The spin dynamics in systems with a small concentration of magnetic impurities of the same 
kind, randomly distributed in a diamagnetic matrix, is considered. All the spins are 
divided into two groups-those with a discrete spectrum and those with a continuous 
spectrum. It is assumed that the spins with a discrete spectrum are arranged in clusters, where 
by an (energy) cluster is meant a group of spins that interact with each other more 
strongly than with any spin outside the cluster. The spectrum of the spins that do not belong 
to clusters (after the maximum possible number k,,, of spins in a cluster has been 
fixed) is assumed to be continuous. Other ways of defining clusters are also discussed. The 
contributions of clusters to local fields and the role of clusters in the formation of a 
magnetic resonance are discussed. In the limit of a continuous medium the usual dipolar 
specific heat and the second moment of the resonance line are infinite. It  is shown that after 
two- and three-spin clusters have been separated out these quantities become finite (are 
regularized) and are determined by interactions over intermediate distances. On the basis of 
numerical modeling the specific heat of the system after such clusters have been 
separated out is determined, as are the fraction of spins belonging to these clusters and the 
contribution of these clusters to the resonance line. The process of "hole burning" in 
the wing of a dipolar-broadened line is considered. The inapplicability of the concept of spin 
packets to this process is demonstrated, and an explanation of the corresponding 
experimental results is given. 

1. INTRODUCTION 

A theoretical analysis of spin-dynamics processes in 
magnetically dilute solids with a low concentration of spins 
has been made principally in the context of three groups of 
topics, viz., the shape of the magnetic-resonance line in a 
weak alternating field that does not violate the two- 
temperature equilibrium in the system, the transport of a 
spin excitation between paramagnetic centers, and the re- 
sponse of the system to an alternating field of amplitude 
large enough for the system to be strongly nonequilibrium. 
The first problem has been discussed repeatedly since the 
classic paper of ~nderson, '  and can be regarded as practi- 
cally solved (see, e.g., Refs. 2 and 3 and the literature cited 
therein). The second problem has also been discussed re- 
peatedly (see Refs. 4 and 5), and in it there is now con- 
siderable clarity. The third problem has been studied least 
of all; it rests substantially on the solution of the other two, 
but is an entirely independent problem. 

The question of the kinetics of the establishment of 
equilibrium in a magnetically dilute spin system with a low 
concentration of spins is considerably more complicated 
that in the case of a spatially regular system, and, in certain 
fundamental aspects, is almost unstudied. We are speaking 
both of processes of restoration of equilibrium that has 
been violated by some short-time perturbation and of the 
establishment of a steady state of the system under condi- 
tions of a strong periodic external action. The distinctive 
features of the system under consideration are linked pri- 
marily with the spatial irregularity in the arrangment of 
the spins in the crystal lattice of the solid and with the 

resulting nonequivalence of their local environment. The 
experimental data of Refs. 6 and 7 and the theoretical 
estimates of Refs. 8 and 9 show that clusters of a small 
number of closely spaced spins adjust to the basic system 
extremely slowly, as a consequence of which many states 
drop out of the observable dynamics, so that a number of 
questions relating to the magnetic resonance and spin ki- 
netics in such systems require reinterpretation. 

In the two-temperature theory of magnetic resonancet0 
it is assumed that equilibrium within the Zeeman and di- 
pole reservoirs is established much faster than the mixing 
of these reservoirs under the influence of the alternating 
field. For spatially regular systems the consequences of this 
hypothesis have been confirmed by numerous 

A number of conclusions of this theory 
have also been confirmed in the case of strongly dilute 
systems,13 but, as later investigations have shown,69 many 
have not. This is due to the difficulty of migration of spin 
excitations within the line profile in the presence of spectral 
nonequilibrium produced by an external perturbation. Pos- 
sible causes of such nonequilibrium are, e.g., saturation of 
a wing of the line by steady high-frequency pumping or the 
pulse saturation used in spin-echo methods. 

The theory of stationary saturation has been 
previously3"4 extended by us to the case of magnetically 
dilute systems in the framework of the classical hypothesis 
of quasiequilibrium in a sufficiently wide temperature 
range. However, neither the establishment of quasiequilib- 
rium nor a theory of saturation that does not use the above 
hypothesis in situations in which there are no prior 
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grounds for this have been studied (with the exception of a 
few particular which do not provide a complete 
picture of this complicated phenomenon). 

In the present paper we develop the approach pro- 
posed in Ref. 16. It starts from division of the spins into 
several groups and separation of processes that have dif- 
ferent time scales and spectra of different natures. It was 
found that if from the entire system we separate out two- 
and three-particle clusters as carriers of the discrete spec- 
trum (the method of separation is described below), the 
remaining spins (the totality of which we call the mass) 
can be assigned a continuous spectrum. Here, such very 
important quantities in the theory as, e.g., the specific heat 
and the second moment of the absorption line of the spins 
of the mass admit passage to the continuum limit, when in 
these quantities it is possible to replace lattice sums by 
integrals over space and the concentration f (1 of sites 
occupied by spins and the lattice constant a appear in ob- 
servable quantities only through the volume density 
c= f/R (0-a3 is the volume per lattice site). As a result, 
these quantities are determined by the spin-spin interac- 
tions over intermediate distances. We recall that before the 
clusters are separated out the second moment and specific 
heat at high temperatures are determined by the interac- 
tions of nearest-neighbor spins in the crystal, and in the 
continuum limit are infinite. This circumstance-the regu- 
larization of the spin-spin interactions in the mass-makes 
it possible to hope that for the mass and for the system as 
a whole the fastest process will be the establishment of 
quasiequilibrium in the Zeeman and dipole reservoirs of 
the mass, for which the two-temperature description is 
thereby preserved, while the kinetics of the clusters should 
be constructed with allowance for the discreteness of their 
spectra. We note that here the spins of the mass are still 
subject to inhomogeneous broadening from the interaction 
with the spins of the clusters, and the two-temperature 
description for them will be valid only over times greater 
than the time of establishment of equilibrium in this inho- 
mogeneously broadened spectrum. 

