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A generalized moment method is used to construct a system of equations for nonintegrable 
versions of a nonlinear Schrodinger equation. This system of equations allows one to 
analyze the evolution of the properties of a solitary wave: its amplitude, width, center of 
gravity, phase velocity, phase modulation depth, and phase shift. Under some 
auxiliary conditions, this system becomes the perturbation theory system of equations for 
solitons in the adiabatic approximation. Several examples of perturbations are discussed to 
illustrate the use of this new formalism. 

1. INTRODUCTION 

The topics which have recently been attracting most 
attention in the field of nonlinear waves are solitons and 
their generalizations to the periodic case. The apparent 
reason for this interest is the development of an analytic 
method for studying solitons: the method of the inverse 
scattering transform.' This method has led to striking 
progress in the theory of nonlinear evolution equations. 
The special role played by equations with soliton solutions 
has been demonstrated. Some new branches of mathemat- 
ical physics have arisen. 

On the other hand, most real problems in physics are 
described by equations which are not completely integrable 
and which therefore do not have soliton solutions. When 
an equation of interest is not integrable because of a small 
term, one can develop a perturbation theory in which a 
soliton solution is used as a zeroth approximation. The 
most systematic perturbation theory is based on the inverse 
scattering t ran~form.~ In one particular case, this approach 
leads to a very effective and popular adiabatic perturbation 
theory for solitons. That method and its development have 
been reviewed in detail by Kivshar and ~ a l o m e d . ~  

In an effort to study the behavior of a solitary wave 
described by a nonlinear Schrodinger equation, ~ n d e r s o n ~  
developed a variational method which does not make use 
of the complete integrability of that equation. This method 
was subsequently used successfully for various generaliza- 
tions of the nonlinear Schrodinger equation which arise in 
solid state physics, plasma physics, nonlinear optics, and 
biophysics. It  is particularly interesting to note that, if one 
chooses a soliton solution as a trial function, then the sys- 
tem of equations of adiabatic perturbation theory follows 
from the corresponding Euler-Lagrange equations, as was 
shown in Ref. 5 in the example of a nonlinear Schrodinger 
with a perturbation. It is quite natural to suggest that the 
choice of a more general trial function (a more detailed 
one) may lead to a more accurate description of the solu- 
tion of the nonlinear Schrodinger equation with a pertur- 
bation. The variational method can be applied not only to 
the nonlinear Schrodinger equation but also to other evo- 
lution equations. 

The Lagrangian for a variational approach in the spirit 
of Ref. 4 is not always easy to find. It is known6 that a 
simpler way to derive the system of equations of adiabatic 
perturbation theory than by means of the inverse scattering 
transform is to work from the equations for "integrals of 
motion" which are not constants in the presence of per- 
turbing terms. Along this approach, it is necessary to sub- 
stitute a soliton solution of a completely integrable 
equation-an equation which does not contain pertur- 
bations-into the exact integrodifferential equations. This 
step might be thought of as analogous to choosing an ap- 
propriate trial function in the variational m e t h ~ d . ~  

If it becomes necessary to study the behavior of soli- 
tary waves in a system which is approximately a com- 
pletely integrable system (or for which nothing is known 
about integrability), then one can attempt to use this 
method of integrals of motion6 in combination with a mo- 
ment method.7p8 As the integrals one should actually take 
expressions which determine the parameters of the trial 
function most simply and to construct for them some exact 
equations on the basis of the evolution equation of interest. 
The moments of conserved densities (the number density 
of particles, the energy density, the momentum density, 
etc.) are extremely attractive for this purpose. 

The transition from an evolution equation describing a 
system with an infinite number of degrees of freedom to a 
system of ordinary differential equations for a finite num- 
ber of variables is reminiscent of the transition from a mi- 
croscopic description of a system to a macroscopic one. 
This transition might accordingly be called a "roughening 
procedure." 

In the present paper we use the example of a nonlinear 
Schrodinger equation with perturbations to carry out a 
roughening procedure for the description of a solitary wave 
which is not a soliton. As a trial function we adopt a 
soliton-like solution, but one which has an additional phase 
modulation and for which the width and amplitude of the 
solitary wave are independent of each other. The resulting 
system of equations for six parameters of this wave embod- 
ies the results of adiabatic perturbation theory for solitons3 
and the results of Anderson's variational approach.4 To 
illustrate the effectiveness of this method, we look at sev- 
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era1 examples-some examples which are quite simple but 
which clearly reveal the distinctions from existing  result^.^ 

2. DERIVATION OF THE BASIC EQUATIONS (THE 
ROUGHENING PROCEDURE) 

We assume that the complex amplitude q(x,t) of a 
solitary wave is determined by a nonlinear Schrodinger 
equation with a perturbation: 

Here a is a measure of the second-order dispersion, and p 
characterizes a self-effect. The quantity R[q] is an arbitrary 
function of q(x,t) and of its derivatives with respect to x. 
In the case R[q] =0, Eq. ( 1 ) has soliton solutions. If R[q] 
is in a sense a weak perturbation, then the solitary wave 
which is the solution of ( 1 ) is, in the same sense, regarded 
as being close to solitons. 

