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The equation of state of a liquid crystal in a polymer spherical capsule is solved. The solution 
is inhomogeneous both in the azimuth 4 and the polar angle 8. It is shown that owing 
to boundary conditions induced by pyrimidine impurities at the capsule boundary the spatial 
distribution in the angle 8 has one inhomogeneity scale L, while in the angle 4 it has 
two pitches of a helix. The basic pitch po is conserved inside the capsule, while the new pitch 
p induced by boundary conditions on the sphere is realized on the outside. This accounts 
for two temperature ranges of selective light reflection by encapsulated cholesterics with 
pyrimidine additives [G. M. Zharkova and S. I. Trashkeev, Kristallografia 34, 695 
(1989) Sov. Phys. Crystallogr. 34, 414 (1989)l. 

INTRODUCTION 

Cholesteric liquid crystals (CLC) are widely used as 
color indicators of various fields, owing to a helical struc- 
ture in the homogeneously oriented film. The period of the 
helix is commensurable with the visible-light wavelengths. 
This gives rise to light diffraction by the CLC helical struc- 
ture. Since the pitch of the CLC helix is very sensitive to 
external effects, the diffraction pattern makes it possible to 
detect small variations of these effects (electric, magnetic, 
temperature, strain, etc. ) . 

Optical properties of homogeneous cholesteric films 
have been studied in detail both experimentally and 
theoretically.' Liquid crystals (LC) in polymers have re- 
cently become of interest, since this combination increases 
the number of physical effects in LC and enlarges the range 
of their practical applications.2 The shape of LC inclusions 
in polymers can vary, depending on the type of the poly- 
mer. In particular, in polymers such as polyvinyl acetate 
this shape is close to spherical.3 The LC state in such 
spherical capsules is determined both by the interaction of 
the LC molecules, but also by their interaction with the 
polymer at the boundary provided that the capsule is suf- 
ficiently small. Therefore the optical properties of an en- 
capsulated LC differ from those of an ideal LC. In partic- 
ular, the reflected light spectra are affected, the reflection 
maxima get broadened, their intensity drops, and the tem- 
perature dependence of the wavelength is m~dified.~ 

If we vary the formation conditions of spherical cap- 
sules or introduce various additives into polymer CLC, 
qualitatively new features of light diffraction arise, namely 
new temperature ranges of selective light reflection.536 A 
typical temperature dependence of the wavelength in the 
selective reflection maximum in an encapsuled CLC is 
shown in Fig. 1. The existence of a second temperature 
range of light reflection denoted by I1 is due to an extra 
period of the CLC structure which is realized in a CLC 

the spatial distribution of the CLC order parameter in 
spherical capsules. As we show below, a superstructure of 
the director field can exist in a spherical capsule. This su- 
perstructure is, in the simplest case, a sphere with one pitch 
of the helix in the director azimuth surrounded by a spher- 
ical layer with another pitch of the helix. Moreover, the 
external layer is characterized by director field modulation 
in the polar angle with its own period. Such solutions in 
capsules are due only to the boundary conditions for the 
polar angle and its radial derivative, created by pyrimidine 
impurities through their surface activity. 

The LC state in a spherical volume has been consid- 
ered in several papers. The most studied, both 

and e ~ ~ e r i r n e n t a l l ~ , ' ~ ' ~  are nematic LC in 
spherical geometry. Some subtle size and surface effects 
have been discovered, and equilibrium configurations char- 
acterized by one or two topological defects at the center or 
the poles of the sphere have been found. In these papers 
nematic drops of size larger than 1 pm have been consid- 
ered far from the nematic-isotropic liquid phase transition, 
so that the order parameter in the capsule volume has been 
assumed homogeneous. A different situation arises in sub- 
micron drops near the phase transition. '"I6 