The magnetic-resonance line in a strongly dilute sys- 
tem with a random uncorrelated distribution of spins has, 
as is well known,lv2 extended Lorentzian wings. In accor- 
dance with the ideas being developed, these wings are the 
envelope of the spectra of the individual clusters, while the 
central part of the line is associated primarily with the 
mass. The opinion that the line in a strongly dilute system 
has the nature of the envelope of the spectra of all possible 
pairs of spins can be traced from the early papers;17 in 
particular, in Ref. 6 the situation was likened to inhomo- 
geneous broadening in the case of the description of a spa- 
tially regular system in the framework of the spin-packets 
model. As is well known (see, e.g., Ref. 12, Chapter 6), 
"classical" inhomogeneous broadening is due to the spread 
of the g-factors of the various spins that arises from micro- 
scopic inhomogeneities of the crystal and (or) electron- 
nuclear interactions. In contrast to this, the broadening 
due to dipole-dipole interaction is usually called homoge- 
neous. In the description of inhomogeneous broadening the 
spin-packets model introduced in Ref. 18 is the most fre- 

quently used (see also Ref. 19, Chapter 4, and Ref. 20, 
Chapter 1). To each packet are assigned spins having one 
and the same resonance frequency. Energy transfer be- 
tween packets is possible both as a result of overlap of 
packets that are very close in frequency (spectral diffu- 
sion) and as a result of fluctuational jumps of spins from 
packet to packet; these processes give rise to an equilibrium 
between the packets. 

Developing here the approach projected in Refs. 6-9 
and 16, we investigate the mechanism of spin-spin inho- 
mogeneous broadening in strongly dilute systems, neglect- 
ing at this stage its "classical" sources. As the sources of 
the inhomogeneous broadening of the spectra of the mass 
we consider clusters distributed randomly in the mass. We 
prove analytically the regularization of the spin-spin inter- 
actions in the mass; combining analytical methods with 
numerical modeling, we determine the fractions of spins in 
clusters and in the mass, the magnitudes of the local fields 
created by the spins at each other, and the relative contri- 
butions of the two-particle clusters, three-particle clusters, 
and the mass to the total absorption line in different parts 
of the spectrum. The effectiveness of energy transfer over 
large frequency differences by multispin processes of inter- 
action of clusters with each other and with the mass is 
estimated, and the experimental results of Ref. 7 on the 
saturation of the resonance in the case of the 
inhomogeneous-broadening mechanism under discussion 
are interpreted. 

Everywhere below we confine ourselves to the high- 
temperature approximation, but we propose to consider 
the more general case separately on the basis of the tech- 
nique developed in Refs. 3 and 14. 

2. DISTINGUISHING THE CLUSTERS IN A STRONGLY 
DILUTE SYSTEM 

By a spatial k-spin cluster (kscluster) we shall mean 
a group of k spins such that every spin in the cluster has its 
k- 1 nearest neighbors also in the cluster (see Fig. 1 ). In 
the language of occupation numbers nq(nq= 1 or 0, de- 
pending on whether or not the site q is occupied by a spin; 
(nq)c= f ), we can introduce the object 

which we call the occupation number of the kscluster 
located at the distinct sites x,,x,, ..., xk. The prime on the 
product symbol signifies that r may not coincide with 
XI,  ..., xk and also that the sites r are in the forbidden vol- 
ume Vx I . . .  X k  formed by the union of the spheres S, ,..., Sk ,  
where the center of Si lies at xi and has radius equal to the 
largest of the distances from xi to the other spins in the 
cluster. The name "occupation number" is justified by the 
fact that z : ' , . x k  = 1 if the sites x, ,..., xk are occupied by spins 

forming a kscluster, and < f ) , x k  = 0 otherwise. The config- 

uration average is 
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interaction of a pair of spins in a strong magnetic field Ho, 
which has the form 

(3) 

a 
r'fi 

A j k = ~  (1 - 3  C O S ~ B ~ ~ ) ,  
i k  

FIG. 1 .  a)  Forbidden volume of a 2rclnster; b) forbidden volume of a 
3.+luster (the figure shows sections cut by the plane in which the spins 
forming the cluster lie); denotes the position of a spin. 

where Nxl ...Xk = VxI ,. ,xk/fl is the number of sites in the vol- 
ume VxI . , , x k .  Here and below, it is assumed that the con- 
tinuum limit is taken. In deriving (2) we have taken into 
account that ( n X l ) ,  = f 4 1, (nXlnx2 ) ,  = f 2  for x1#x2, etc. 
Details of working with the occupation numbers n ,  can be 
found in Refs. 2 and 14. 

In physical investigations it is more natural to base the 
classification of clusters not on distances but on the ener- 
gies of interaction of the spins. By an energy k-spin cluster 
(kFcluster) we shall mean a group of k spins such that the 
energy of interaction of any spin not belonging to this 
group with each spin in the group is smaller than the in- 
teraction of this spin in the group with every other spin in 
the group. The nontrivial dependence of the dipoldipole 

8 .  is the angle between rjk and Ho, leads to a rather com- 
J.! 

pllcated shape of forbidden volume (see Fig. 2) and, cor- 
respondingly, to significant complications in the use of 
kFclusters. In actual calculations, however, we have con- 
vinced ourselves repeatedly that the simpler identification 
of ksclusters often leads to practically the same results as 
the identification of k,clusters (the most important of the 
exceptions known to us is shown in Fig. 3 below). There- 
fore, in some of the analytical calculations below we shall 
use division into ksclusters. 

The above-described classification of spins in a disor- 
dered system admits a number of natural generalizations. 
It is apparent that the most important of these may be 
based on comparison of intracluster and extracluster inter- 
actions multiplied by scale factors, which could be refined 
by detailed analysis of any particular spin-kinetics process. 

In applications it is convenient to have a division in 
which each spin belongs to no more than one cluster. This 
is obtained if we fix the rank kmax of the largest cluster, and 
then exclude from the k-clusters with k <  kmax all those 
clusters that also belong to clusters of higher rank q 
(k < q<kmax). It is natural to designate the clusters thus 
obtained as orthogonal, while the clusters considered above 
will henceforth be called primary clusters. The occupation 
number of an orthogonal k-cluster with k < kmax is 

and, obviously, zxl,.,xk = Z : j x k  for k=k,,. To prove Eq. 
(4) we note that if the spins at sites x, ,..., xk do not form a 
k-cluster, then zxl , , ,xk = 0 as it should. If the spins at 
XI ,  ..., xk do form a k-cluster, then the sum 

FIG. 2. Forbidden volume of a 2,cluster 
, for different orientations with resuect to Hn 
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FIG. 3. Form of the functions g$)(A), gp)(A), and gL(A) in the central 
part of the line (see the text). 

can contain a contribution from only one cluster of rank 
k+m, which, if it exists, incorporates the k-cluster 
xl ,..., xk , while the factor l/m! cancels the contribution of 
the identical permutations of the coordinates r, ,  ..., r,. 
Therefore, the entire sum am takes the value 0 or 1, and the 
factor 1 -am in (4) is equal to zero if the k-cluster x,, ..., xk 
is contained in any of the (k+m)-clusters and is equal to 
unity otherwise. Correspondingly, according to (4), 
zxl .,.xk = 0 if the k-cluster x, ,. . .,xk is incorporated in any of 

-tk) the q-clusters (k  < q~k,,,). Otherwise, zxl .,.xk = zxl ,.,xk, as 
it should. 