In the case R[q]=O, the nonlinear Schrodinger equa- 
tion has an infinite number of integrals of motion (under 
suitable boundary conditions).' The first two of these in- 
tegrals are 

For the perturbed nonlinear Schrodinger equation these 
integrals are not conserved, and one can verify directly 
with the help of (1) that the following equations hold: 

The integrands in (2) can be understood as certain distri- 
butions. The moments of these distributions are of interest 
since they are related to the properties of the solitary wave. 
These important integrals are 

where xc= D1/I1-the center of gravity of the I q(x,t) 1 
"distribution"-is the number density of particles in the 
theory of the nonlinear Schrodinger equation. Using ( 1 ), 
we find equations which specify the changes in these inte- 
grals as a function of t: 

As in Ref. 9, we also need to supplement these equations 
with the identity 

which allows us to determine the law governing the phase 
of the envelope q(x,t). 

Starting from the system of exact equations in (3), 
(5), and (6), we can construct systems of equations with 
various degrees of accuracy. If we assume, for example, 
that the solitary wave retains the shape of a soliton of the 
nonlinear Schrodinger equation as it evolves, i.e., assuming 
that the solution of ( 1 ) is 

then we can find for A(t), xc(t), C(t), and q ( t ) ,  the fol- 
lowing system of equations, where p = R[q]exp( - i@) : 

A,t= J:m sech y Im pdy, (8a) 

C,,= - t hy  sech y Re pdy, (8b) 

1 
J m  sech y Re pdy. q,,=cx,,,+j (A'-c2) -- 

2A - m  

(8d) 

The only distinction from the system of equations given in 
Refs. 2 and 3 is in Eq. (8d), in which we need to replace 
sech y in the integral on the right side by (1  
-y tanh y)sech y in order to reach complete agreement 
with the equations of adiabatic perturbation theory for soli- 
tons. Equation (8) is found by substituting $(x,t) from 
(7) into Eqs. (3),  (5a), and (6). Equations (5b) and (5c) 
are unnecessary in the adiabatic approximation, (7). 

To find a more accurate description of the evolution of 
the solitary wave, we should choose a more general trial 
function $(x,t) . Equations (3  ), (5), and (6) are used fully 
when we choose &(x,t) as follows: 
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This approximation could also be called an "adiabatic" 
approximation, but here, in contrast with the soliton in 
(7) ,  we are allowing a phase modulation, and the ampli- 
tude A(t) and the width xp(t) of the solitary wave appear 
as independent parameters. 

Using (9), we can evaluate the integrals in (2) and 
(4): 

From (3a) and the expression for I, we find the equation 

sech y Im pdy, (10a) 

which is a generalization of (8a). Now considering 12,  we 
find from (3b) and ( 10a) an equation for C(t)  : 

+ 2bx/4-' I:m y sech y Im pdy. (lob) 

Using (5a) and ( lOa), we can derive an equation for x,(t), 
from (5b) and (1Oa) we find an equation for xp(t), and 
from (5c), using everything derived so far, we find an 
equation for b(t): 

x ( 1 - 12J/7?) sech y Im pdy, ( 10d) 

An equation for the phase q ( t )  follows from identity ( 6 ) :  

- ( W - l J y m  sech y Re pdy. 

Equations (10) thus make it possible to describe the 
evolution of a solitary wave (which need not be a soliton) 
for a nonlinear Schrodinger equation with a perturbation, 
( 1 ), in the generalized adiabatic approximation adopted 
here, (9).  That system of equations contains as a particular 
case the equations of the known adiabatic perturbation the- 
ory for solitons: System (8) follows from (10) if we dis- 

card ( 10d) and ( 10e) and if we impose the conditions 
b=O and x# = 1 in the equations which remain. 

3. SOME ILLUSTRATIVE PERTURBATIONS 

It is useful to consider several examples in which an 
analysis of the evolution of a solitary wave on the basis of 
Eqs. (10) leads to a result which differs from that which 
follows from the adiabatic soliton perturbation theory. 

1. We assume that the perturbation in ( 1) is described 
by the expression 

Since we have Im p = 0 and Re p =  PA^ sech5 y, we find a 
conservation law from ( 10a) : 

The other equations from ( 10) become 

[ := ( 4 u / d )  (xi4- 7?b2) - 2p W/~?X; - 2fiW2/gx;, 

(13b) 

with p= ( 16P/15). Making the substitution 

where T = [4a/?rx;(0)]- ', and eliminating the variable 
b(t)  from (13b), we find an equation for r ( r ) :  

- 
where 6 = P  W/2u and y =p Wxp(0)/2a. 

From ( 14) we find 

Here ~ ( r )  = ( l - ~ ) r - ~ - 2 y r - ~  and Uo=U(l)  
+ [?rx;(o)b(o)12. 