Equilibrium configurations of cholesterics in the en- 
capsulated state have been considered in less detail. We 
note here the studies in which solutions have been found 
for director fields associated with topological 
and also the paper by Zharkova and ~rashkeev~'  where the 
equations of state for CLC in spherical capsules have been 
solved. In these solutions it has been assumed that the 
molecule orientation in the polar angle is 7r/2 everywhere 
except in a thin transition layer near the boundary, whose 
thickness is of the order of the pitch of the helix po, and is 
in azimuth a helix with a constant or monotonically vary- 
ing pitch. Note that all the solutions considered in Ref. 20 
have only one characteristic scale. 

capsule only at a definite pyrimidine concentration (ac- 
cording to Ref. 6, of order 2% and higher). EQUATION OF STATE FOR CLC IN A SPHERICAL CAPSULE 

AS-far as we know, these features of encapsulated CLC The density of the LC free energy in a spherical vol- 
have not yet been explained. Therefore we will determine ume is2' 
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FIG. 1. The temperature dependence of the wavelength in the maximum 
of selective light reflection in the system PVA-CLC-2,4-di(0-oxypheny1)- 
6-phenyl-pyrimidine (4% of the LC weight). CLC composition: choles- 
terol nonanoate and cholesterol propionate (90: 10 weight % ), according 
to Ref. 6. 

F = ;  [ ~ ~ ( d i v  rot n + q o ) 2 + ~ 3 [ n  rot n12], 
(1 

where n=n(r )  is the director, Ki are the moduli of elas- 
ticity, qo=2?r/po, andpo is the pitch of the helix in CLC of 
unbounded volume. The geometry of the system in ques- 
tion is shown in Fig. 2. The vector n can be represented in 
the form 

FIG. 2. 
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where the angles 8 and 4 are in the general case functions 
of the three spherical coordinates r, y, and a. Consider a 
simple version of spherical symmetry, assuming that2' 

Then the expression for the free energy (1) acquires the 
following form: 

where 8, and 4, are radial derivatives. The terms propor- 
tional to cot y are discarded, as the integral over y makes 
them vanish. Note that the assumption ( 3 )  leads to defects 
at the poles of the sphere (~=O,T) .  As a result, we get a 
logarithmic singularity near these poles. Therefore we re- 
strict the solutions considered to the region P < y < T-P. 
The value of the bounding angle can be estimated as a ratio 
of the smallest dimension in the theory, which is simply the 
LC correlation radius, to the capsule radius R. Since the 
correlation radius is the pitch of the helix, we find that 
P z  l/q$. The solutions (3) are most natural near the 
equatorial plane. 

The variational equations for the director field have the 
form 

provided that we have chosen at the center of the capsule 
free boundary conditions 

corresponding to a free field distribution at the center, 
while on the surface of the sphere the field variation equals 
zero, as usual. In the general case, we cannot exclude that 
the field variation can also be zero as r-0, owing to intro- 
duction, for example, of a pyrimidine impurity into the 
center of the capsule. 

The equation of state for the director field has the 
following form 

1 f(P) 
- G a  (K1 cos2 4+K2 cos 28 sin2 4 
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+ 2K3 sin2 8 sin2 4) sin 28=0, 1 

1 
- K ,  sin2 0 sin 24+z K2 sin2 28 sin 24 

+ K3 sin4 0 sin 24 (7) 

where the function 

results from integration over y, and R is the radius of the 
LC sphere. The director field distribution in a spherical 
volume is determined by Eq. (7) and by the boundary 
conditions at the LC-polymer boundary which are given by 
the orientation of LC molecules at the sphere boundary. 
We consider here a planar orientation when the angle 8 
between the director and spherical surface is 77/2, as ho- 
meotropic (normal) when 8(R)=0, and as tilted one 
when 0 < 8(R) < ~ / 2 .  