Besides the objects introduced above, it is convenient 
to use occupation numbers specifying the occupation of 
individual sites or groups of sites by the mass or by clus- 
ters. For example, a natural classification of contributions 
to any single-particle operator U1 = B X n x ~ i 1 )  or two- 
particle operator U2 = Bxqnxnq~;i) is obtained on the basis 
of the relations 

At first sight, the division into orthogonal clusters de- 
pends in an essential way on k,,,. For example, for 
k,,,= N, where N is the total number of spins in the sam- 
ple, there exists only one orthogonal cluster. It has rank N 
and incorporates all other clusters. However, it will be seen 
below that in the theory the important k are k<ko-3. If 
k 4 k,,,(N, then zxl ,,.xk is almost independent of k,,, , 
since the probability of formation of clusters of rank 
q- k,,, decreases [as exp( -N(Q)), where N ( ~ )  is the num- 
ber of sites in the corresponding forbidden volume]. 

In an entirely analogous way we can construct the 
occupation numbers of neighbors of a specified site. The 
occupation number of site x by the spin closest to site y is 

Next, by induction, the occupation number of site x by the 
spin that is the kth neighbor of site y is 

These formulas presuppose subsequent passage to the con- 
tinuum limit, when we can neglect configurations in which 
several neighbors turn out to be at an equal distance from 
site y. The averages 

coincide, as they should, with a Poisson distribution. Equa- 
tion (6) was proposed earlier by V. E. Shestopal during the 
preparation of Ref. 2 1. 

We note that the construction described in this section 
makes it possible to obtain many results directly in quadra- 
tures, in contrast to methods dating back to Ref. 22, based 
on the formulation of integral equations (see, e.g., Ref. 
23). 

The fraction of spins belonging to ksclusters for 
kma,=2 can be calculated analytically if we neglect the 
details of the lattice structure. We shall consider a crystal 
containing N sites, in which the N spins are distributed 
randomly (N/N= f 9 1 ). The occupation number of site x 
by a spin from a 2rcluster is equal to Bzxi). Accordingly, 
in the 2sclusters there are ~~=8~z~2,) spins, and the frac- 
tion that they constitute of the total number of spins is 
equal to 

where n: and n," are the occupation numbers of site x by = f C ( l - f  INx0zc d 3 ~ e x p ( - c ~ x o ) ,  
x I ( 8 )  

clusters and the mass, respectively, and n;(&) is the occu- 
pation number of site x by orthogonal k-clusters. The oc- where Vxo is the forbidden volume. Since, in the given case, 
cupation numbers by clusters and the mass for groups of Vxo = 977x3/4, after calculation of the integral we obtain 
sites are also useful; a relevant example is contained in Eq. xp= 16/27z0.59. Thus, for kmaX=2 just 11/27 of the total 
(32). number of spins remain in the mass. 
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We shall make an approximate estimate of the fraction 
of spins that belong to kFclusters for kma,=2. In this case 
too Eq. (8) is valid, if by Vxo we understand the forbidden 
volume corresponding to the interaction (3). It is obvious 
that Vxo - x3. Performing a numerical investigation of the 
angular dependence of the forbidden volume, we find that, 
if we represent it in the form Vxo = a(8)x3/  

1 1 - 3cos28 I, the function a ( 8 )  varies slowly in the range 
5.8-4.7, and for estimates of the integrals it is natural to 
replace it by the average value 
a,= J~ '~a (0 ) s in  0d0=5.43. Now the integral (8) is easily 
calculated, and gives xp= 16?r/9v3ae. The numerical value 
xp z 0.58 thus determined corresponds to the value 
a,=5.55. 

Obviously, the fraction of spins in the mass decreases 
with increase of k,,,, but analytical calculations with 
k,,, > 2 encounter great difficulties, even for ksclusters. In 
view of this, numerical modeling has been undertaken. 
This has been performed both on a lattice and in the con- 
tinuum approximation. In the former case, N spins (of 
concentration f =N/M~) are distributed randomly over a 
cubic lattice in a cube containing M X M X M  sites, the 
necessary clusters are distinguished, and the total number 
of spins appearing them is found. Although the fractions of 
spins belonging to clusters of different kinds are configu- 
rationally self-averaging quantities, the relatively small 
number N that is accessible in practice for modeling does 
not give configurationally averaged values, and so the dis- 
tributions of the spins have been repeated many times until 
stable averages have been obtained. The same procedure 
has also been used for the numerical modeling, described 
below, of other quantities. The statistical processing has 
been performed using the Student distribution; the param- 
eter uncertainties given below correspond to a confidence 
level of 0.95 (see, e.g., Ref. 24). To take account of the 
special conditions of the spins situated near the boundary 
of the cube, we selected a smaller cube concentric with the 
given cube and conducted the search for clusters only in 
the inner cube, using the spins outside the inner cube to 
check whether the group under inspection was a cluster. 
The same procedure was used for the modeling in the con- 
tinuum limit, but the spins were distributed randomly in 
the same volume. 

For k,,, = 2 the fraction of spins in ksclusters, within 
the error bars of the modeling that was used as a control 
(since the exact result is known), amounted (for 
f = 1 x low3) to 0.59~k0.01 (the calculations were per- 
formed for N =  227, 53 1, 1000). The result practically co- 
incided with the exact result 16/27 ~ 0 . 5 9 3 .  The modeling 
performed in the continuum limit gave the same result. We 
note that the calculated value of xp does not depend on the 
choice of boundary conditions within the limits of the in- 
dicated accuracy of the calculations. 

An analogous calculation of the fraction of spins in 
krclusters for kma,=2 for pairs interacting in accordance 
with the law (3) gave, in the continuum limit, 
xp=0.58 * 0.01, which agrees well with the analytical es- 
timate given above. In the case of modeling on a lattice xp 
oscillates in the range (0.57 *0.01)-(0.59 *0.01), depend- 

ing on the orientation of the axes relative to Ho. 
The fractions of spins in orthogonal 2F and 3=clusters 

for k,,,= 3, obtained by numerical modeling, amounted to 
xp=0.51 *0.01 and x,=O.11*0.01 (both the results in the 
continuum limit and the results on a lattice with different 
orientations of the field lie within the indicated error bars). 
In all cases, the fraction of spins in 2-clusters for kmax=2 is 
very close to the total fraction of spins in 2- and 3-clusters 
for kmaX=3. This weak dependence of the total number of 
spins in clusters on k,,, illustrates the above-noted stabil- 
ity of the properties of clusters of rank kgko < k,,, to in- 
crease of k,,, . 