Equation ( 15) describes the motion of a material point 
in a 1 D space in a potential U(r) in accordance with New- 
ton's law (14). More precisely, this is the Kepler 
problem.10 With S=O, Eqs. ( 14) and ( 15) correspond to 
the case studied in Ref. 4; this will remain true as long as 
the condition 6 < 1 holds. If the initial parameters of the 
solitary wave are such that we have Uo > 0, the width of the 
wave will grow (this is an analog of an open orbit in the 
Kepler problem). If U, < 0, the width r ( r )  periodically 
changes with increasing 7; here we have an analog of closed 
orbits in the Kepler problem. Under the condition 6 >  1, 
however, there is a case of "falling on a center," i.e., a 
collapse of the solitary wave. The threshold value 6,= 1 is 
reached when the energy W is equal to the critical value 
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We are assuming o>O and fl>O here. Such a self- 
compression (collapse) of an optical pulse due to a high- 
order nonlinearity as in ( 11 ) was recently pointed out by 
Azimov et al. " Note that this result does not follow in the 
approximation based on Eqs. (8). 

2. We assume that the perturbation in ( 1 ) is 

R[ql= - i ~ (  Iq(2q),,-i~q( Iq(2),,. (17) 

We now have 

Re p = K A ~  (C+ 2bxpY)sech3 y, 

and conservation law ( 12) again follows from ( 10a). The 
other equations can be rewritten in light of this fact: 

From ( 18a) and ( 18b) we find 

Hence 

The integration constant Co is found from the values of C 
and xp at t=O. Eliminating b(t) from (18b) and ( 18c), 
and using ( 19), we find an equation like ( 14) for xp(t) : 

(20) 

From this equation and the discussion above it follows that 
the solitary wave can collapse. The critical energy is now 
given by 

Here we are assuming o > 0. 
Since xp(t) is a periodic function of t (when the initial 

conditions correspond to closed orbits in the Kepler prob- 
lem), we find from ( 18d) that the center of gravity of the 
solitary wave "shakes"; i.e., there is a periodic change in 
xc( t) with increasing t. 

3. A perturbation of the type 

is quite common. This perturbation corresponds to incor- 
poration of a dispersion of higher order than in ( 1 ). If, as 

in the preceding cases, we restrict the discussion to R in 
(22), then the system of equations for the parameters of a 
solitary wave of the type in (9) becomes 

From the form of Eqs. (23b) we conclude that in this 
approximation the third-order dispersion leads to a renor- 
malization of the constant which determines the second- 
order dispersion. When other perturbations are taken into 
account, Eqs. (23a) may be changed, and this renormal- 
ization may become more complicated. 

4. Up to this point we have been discussing nondissi- 
pative perturbations. We now assume 

so we have Im p = - rA sech y. For this perturbation, Eqs. 
( 10) become 

It follows from (25a) that we have x/'= W exp( - 2r t ) .  
Eliminating the variable b(t) from (25c), we find the equa- 
tion 

which was derived in Ref. 12 by a variational approach. 

System of Eqs. ( lo) ,  derived here, gives an approxi- 
mate (roughened) description of the evolution of a solitary 
wave determined by a nonlinear Schrodinger equation with 
a perturbation. If instead of trial function (9) we had used 
a more detailed function, the approximation would have 
been more accurate. A disadvantage of this method is that 
we cannot make an a priori estimate of the accuracy. This 
situation is typical for methods of this sort (e.g., the vari- 
ational method). At the same time, it is possible to derive 
results which are more rigorous than can be done in adia- 
batic perturbation theory for solitons. For example, a pe- 
riodic change in the width of a solitary wave as it ap- 
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proaches a soliton value is frequently observed in 
numerical simulations (e.g., Ref. 13). The fact that the 
oscillations of xp(t) are not damped is a consequence of 
our ignoring radiative losses in (9) [i.e., our ignoring the 
formation of a nonsoliton part of the solution of Eq. ( 1 )]. 

Multisoliton effects and emission from a soliton sub- 
jected to perturbations have attracted much intere~t .~ 
These questions have been taken up by a perturbation the- 
ory based on the inverse scattering transform. It would be 
useful to extend the roughening procedure developed here 
to those problems. 

A roughening procedure can also be carried out for 
other integrable equations, and possible corrections to the 
adiabatic perturbation theory can be found. A more attrac- 
tive possibility, however, is to analyze nonintegrable, phys- 
ically meaningful systems and multidimensional generali- 
zations of integrable equations with perturbing increments. 
Classical field theory, the theory of gravitation, and wave 
processes in plasma and hydrodynamics contain numerous 
interesting examples for such studies. 

We should also point out that if we set x = 0  in exam- 
ple 2 then the resulting equation can be converted into a 
modified nonlinear Schrodinger equation (a nonlinear 
Schrodinger equation with a derivative) through a change 
of variables: 

iQ,,+uQ,,+i~( 1 Q l  2Q),s=0, 

where 

This equation can be integrated by the inverse scattering 

transform.14 One can show that, as in Ref. 15, a solution 
corresponding to an initial value q(t=O,x), taken in the 
form in (3 ) with b (0) = 0, with the increase of t does not 
undergo collapse. This example shows that it is very im- 
portant to choose the trial function correctly. In this case 
we see the need to consider in the calculation the nonsoli- 
ton part of the solution, viz., the radiation, which stops the 
collapse as an ordinary dissipation. 
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