THE SOLUTION OF THE EQUATION OF STATE 

The equation of state (7) for the director field is sim- 
plified if we assume that all the elastic moduli Ki are the 
same (single-constant approximation) : 

Xsin 28=0, 

FIG. 3. Radial dependences of the polar angle 8 and the 
pitch of the helix in the azimuth 4 ,: (a) the case of equal 

1 elastic constants, q,$ = 54, K ,  = K2= K3= 5.6 . 
dyne; Curve I corresponds to the period pd2=290 nm, 
Curve 2 to the period L=650 nm; (b) the case of differ- 
ent constants, q,$=64, K ,  = 5 . 3 .  dyne, 
K 2 = 2 . 2 .  dyne, K3=7.4 .  lo-' dyne; the radius of 
the sphere R=5 pm; Curve I corresponds to the period 
p d 2  = 250 nm, Curve 2 to p/2= 700 nm, and Curve 3 to 
L= 1500 nm. 

Hence we find at once the solution for the azimuth: 

where the integration constant C is zero owing to the free 
boundary conditions (6). As a result, the equation for the 
polar angle aquires the following form: 

This equation describes the evolution of a heavy pendulum 
with damping. For this pendulum 8=?r/2 is the point of 
unstable equilibrium corresponding to the free-energy min- 
imum. If the initial condition of the pendulum dynamic 
evolution given by Eq. ( 11) is such that 8(R) < ?r/2 and 
the initial velocity Br(R) is not large, the solution for 8( r )  
has the character of oscillations of a nonlinear pendulum 
whose period decreases as the boundary condition deviates 
from ?r/2 and becomes equal topo for small O(R) and large 
r. 

If we specify only the initial position of the pendulum, 
B(R) < ?r/2, and select the initial velocity er(R) from the 
condition that free energy be a minimum, we get a rapid 
transition into the unstable-equilibrium point with a sub- 
sequent stay at this point, which corresponds to the soliton 
solution of the sine-Gordon equation. This solution is 
shown in Fig. 3 by a dashed line and was found numeri- 
cally in Ref. 20. If the initial velocity is lower than that 
corresponding to the soliton solution, the oscillating solu- 
tion is realized. The smaller Or(R), the more oscillations 
we get. The energies of different solutions are related as 
follows. The ground state is the trivial solution 8(r)  = ~ / 2  
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with energy of order RK ( - 5  10-lo erg or, in terms of 
energy per capsule area unit, RK/~TR'=: erg - cmP2). 
The soliton solution has an energy of order 
70 RK, and the oscillating solutions have energies of order 
100 RK and higher depending on the number of oscilla- 
tions. The energy values have been found numerically. 

Thus, to solve Eq. (1 1) it is important to decide 
whether we must specify the initial value of the derivative 
8,(R) or find it by determining the free energy minimum. 
To find the boundary conditions which can be created by 
pyrimidine impurities on the LC capsule surface, note that 
pyrimidine molecules have a dipole moment and create a 
dipole electric field. In the case of an undistorted LC spec- 
imen, the macroscopic dipole moment of pyrimidine impu- 
rities is absent and the electric action of the pyrimidine on 
the CLC state is zero. The encapsulated CLC state leads to 
two effects. The first is adhesion of pyrimidine molecules to 
the polymer-CLC boundary, due to their high polar activ- 
ity, and the second is alignment of dipole moments of py- 
rimidine molecules along the normal to the capsule sur- 
face, resulting both from the polar activity of the molecules 
and the flexoelectric 

Thus, we can assume that around the CLC capsule 
there arises a thin spherical layer of a radially distributed 
dipole density P, whose thickness depends on the pyrimi- 
dine concentration. If the latter is 4% and if the pyrimidine 
molecules are of the same size as the CLC molecules (i.e., 
of length - 20 A and width - 5  A), we find that the total 
number of CLC molecules in a capsule of radius 
R =  5 - loP4 cm is about 2.5 . 10" and the number of pyri- 
midine molecules is about 10". Assuming next that all the 
pyrimidine molecules are concentrated in the near-surface 
layer normally to the surface (which, of course, overesti- 
mates the pyrimidine polarizing effect on the encapsulated 
CLC state), we find a dipole layer thickness A z 200 A and 
a polarization P=: lo3 in CGS units. This coincides with 
the values found earlier for the surface polarization in a 
nematic LC with homeotropic orientation in a CL- 
semiconductor system in a thin crystalline layer.23 