We note also the obvious relation 

where x r )  is the fraction of spins in q-clusters for kmaX= k. 
For example, in the results given above, 
x2+ 2x3/3 =0.58 *0.01 for k,,, = 3 is equal to 
x2=0.58 *0.01 for kma,=2. This result is useful, in par- 
ticular, for monitoring the results of numerical modeling. 

3. CONTRIBUTIONS OF THE CLUSTERS AND MASS TO 
THE LOCAL FIELDS 

To estimate the influence of clusters on the mass we 
must calculate the root-mean-square local fields produced 
by the spins of the clusters at spins of the mass and by the 
spins of the mass at each other. 

After distributing the spins randomly over the lattice, 
as described above, and identifying the orthogonal 3F and 
2=clusters (k,,, = 3), we calculated the second moments 
(squares of the local fields) produced by spins of group 
"a" at spins of group "b," where a,b take one of the three 
values m,p,t (mass, pair, triplet) : 

The prime on the sum over j, signifies that for b=p and 
a = p  or b = t and a = t we exclude from the sum over j ,  the 
contributions from the cluster to which ib belongs; Nb is the 
number of spins in group "6." 

Three variants of the calculations of the partial mo- 
ments were performed (see Table I ) .  Comparison of vari- 
ants 1 and 3 shows extremely small differences in the clas- 
sification of the clusters by energies and by distances. 
Comparison of variants 1 and 2 makes it possible to esti- 
mate the concentration dependence of the partial moments, 
which differs sharply from the usual proportionality of the 
total M2 to the concentration of spins. For a discussion of 
this question, see Sec. 5 below. 

In all cases the local fields produced at the mass by 
pairs is appreciably greater than the fields produced by the 
spins of the mass at each other, i.e., there are indeed 
grounds for speaking of substantial inhomogeneous broad- 
ening of the line of the mass by pairs. The role of the 
triplets in this process is appreciably smaller, and the in- 
homogeneous broadening due to the triplets is smaller than 
the homogeneous broadening. In exactly the same way, the 

757 JETP 77 (5),  November 1993 F. S. Dzheparov and E. K. Henner 757 



TABLE I. Contributions of clusters and the mass to the local fields. The lattice is cubic, and the field 
Hall [OOl]; M ; - ~ =  f2( Jf i /a3)2pf+b.  

triplets give rise to substantially smaller local fields at the 
pairs than do the pairs at each other or than does the mass 
at the pairs. This gives grounds to expect that the role of 
the triplets in the spin dynamics is small, and in the first 
approximation the triplets can be disregarded. However, 
identification of the triplets as well as the pairs, i.e., the 
adoption of kmaX=3, is of fundamental importance when 
one takes into account the correlations in the spatial ar- 
rangement of the spins of the mass, since only in this case, 
as noted above, can the mass be considered in the contin- 
uum limit. In the next section this will be demonstrated in 
more detail. 

The extent to which our ideas on the structure of the 
energy levels of the spin system change after the clusters 
have been separated out can be seen from the following 
relations. The root-mean-square local field, from the mag- 
nitude of which one can estimate the broadening of the 
levels of individual spins in the ordinary "quasi-one-spin" 
picture of the spectrum of a many-spin system,"-'3 and 
which is formally defined as HL = ywL 
= y ( ~ r Z i 2 / ~ r ~ i ) ' / 2 ,  is related to M2 by 
HL= y(M2/3) 'I2 (Ref. 1 1 ). When the 3= and 2=clusters 
are separated out, with f = 1 X and kmaX=3, the root- 
mean-square local fields at the mass, at the spins of pairs, 
and at the spins of triplets are related to HL as follows: 
H ~ ~ ) / H ~ Z O . O ~ ,  H ~ ) / H ~  z 0.05, and @L)/H~ ~ 0 . 0 3 ,  
where fiLrn) =HF'rn + HT+rn +Hi-rn, etc. This emphasizes 
once again that, for a random distribution of spins with 
f41,  it is practically impossible to judge the structure of 
the energy spectrum from the magnitude of HL. 

where S + ( t )  = exp(iZit)S+exp( - W i t ) ,  and 
A = wo-o is the frequency shift relative to the center wo of 
the line ( (  ...)= Tr( ...) /Trl) .  

First we shall perform an analysis of the contribution 
of pairs (2-clusters) to the absorption for kma,=2, neglect- 
ing the interaction between the clusters and between the 
clusters and the mass. Each 2-cluster gives contributions to 
the absorption at frequencies 

We shall find the envelope of these contributions (the ab- 
sorption line of the 2-clusters) by averaging these frequen- 
cies with allowance for their statistical weights; this proce- 
dure should lead to the exact result, at least in the 
Anderson model, which forms the basis of the statistical 
theory of the line shape in a strongly dilute system. It is 
well known that the line shape in this model, in which one 
confines oneself to the anisotropic part of the spin-spin 
interactions (i.e., replaces the Hamiltonian in (3)  by 
$4j$7~i), is very close to the actual line shape that arises 
from the interactions (3).  

Proceeding in exactly the same way as in Sec. 2 to 
determine of the number of spins appearing in pairs, we 
obtain the number dnp(A) of pairs that make a contribu- 
tion in the range of frequencies from A to A +dA ( A  > 0; 
the line is symmetric about A=O). We represent the for- 
bidden volume in the form Vxo = q(8)x3, where, for the 
spatial classification of clusters, q (8) = 9?r/4, and, for the 
energy classification, q(8) = a ( @ /  ( 1 - 3 cos2 8 1 .  Then 

4. CONTRIBUTION OF THE CLUSTERS TO THE MAGNETIC- 
RESONANCE LINE 1 Jfi 

dnp(b) =- NC- de sin el 1-3 cos2 8) 
16 A2 JOT 

The expression for the shape of the magnetic- 
resonance line in a system of spins S= 1/2 coupled by 
dipole-dipole interaction can be represented in the form3 

xexp I :  --q(e) I 1-3cos2e 

Im dt( [s+(~),s-] +)eiAt,  
With the spatial classification, after normalization, we ob- 

g(A) =- 2irN - m  ( lo )  tain 
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TABLE 11. Integral absorption intensities in different parts of the spectrum on account of 2S and 
I 
I 

2Fclusters (k,, = 2) and for the corresponding Lorentzian line. 

cases, however, the following conclusion is valid: Asymp- 
9 totically on the wings of the line, the absorption arises 

entirely from 2-clusters (for k,,, = 2).  
(12) To illustrate the extent to which clusters and the mass 

where D= (22/3fl)c?fi is the half-width of the Lorent- are important in the absorption in different regions of the 
zian line spectrum, in Table I1 we give the results of calculations 

[using Eqs. (12) and (15)] of the integral intensities 
1 n 

Part of the spectrum 

predicted for a strongly dilute system of dipole-interacting 
spins in the continuum approximation in the Anderson 
model, and p = (3/2) ( 1/m/3). As was shown earlier,2,3 
this model reproduces the line shape in a system with real 
interactions, except, possibly, in the region of small fre- 
quencies 1 A I < D. For modeling on a lattice, there are no 
grounds to expect a line shape of the form ( 13) even in the 
region of very large frequences A -- A,,, , where the con- 
tinuum approximation is no longer applicable; in order of 
magnitude, A,,, is equal to ?fi/a3, where a is the lattice 
constant. 

The high-frequency asymptotic form of the function 
(12) for A>D is 

where Ai are the boundaries of the frequency intervals. For 
these boundaries we have taken 0,0.3 D, D, 3 D,lOD, 300, 
1000. In accordance with ( 16) we have z,J~(P) =fxp. It can 
be seen that above A= 10D the absorption arises almost 
entirely from 2-clusters. 

For k,,,> 2, analytical estimates of the contributions 
of clusters of different ranks to the absorption are difficult. 
However, estimates of these contributions are possible by 
numerical modeling. Writing the average in (10) in the 
representation in which the Hamiltonian of the dipole- 
dipole interactions is diagonal, and using an integral form 
of the 6-function, we bring ( 10) to the form 

> 1000 
0,0028 

0,0032 - 

0,0032 

Recognizing that the fraction xp of spins that are in pairs is X6(Em-En-ao+A), (17) 

in this case equal to 16/27, we find that the quantity where Em are the energy levels of the system of interacting 
xP=g$')(~) at high frequencies completely exhausts the spins in a strong field Ho (wo=yHo). In our approach, in 
line. We note that for A-0 the quantity g$')(A) is appre- which the system is divided up into orthogonal clusters, we 
ciably different from zero ( D ~ P )  (0) = ( 16,rr/243 ) -0.2 1 ). represent ( 17) in the form 

With the energy classification of the clusters the cal- 

0 - 0 .30  
2s clustei 0,039 

-- 
%ax 

culation is simplified considerably if we take a ( 8 )  =a 
=const (see Sec. 2). We obtain g (A)=  2 X ~ ( ~ ) ( A > ,  

k =  l 

0.30 - D 
0,083 

0.089 

0,157 

2~cluster 

+ SL 

9 f l  where g(k)(A) is the normalized "line-shape function" of 

( 15) the clusters of rank k (k=  1 corresponds to the mass): 

0,0075 

0,093 

At high frequences the asymptotic forms of g&')(A) and 
g$')(h) coincide, but at the center of the line (A 5 2 D )  
they have noticeably different behavior (see Fig. 3). The 
physical meaning of the difference in the asymptotic forms 
at low frequencies is the following. The principal contribu- 
tion to the low-frequency asymptotic form in the case of 
spatial clusters is given by spins located at an arbitrary 
distance but close to 8=arccosl/fl. But the probability of 
formation of an energy cluster by these spins is exponen- 
tially small, since the forbidden volume for them is in- 
versely proportional to the frequency and is large. In all 

0 - 3 0  
0,091 

0.104 

0,148 

The summation over p runs over all clusters of rank k, and 
Nk is the number of spins appearing in them. The normal- 
ized functions fr) describe the broadening of the levels of 
the clusters on account of their interactions with each 
other and with the mass (without allowance for these in- 
teractions they would be transformed into 6-functions); El*, 
and I n,) are the energies and states of the clusters. 
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3 0  - 100 
0,055 

0,059 

0,071 

10D - 30D 
0,019 

0,020 

0,021 

300 - 1000 
0,0072 

0,0073 

0,0074 



We note that the division used in Eq. ( 18) is exact for 
the Anderson model, in which there is no transfer of po- 
larization from spin to spin, and also that the spins in 
different clusters precess mainly with different velocities, 
making the transmission of magnetization from one group 
to another difficult. Therefore, cross terms of the type 
g("m), g(m,p), etc. in g(A) should be comparatively small. 

Numerical modeling turns out to be possible because 
the spectrum and wave functions of relatively small clus- 
ters can be determined in practice; for clusters of ranks 2 
and 3 this can be done analytically, while for large k 
(k  5 10) numerical diagonalization of matrices of order 2k 
(since S= 1/2) is technically fully realizable. 

The spectrum of a pair of spins that are coupled by the 
interaction (3), and the corresponding wave functions, can 
be obtained easily: 

Here, I + + ) =  I +)j l  + ) k ,  and 1 +), and 1 -), are the 
normalized eigenfunctions of the operator S;. 

Substantially more cumbersome is the calculation of 
the states and spectrum of a three-particle cluster (S= I /  
2) for an arbitrary relative arrangement of the spins. Its 
Harniltonian is 

FIG. 4. Transitions induced by an alternating field 
in the spectra of a pair and a triplet (see the text). 

where 

The states ( 1 )  and 18) have the form [ I ) = ( + + + )  and 
( 8 ) =  I - - - ) .  The states in the group (2) ,  )3) ,  14) are 
linear combinations of the states ( + + - ), ( + - + ), and 
I - + + ), while the states in the group 1 5), 16), 17) are 
linear combinations of the states 1 - - + ) , ) - + - ), and 
I+-->.  

In Fig. 4 the spectra of a pair and of a triplet are 
depicted schematically; the arrows indicate transitions for 
which the matrix elements of the operators S, are non- 
zero, i.e., those which are induced (in leading order in the 
interaction) by an alternating field perpendicular to Ho. If 
we represent 

then 

The spectrum has the form ~ , = A \ ~ ) ' + A ! " ) * + A $ ~ ) ~ ,  

El = 3 ~ + 2 a ,  E2=7, E3=r-a+b, E4=r-a-b, where A!"), A$"), and A$") can be represented, in particu- 
lar, in the form 

E5= -I-, E6= -7-a+b, E7= -7-a-b, (22) 

E8= -3r+2a, A ~ ~ ) = ~ - z ,  Ai2)=z-x, A ! ~ ~ ) = X - ~ ,  
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TABLE 111. Integral absorption intensities in different parts of the spectrum in energy clusters, obtained by numerical modeling: 1) km,,=2; 2) km,=3 
in the Anderson model; 3) km,,=3 with the real interaction. 

The quantities p,, v,, and 6, are given by formulas anal- 
ogous to (25). 

Using Eqs. (20)-(26) it is easy to obtain for pairs and 
triplets the matrix elements (m IS, I n) that appear in Eqs. 
(19) for ~ ( P ) ( A )  and g(')(h). 

In the Anderson model, which was discussed above, 
formulas analogous to (20)-(26) can be obtained consid- 
erably more simply, since the Hamiltonian is already diag- 
onal in the starting representation. To save space we do not 
write them out explicitly. We note that the frequencies and 
probabilities of transitions for pairs in this model coincide 
with those for the real interaction, and this lies at the basis 
of the model; for triplets we no longer have this coinci- 
dence. 