The electric field of the dipole distribution P(x )  in a 
volume V is 

Taking it into account that the spherical layer thickness A 
is small, we can approximate the length of the radius- 
vector, I XI, by the capsule radius R, except for the case 
when the vector r-x vanishes. The integral in Eq. (12) 
diverges, since the macroscopic description of electric field 
at small distances comparable to the dipole layer thickness 
A is not valid. Owing to radial symmetry, the electric field 

FIG. 4. The radial dependence of the electric field induced by the spher- 
ical layer of pyrimidine impurities. 

of the dipole spherical layer is directed along the radius 
and, on the basis of the above considerations, can be writ- 
ten as 

[(3+cos2 8)a-2(1+a2)cos 8 
X dcos8, (13) 

( 1 + a2 - 2a cos 8 )  

where a = r/R and E = A/R. The integration limits are on 8 
angle chosen to avoid divergence for a = 1 and 8- 0. The 
continual description is no longer valid at distances of or- 
der A, whence the natural restriction on the angle 8: 
A/R<8<a-A/R. For the variable cos 8 we get respec- 
tively: 1 +E'/~<cos 8 9  1 -.s2/2. ~t is easily seen from ( 13) 
that at r=R, i.e., on the spherical layer itself, the integral 
diverges like I/&, which is compensated by the pre-integral 
factor E. As r- R, we get E,- 2aP. But, as soon as r differs 
from R by a value of order A, the divergence in (13) 
vanishes and the field drops to ~ ~ T E P ,  i.e., the electric field 
of the dipole layer is significant only in a narrow spherical 
layer of the order of the dipole spherical layer thickness. 
Numerical calculations of the integral ( 13) confirm these 
estimates (Fig. 4). 

The anisotropy energy related to the polarizing electric 
field of the pyrimidine spherical layer (12) could be esti- 
mated from the formula 

where AE is the anisotropy of the CLC dielectric constant. 
Bearing in mind that the polarizing field exists only near 
the capsule surface in a layer of thickness A, we can ap- 
proximate the integral ( 14) as follows: 

In spite of the fact that we have greatly overestimated the 
anisotropy energy by using a simplified polarizing-layer 
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model, we believe that a realistic estimate, in terms of en- 
ergy per spherical surface unit, is of order 1 erg - ~ m - ~ .  

The anisotropy energy ( 15) is localized near the sur- 
face, therefore it may be defined as surface anisotropy en- 
ergy forming the CLC state at the capsule boundary. We 
have neglected the surface energy due to the polymer in- 
teraction with the LC molecules, since it is of order lop5 to 
1 erg. cm-2 (Refs. 24-27) and cannot noticeably influence 
the estimate ( 15). 

Depending on the ratio of the anisotropy energy to 
characteristic energies of the bulk state of an encapsulated 
CLC (strictly speaking, to the difference of the energies of 
different bulk states), we can allow for the surface in three 
possible ways. If the ratio is significantly in favor of bulk 
energies, the effect of the polarizing field on the bulk CLC 
state can be neglected. If the bulk energy is of the order of 
the anisotropy energy, we need to consider the bulk state of 
an encapsulated CLC together with the surface energy 
(14). And, at last, the boundary effects can be allowed for 
by rigid boundary conditions determined by the anisotropy 
energy minimum. As noted above, the scale of excess bulk 
energies related to inhomogeneous solutions reaches, in the 
most unfavorable case, 5 erg. ~ m - ~ .  This estimate is 
easily found in the following way: 

where n is the number of oscillations and L is the radial 
distance over which the oscillations of the angle 8 occur. 
Substituting K--, dyne, L --, R/2, n = 5, R z 5 . 
cm, and the oscillation period po--,5 cm into the 
formula, we get a bulk energy equal to 3 . lop2 erg ~ m - ~ ,  
which agrees, in order of magnitude, with the numerical 
calculations. Thus, the role of pyrimidine reduces to rigid 
boundary conditions for the polar angle: 8(R)  =O. 