Numerical modeling was performed for k,,, = 3 in the 
manner described above; the frequencies of the transitions 
indicated in Fig. 4, and the matrix elements of the opera- 
tors in Eq. ( 19), were found for each of the clusters. The 
region of frequencies from 0 to A,,, (the line is symmetric 
about the center) is divided into intervals in which the 
contributions tog( A) from the pairs and triplets separately 
are summed as in Eqs. ( 19). The sizes of these intervals are 
certainly greater than the characteristic widths of the func- 
tions ff) and fp) appearing in Eq. ( 19), and, therefore, 
the concrete form of these functions is of little importance 
for the histogram illustrating the frequency distribution of 
the quantities I('), and =I(') + ~ ( p ) .  

As a control, the modeling was first performed for the 
case k,,,=2 in the continuum limit, with f = 1 X lop3, 
with the aim of comparing with the results given in Table 
I1 [obtained on the basis of Eq. ( 11 )], studying the influ- 
ence of the number of spins in the sample on the results of 
the modeling, and comparing different ways of choosing 
the boundary conditions. The modeling was carried out for 
N=531 (a cube of 81X81X81 sites) and N=1000 (a  
cube of l00X 100X 100 sites). In Table I11 (variant 1) we 

N? 

I 

2 

3 

give the results obtained with the "energy" classification of 
pairs and boundary conditions of the "cube with a wall" 
type, in which, in the "large" cube, one selects a concentric 
cube embedded in it and investigates whether the spins of 
the inner cube belong to clusters, the spins of the wall being 
used only to check the clustering. For kma,=2 the wall 
thickness has only a very weak effect on the results, and, 
below, is equal to the average spacing between spins for the 
given concentration. The contribution of 2, clusters to the 
absorption for the same frequency ranges as in Table I1 is 
given in Table 111; the results are in fully satisfactory agree- 
ment. 

In Table I11 we also give the results of the modeling for 
kmax=3. These were all obtained for N= 1000 and a "wall" 
thickness equal to twice the average interspin spacing, by 
averaging over 1500 realizations. Variant 2 is the Anderson 
model in the continuum limit, and variant 3 is the real 
interaction in the continuum limit. 

Comparison of the results with the analogous results 
corresponding to a Lorentzian (Table 11) and with each 
other permits us to draw the following conclusions. Far out 
on the wings the functions g(') (A) and g(P) (A) are quasi- 
Lorentzian ( - A - ~ ) .  Their total contribution to the ab- 
sorption is also quasi-Lorentzian, and, for A > 300, 
practically exhausts it. This can be seen especially clearly 
from variant 3, since only in this case (the Anderson 
model) do we have exact information on the line shape (it 
is Lorentzian over the whole frequency range). As noted 
previously,2~3 the actual shape of the line can differ from 
Lorentzian in the region of small frequencies I A I 5 D, as a 
result of flip-flop processes. The actual absorption at the 
center on account of 3,+lusters is somewhat smaller than 
in the Anderson model. For a concentration f 5 lop3 al- 
lowance for the concrete structure of the lattice (the cor- 
responding modeling has also been carried out) leaves the 
results obtained in the continuum limit almost unchanged 
(we recall, however, that we are speaking only of the in- 
tegral contributions to the absorption in very wide fre- 
quency intervals). 

The main result of the numerical modeling for k,,= 3 
is the following: The partial contributions of triplets and 
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0.58 i 0.01 

0 3 0  i 0.01 

0.50 * 0.01 

Part of the spectrum 
0 - 0.30 

[ (P I  .; 0.0080 t 
0,0005 

I ( ' )  - 0,0088 
0.0004 

l ( p )  - 0,0068 f 
0.0004 

/ ( ' + P )  = 0,0156 
0.0006 

I ( ' )  = 0,0042 i 
0.0002 

I ( ' )  P 0,0069 f 
0.0001 

' 1  = 0 ,  
0,0005 

0.30 - D 
0,093 i 

0.002 

0,0133 i 
0.0005 

0,0816 f 
0.001 3 

0,0949 i 
0.0014 

0.0055 i 
0.0003 

0,0821 i 
0.0013 

0.0876 i 
0,0014 

0 - 3 0  
0,105 t 

0,002 

0,0155 i 
0.0005 

0.0933 t 
0.0015 

0,1088 t 
0.0016 

0,0146 i 
0.0006 

0,091 4 i 
0,0015 

0.1060 i 
0.0016 

3 0  - IOD 
0.056 & 

0,002 

0.0107 2 
0,0005 

0,0488 i 
0,001 1 

0.0595 * 
0,001 2 

0,0166 * 
0,0007 

0.0498 
0,0013 

0.0664 i 
0,0015 

IOD - 30D 
0.018 k 

0.001 

0.0042 2 
0,0003 

0.01 50 i 
0,0006 

0,0192 
0.0007 

0.0076 * 
0,0005 

0.01 45 2 

0.0006 

0.0221 * 
0,0008 

300 - IOOD 
0,0066 1: . 0.0004 

0.001P i 
0.0062 

0,0050 f 
0,0004 

0.0068 i 
0,0005 

0.0035 i 
0.0004 

0.0050 * 
0,0004 

0.0085 t 
0.0006 

> 100D 
0.0027 + 

0.0003 

0,0008 * 
0.0002 

0,0018 i 
0,0002 

0.0026 * 
0.0003 

0.0018 * 
0.0003 

0,0019 i 
0.0002 

0.0037 i 
0,0004 



5. REGULARIZATION OF THE SPIN-SPIN INTERACTIONS IN 
THE MASS 

FIG. 5. Partial contributions to the absorption from (a) 3rclusters (the 
short-dashed line), (b) ZFclusters (the long-dashed line), and (c)  3 r  
and Zrclusters jointly (the thin solid line); (d) the Lorentzian function 
(the thick solid line). 

pairs to the absorption are comparable over the whole 
range of frequencies, fall off in the wings as -hP2,  and, 
together, practically exhaust the absorption. 

In Fig. 5 the partial contributions to the absorption are 
represented graphically in the form of a histogram corre- 
sponding to variant 2. The contribution of the 3rclusters is 
depicted by a short-dashed line, that of the 2Fclusters by a 
long-dashed line, and the total contribution of the pairs 
and triplets by a thin solid line; a thick solid line denotes 
the result of integration of the Lorentzian function. The 
results can be interpreted in an obvious way: With increase 
of A the contribution of clusters to the total absorption 
increases. Whereas for 1 A ( < 0.3 D it is of order 1/6 (the 
remainder is the contribution of the mass), for 0.3D< A 
< 2/3 it is of order 2/3, for D < A < 3 D it is of order 3/4, 
for 3 D < A < 10D it is of order 6/7, and for A > 300  it 
practically exhausts the absorption. Of course, the contri- 
bution of the mass to the absorption is manifested to a 
small extent at any high frequency, but an estimate of this 
contribution lies beyond the possibilities of our modeling. 
Also beyond these possibilities is the estimate of the as- 
ymptotic form of the frequency dependence of the absorp- 
tion for A 2 A,,,; for a strongly dilute system this question 
needs a separate, preferably not numerical, investigation. 

We shall consider such important characteristics of the 
spin system as the dipolar specific heat Cdd and the second 
moment M2 of the resonance line. The quantity Cdd, de- 
fined, as is customary in the theory of magnetic resonance, 
by differentiation of the dipole energy with respect to the 
inverse temperature, is, in the high-temperature approxi- 
mation, simply related to M2 (see, e.g., Ref. 3): 

The main contribution to Cdd and M2 is given by clusters of 
closely spaced spins, since AL -- I x I -6; in this case, 
Cdd- &/ f. We shall prove that, if we eliminate from Cdd 
the intracluster contributions of the 3- and 2-clusters for 
kma,= 3, the remaining expression will be finite in the con- 
tinuum limit and proportional to the square of the inter- 
action energy of the spins over intermediate distances.I6 

We rewrite M2 in the form 

We shall consider first the quantity obtained from M2 by 
elimination of the contribution of pairs for km,,=2 (i.e., 
pairs are the only form of clusters separated out) : 

where 2:) is the occupation number of a rank-2 cluster 
(for km,,=2 we have z) = zxq). As was shown in Sec. 2, 
the configuration average is 

where Vxq is the forbidden volume depicted in Figs. l a  and 
2. Thus, 

For x -0 we have 1 - exp( - c Vh) - c Vox - ex3, and 
there is a substantial weakening of the short-distance sin- 
gularity in comparison with the initial M2 (the power de- 
pendence ~ ~ - c a - ~  is replaced by a logarithmic singular- 
ity. We note that M2 contains a contribution not only from 
the interactions in the mass but also from the interactions 
of the spins of the mass with pairs. 

We shall show that extraction of the contribution of 
the triplets (as well as the contribution of the pairs) elim- 
inates completely the dependence of the second moment 
and dipolar specific heat on the shortest distance between 
the spins. This circumstance is nontrivial, since even after 
the elimination of the pairs and triplets spins at the shortest 
distance in the lattice continue to be present in the mass, 
though with smaller statistical weight. We set kma,=3 and 
introduce the quantity <:)= 8224 (the occupation num- 
ber of a rank-3 cluster; see Sec. 2). The quantity 2:) is 
indeed an occupation number, i.e., can take only the value 
0 or 1, since in the sum defining it not more than one term 
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can be nonzero. We shall consider the contribution to M2 
from the interactions of spins not belonging to the same 
cluster (pair or triplet): 

9 -- 3 2 )  3 3 )  3 2 ) 3 3 )  - 16N 1 "Xnq( ' -zxq -zxq -kZxq zxq )A:,. (32) 
XQ 

After configurational averaging we have 

1 -"P( -cvx0) -f C exp( -cVxQ) 
Q 

Here, VXh is the forbidden volume of a three-spin cluster. 
In the case of a 3rcluster it is depicted in Fig. lb. For x+O 
we have 

Thus, under the summation sign of (33) there are indeed 
no short-dktance singularities, and M~-02. Again we 
note that a2 contains a contribution not only from the 
interactions of the spins of the mass with each other but 
also from their interactions with the clusters. It is clear 
that finiteness of the quantities M, and Cdd in the contin- 
uum limit is found also after elimination of the contribu- 
tions of clusters for k,,,=3. 

The results of numerical modeling of the partial second 
moments M;'~ were given above in Sec. 3 and confirm 
their quadratic dependence on the concentration of spins. 
This does not contradict the fact that the total second mo- 
ment is proportional to the concentration, since the over- 
whelming part of it (see the discussion in Sec. 3) is due to 
the intracluster contributions, which were eliminated from 
all the M!'~. 

6. SATURATION ON THE WINGS OF A DIPOLE-BROADENED 
LINE 

A direct experimental investigation of the "hole burn- 
ing" (saturation of the resonance) in a dipole-broadened 
line was carried out in Ref. 7. The principal result was 
interpreted in the framework of the hypothesis of spin 
packets, and is as follows. If the spin system is character- 
ized by an inhomogeneously broadened line G(w -@,) 

consisting of homogeneous spin packets with form factors 
g(o-w,), the area of the hole that is formed upon satu- 
ration at the frequency wo+ A is equal to7 

where ol = yHl (HI is the amplitude of the alternating 
field) and t, is the pulse duration. The best agreement in 
the experimental dependences of m on the power of the 
ultra-high-frequency pulse has been obtained with the as- 
sumption that the wings of the packet have an exponential 
shape: 

(rather than a Lorentzian or Gaussian shape). 
The spin packet is a global concept, characterizing the 

entire spin system as a whole, and its shape does not de- 
pend on the intensity of the field HI. But the absorption of 
the external field occurs locally, and has an essential de- 
pendence on the concrete configuration of the spins that 
participate in each elementary act. Unlike the shape of a 
spin packet, the line-shape function describing the homo- 
geneous broadening of these spins is not a self-averaging 
quantity, and only directly observable quantities are sub- 
ject to configurational averaging. In accordance with this, 
we shall examine the results of Ref. 7 starting from the 
ideas developed above. 

A detailed theory of magnetic-resonance saturation 
that takes into account the hierarchy of evolution times of 
clusters that exists in a magnetically dilute system with 
f 4 1 should incorporate kinetic equations describing the 
absorption of energy of the high-frequency field by the 
mass and by clusters and the process of cross relaxation 
between them with allowance for the correlations in the 
spatial distribution of clusters with different transition fre- 
quencies and broadenings of the spectral lines; in the later 
stage of the evolution it should also take spin-lattice relax- 
ation into account. Leaving this complicated problem 
aside, we shall perform simple estimates of the rates of the 
elementary processes. We shall assume that the line width 
determined by the interactions of the spins of the system 
with the spins of the mass is of order Dm < D. Suppose that 
pumping is carried out on a wing of the line, i.e., the de- 
tuning A satisfies the condition D(A4A,, . Energy is ab- 
sorbed principally by clusters having a splitting 3A,=A 
(A, is the interaction constant in the pth pair). The rate of 
the corresponding induced transition is w(') - w:/~, . 
The rate of the four-spin process that restores the equilib- 
rium of a cluster with the mass is W- (&,/A,)~/D, 
(Ref. 8); of the same order is the rate of the resonance 
four-spin process of energy transfer from a pair on a wing 
to a pair in the region of frequencies I A ( - D. The rates of 
nonresonance processes are exponentially small in 
(A,/D, ( (estimates of the rates of many-spin processes 
are based on the application of averaging  method^",^^-^^ . 
Therefore, the transfer of dipole energy (and, partially, of 
magnetization) occurs diffusively by small ( 5 Dm) steps 
through the spectrum. It follows from all this that for 
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w:)D:/A~ and with pumping at frequencies A)D two- 
temperature equilibrium in the large cannot be established, 
and this agrees with the results of Ref. 7. 