Furthermore, the above consideration shows that the 
polarizing field of the spherical boundary layer, though it 
decreases rapidly, is still significant at the depth of order 
A ~ 2 0 0  A, and, in this sense, the boundary conditions for 
the angle 8 are nonlocal. This has been noted in Refs. 24 
and 25. In order not to obscure the results, we use in the 
present study a crude approximation, to allow for the sur- 
face effects, in the form of boundary conditions for the 
angle 8(R) and its derivative o,(R) .24p26927 

It is easily seen from Fig. 4 that the polarizing field 
tends to keep the value of 8 equal to zero. This means that 
the initial value of the derivative 8, will be effectively re- 
duced in comparison with what is needed for the soliton 
solution, and the oscillating regime of the "heavy- 
pendulum" evolution will thus be realized. Numerical in- 
vestigations of Eq. ( 1 1 ) show that only the reduction of 
the initial value of the derivative in comparison with the 
soliton solution matters, while the value itself does not 
affect the character of the oscillating solution and, as noted 
above, changes only the number of oscillations. 

Thus, at large r the solution of Eq. ( 11 ) oscillates with 
the period p,. When the radius decreases, the oscillations 
become damped with diminishing amplitude. On the other 
hand, as seen from Eq. ( 1 1 ) , the pendulum length becomes 

smaller even faster, which leads to an increasing oscillation 
amplitude. Which of two tendencies is dominating can be 
found only from the numerical solution shown in Fig. 3a. 
It is seen that the second tendency prevails, leading to 
divergent oscillations which, at a certain intermediate 
value of the radius r < R  become stationary with 8=1~/2. 
Moreover, we have numerically found a critical capsule 
radius R, such that if the capsule is smaller than R, an 
oscillatory angle 8 becomes impossible for any initial ve- 
locity whatsoever. For po=0.5 pm we have Re=. 1 pm. 

We have also considered numerically a plane-parallel 
CLC plate with pyrimidine. It has turned out that we have 
either a purely oscillating regime throughout the plate 
thickness or a homogeneous solution 8(r)  =7-r/2. 

It is possible to find analytically the second limiting 
asymptote as r+O. Since the ground state of the field 8(r ) ,  
according to (4), is 7r/2, we seek the asymptotic solution 
near r=O in the form 8(r)  =5-/2-cf. Substituting this 
into ( 1 1 ), we find for small r the following equation for p: 

f (PI 
p lp -  1) +2p-2+-=o, cos p 

whence 

p=--+ -+2-- 
2 ( I  4 f(p))"2 cosp 

In particular, in the equatorial plane, where f (p)/cos p 
=0, we have p= 1. Thus, as the radius grows, the polar 
angle slowly decreases from r/2. Joining these two asymp- 
totes, we find the qualitative behavior of 8(r)  which coin- 
cides with the results of the numerical solution of Eq. ( 11 ) 
for the normal boundary condition 8(R) =0  shown in Fig. 
3. 

Summing up the single-constant approximation, we 
note that even in this approximation the solution for the 
director field in a spherical capsule has two characteristic 
structure periods: one, in the azimuth, in the form of a 
simple helix with a pitch po=2~/qo  and the other, in the 
polar angle, with a period coinciding with the pitch of the 
helix in the limit of large r and small oscillation amplitude. 
Note that we have also carried out numerical calculations 
for different p up to p= lo. The form of the solutions re- 
mained practically unchanged. 

Consider now the case of different elastic constants. 
Restricting ourselves for simplicity to the vicinity of the 
capsule equatorial plane, we find from (7) 

It is easily seen from the boundary conditions (6) that, as 
in the single-constant approximation, the solution for the 
azimuth has the form 
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It is seen that the case of different elastic constants leads to 
a new effect, namely to the modulation of the helix pitch in 
the angle 4 by the oscillations of the polar angle 8. The 
bigger the difference between the constants K2 and K3, the 
larger the effect. 

Substituting ( 17) into ( 16), we find the equation for 8: 

X ( l  f+- 2:) sin 28=0, 

where 

Considering again an asymptote with large radius and 
small oscillations of the angle 8, we find the period of the 
structure in the polar angle: 

Thus, we find one more effect outside the limits of the 
single-constant approximation: the period of the structure 
in the angle 8 and the pitch in the azimuth do not coincide 
even in the limit of a large radius and small oscillations; 
this is confirmed by numerical solutions of Eq. ( 18) shown 
in Fig. 3b. The radial dependence of 4, has two distinguish- 
ing features. The first is that owing to the relation (17) 
between the polar angle and 4, the oscillations of 8 bring 
about weak oscillations of 4, with another period. How- 
ever, as seen from Fig. 3b, these oscillations are weak and, 
probably, difficult to resolve experimentally. The second 
feature, much more striking, is the jump of 4, at the point 
ro, where the radial dependence of the polar angle changes 
from oscillating to stationary. Thus, the case of different 
elastic constants results in that the external part of the 
capsule with r > ro has a new helix pitch p, while the inter- 
nal part with r < r o  has the basic pitch po, p being larger 
than po. In Fig. 5 we show the results of numerical calcu- 
lations of the superstructure period 2L and the pitch of the 
second helix p versus po. It is easily seen that for the elastic 
constants in the caption of Fig. 3 the relation ( 19) is qual- 
itatively satisfied. 

Thus, a cholesteric in a spherical volume, for a homeo- 
tropic rigid orientation of molecules at the polymer bound- 
ary, can be in an inhomogeneous state with several basic 
structure periods which can be found experimentally by, 
e.g., selective light reflection. The analysis above shows 
that even in the single-constant approximation the CLC 
structure in a spherical capsule has two basic periods, one 
of which is the pitch of the helix realized also in the case of 
an infinite specimen, while the other is realized in the 
spherical capsule provided that the LC molecules near the 
spherical surface are tilted or normal to the surface. 

In the case of different elastic constants, which is in 
fact the only real case, we get an entirely new CLC struc- 

FIG. 5. The period L of the CLC superstructure in a capsule in the polar 
angle (curve 1 )  and the pitch p of the second helix (curve 2) versus the 
pitch p, of the basic helix. 

ture which differs from the previous one in that the azi- 
muth state of the director field turns out to a cohesion of 
two helices with different periods. Note that all the struc- 
tures described above have higher energy than the trivial 
helical CLC structure with +,=go and 8=.rr/2, and can be 
effected only by boundary conditions imposed by pyrimi- 
dine on the capsule surface for 8(R) and 8,(R). As dis- 
cussed above, these boundary conditions are created by 
pyrimidine near the surface of the CLC capsule. 

For the elastic constants K1=5 .3 .1~-7  dyne, 
K2=2.2. lo-' dyne, and K3=7.4. dyne, which are 
very close to those of real encapsulated CLC,~' the relation 
(19) gives a polar-angle period L equal to 3.4po, a ratio of 
the helix pitches p/po approximately equal to 3, as seen 
from Fig. 3. Figure 1 shows the experimental temperature 
dependence of the wavelength of selective light reflection in 
an encapsulated CLC doped by pyrimidine impurities. It is 
seen that at the temperature which is the end of the first 
temperature range of light reflection and the beginning of 
the second the wavelength ratio is about three, which co- 
incides with the found ratio of the helix pitches. However 
we should use these ratios with caution, since the elastic 
moduli themselves depend both on the temperature and on 
the pyrimidine concentration. Moreover, we have not al- 
lowed for the effects connected with the variation of the 
order parameter and of the density in the capsule volume. 
As seen from Fig. 1, the second scale L which is due to the 
inhomogeneity of the polar angle has not been observed, 
since it lies outside the visible range. 

In conclusion, the authors thank E. M. Averyanov for 
his explanation of the peculiarities of the CLC structure 
and E. I. Kats for calling attention to the literature on 
encapsulated liquid crystals and for stimulating criticism. 
One of the authors (S.Ya.V.) is grateful to C. I. Trashkeev 
for the discussion of the CLC state in capsules. 
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