The fields from the spins of the mass that produce the 
homogeneous broadening of the spectra of clusters are nat- 
urally regarded as a normal random process in the spirit of 
Anderson-Weiss theory. In fact, we shall consider the case 
when the free-induction signal of a spin located at the point 
x can be approximated by the expression 

where the second moment ~ , ( x ) = $ ~ , n & : ~ ,  and the 
function K(T) does not depend on the configuration of the 
spins. Then, 

This expression is derived in the same way as, e.g., Eqs. 
(22) in Ref. 14. If the local fields do not depend on time, 
it is obvious that we obtain a Lorentzian line with a width 
equal to 0.8 of the exact value. But if the local fields fluc- 
tuate in time, so that K(T) falls off over an interval 
T,= s ;drK(~),  we obtain for t>rc  the asymptotic form 

in agreement with the earlier prediction of Ref. 2. Thus, 
the proposed approximation leads to surprisingly good re- 
sults even when the actual distribution of the local fields is 
still not very close to a normal distribution. After the 3r 
and 2=clusters have been separated out, the distribution of 
the local fields should become closer to a normal distribu- 
tion, and this justifies the proposed approximation. An im- 
portant point is that Eq. (37) leads to a practically expo- 
nential wing of g,(o) for any reasonable form of the 
correlator K(t); an example of the corresponding analysis 
is contained in Ref. 28. 

We now consider hole burning at a distance A> D from 
the center of a dipole-broadened line in the experiment of 
Ref. 7. The wing of the dipole-broadened line 

is due entirely to the first term (of order f ') of the con- 
centration which can be expressed in terms of 
the solution of the problem of the evolution of two isolated 
spins. After division of the system into clusters and the 
mass, a contribution of order f' will arise only from the 
primary 2=clusters with interaction 1 Aij 1 % D, since all 
other contributions contain additional powers of f from 
the forbidden volume or from the rank (k  > 2) of the clus- 
ter. Correspondingly, the leading term in the above- 
indicated asymptotic form of gs (o) D) is completely de- 

termined by the contribution of the 2=clusters. Another 
proof of this fact, based on Eq. ( 11 ), is outlined in Sec. 4. 

As was explained above, the change of the populations 
of the states of the cluster under the influence of interac- 
tions with the mass and other clusters occurs slowly by 
virtue of the large magnitude of the inhomogeneous broad- 
ening induced by intracluster interaction. Thus, the hole 
burning is the saturation of 2-cluster transitions in reso- 
nance with the alternating external field. Here, Eq. (35) 
remains valid if it is understood locally, i.e., if it applies to 
one cluster, and we recognize that the functions G(A) and 
g ( o )  are determined by the concrete arrangement of both 
the spins in the absorbing cluster and the nearest spins of 
the mass. If we approximate the fields induced by the spins 
of the mass and by a normal random process with second 
moment M2 and K(t) =exp( -46:t2), where the fluctua- 
tion rate 6/= ( ( c i $ ) / ~ , ) " ~ ,  then, in the case of strong 
saturation, when the rate of hole burning substantially ex- 
ceeds the rate of hole covering, the observed area of the 
hole is 

In the absence of division of the spins into the mass 
and clusters, we would find that, in the continuum limit, 
(S,),= co and Eq. (40) would be wrong. When the divi- 
sion is taken into account, (6/), is finite, and the distribu- 
tion of 61 is substantially narrower than in the absence of 
division. In fact, (61), could diverge only because in our 
construction the fourth moment (M4), diverges, in con- 
trast to (M2),. However, such a divergence could stem 
only from the action of spins of a resonance cluster on the 
surroundings--only this gives dangerous terms of the type 
A; in (h:). But this perturbation is smaller than A by 
virtue of the very construction of the cluster, and, conse- 
quently, there is no divergence. To summarize, if we take 
into account the slowness of the variation of the logarithm, 
all the averages in (40) can be decoupled and, as a result, 

This formula is in good qualitative agreement with the 
results of Ref. 7. A numerical analysis is necessary to elu- 
cidate the quantitative agreement, since the pre-asymptotic 
terms in (40) are important in the entire region wtp 6 lo5 
that is practically accessible in experiment. 

We draw attention especially to the fact that when Eqs. 
(35) and (36) are used we also find that 

but, in contrast to (36), ( g ( o ) ) - ~ - ~  and the correct 
logarithmic dependence of m(A) on mtp is obtained only 
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upon averaging not of g (o )  but of the directly observable 
quantity m(A). It is evident that the deviations from Eq. 
(42) that were observed in Ref. 7 at large values of Wt, 
can be due to direct pumping on a wing of the line of the 
spins of the mass. The rough estimate 
(gm(A) ),- ( l/Dm) ( D,/A)~, corresponding to k,,, = 3, 
does not contradict this hypothesis. A more detailed inves- 
tigation of this question can give information on k,,, , in- 
dependently of the above-mentioned quasi-thermodynamic 
condition kma,=3 formulated in Sec. 5. 

An important point is that the result (41) is extremely 
stable to the choice of correlator K(t),  and answers close 
to (41) and (42) are obtained with the use of the more 
realistic approximations for g(w) that were indicated in 
Ref. 4. 

7. CONCLUSION 

The approach developed above, based on the physi- 
cally clear idea of the isolation of clusters in a strongly 
dilute spin system, has made it possible to achieve regular- 
ization of the spin-spin interactions in the remaining part 
(the mass) and to justify, qualitatively and quantitatively, 
the idea originally proposed in Refs. 6 and 7 concerning a 
nonstandard mechanism of inhomogeneous broadening of 
the magnetic-resonance line in such a system. We have 
combined, simplified, and improved the primary cluster- 
analysis elements that were indicated independently, and in 
different directions, in Refs. 8 and 9. The classification of 
orthogonal clusters and the technique of working with 
their occupation numbers, introduced in Ref. 16 and de- 
veloped in the present paper, make it possible to obtain 
many results analytically as well as numerically, and to 
make further progress in the study of spin kinetics. An 
important point is that the structure of the crystal lattice is 
eliminated from the proposed theory in the limit of small 
concentrations, i.e., the theory has a physically well- 
defined continuum limit, as it should for the group of phe- 
nomena under consideration. 
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