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To quadratic accuracy in the amplitudes of both random and deterministic irregularities on 
rough surfaces, we obtain closed-form analytic expressions for the transmission and 
reflection coefficients, the dispersion relation, and the angular spectrum of diffracted s- and p- 
polarized electromagnetic waves in an arbitrary multilayer, uniaxial, stratified anisotropic 
medium. 

1. INTRODUCTION 

The scattering of electromagnetic waves from an irreg- 
ular interface is one of the classic problems of physics.1 
Nevertheless, exact analytic solutions for a marginally 
rough surface (enabling one to calculate transmission and 
reflection coefficients and the dispersion relation for the 
eigenmodes of the medium) have only been obtained rela- 
tively recently, and then only for various special cases, 
such as a homogeneous24 or ~ t ra t i f ied~-~ half-space con- 
taining just a single rough boundary, and a three-layer 
medium (a thin film on a substrate) with two irregular 
 interface^.^ For multilayer media containing an arbitrary 
number of rough boundaries, we presently have closed- 
form analytic expressions only for the angular spectrum of 
diffracted  wave^.^"^ The calculation of transmission and 
reflection coefficients and the dispersion relation for such 
media remains an unsolved problem. 

Typical approaches to this sort of problem, such as 
field matching at a boundary,2 the effective boundary con- 
dition m e t h ~ d , ~  and Green's function techniques,4 lead ei- 
ther to an unwieldy set of self-consistent equations3 (even 
in the simplest case, with just one irregular boundary), or 
they yield results inapplicable to the resonant eigenmodes 
of the Various methods have been used in at- 
tempting to broaden the applicability of these results. 
These have included, for example, artificially introducing a 
temporary surface impedance," which however is not a 
logical outgrowth of the adopted solution method. Dia- 
grammatic t e ~ h n i ~ u e s " ~ ~ - ' ~  have been used to sum pertur- 
bation expansions, functional integration15 has been used, 
and attempts have been made to find a self-consistent 
solution16 of a simplified set of equations for the strongly- 
coupled eigenmodes of the medium. All of these methods, 
however, have either been specifically geared to strongly- 
reflecting metallic media, or they have been far too 
complex, and therefore difficult to generalize to 
multilayer media. 

Solutions in the neighborhood of eigenmodes are of 
immediate practical interest as they relate to the analysis of 
strong electromagnetic resonance effects such as surface- 
enhanced Raman scattering,17 anomalous suppression of 
the specular component,18 second-harmonic generation,'9 
etc., and also with regard to wave localization on a rough 

surface.20 The eigenmode spectrum of a multilayer medium 
is much richer and more complex than that of a simple 
semi-infinite metallic medium, and such media are widely 
useful in numerous areas of physics. It would therefore be 
highly desirable to develop a universally applicable solu- 
tion method that is suited not only to strongly reflecting 
metallic media, but to others as well. 

In the present paper we employ Green's functions to 
reduce this problem to the solution of the standard equa- 
tions of quantum scattering theory in the general case of an 
arbitrary multilayer stratified medium. To quadratic accu- 
racy in the amplitudes of the surface irregularities, we use 
a simple iterative procedure-with no need to solve a 
highly involved set of self-consistent equations and without 
summing the terms of a perturbation expansion-to derive 
a widely applicable set of closed-form analytic expressions 
for the (amplitude) transmission and reflection coefficients 
of polarized electromagnetic waves. The poles of those co- 
efficients yield the dispersion relation for the eigenmodes of 
the perturbed medium. We also present expressions for the 
angular spectrum of the diffracted waves. 

The paper is organized as follows. In Sec. 2 we describe 
a multilayer medium and introduce the basic notation. In 
Sec. 3 we state the problem of calculating the total field of 
a diffracted wave in general terms, and in Sec. 4 we state 
the problem for the coherent component of the field. In 
Sec. 5 we solve the problem to second order in the ampli- 
tudes of the random irregular boundaries; section 6 sum- 
marizes the results. Section 7 discusses periodic irregular 
boundaries, and Sec. 8 examines the results obtained. Cer- 
tain of the intermediate equations are derived in the Ap- 
pendix. 

2. DESCRIPTION OF THE MEDIUM. NOTATION 

We work here in the context of macroscopic electro- 
dynamics. A stratified, uniaxial anisotropic medium (Fig. 
1 ) made up of N =  n - 1 rough interfaces with z= h j  (p) ,  
j = 1, 2, ..., N, where p =  (xg) is a two-dimensional vector 
lying in a plane at constant z, can be characterized by its 
dielectric constant 
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FIG. 1. 

N and cn1 (z) = E,II. (z) = E, as Z+ - co . This constraint is of 
,311 =Z~(Z)  + 1 [Z,+i(z) -?,(Z) IB[h,(p) -21 no fundamental importance, serving merely to simplify no- 

j=1 tation in the asymptotic expansion of the fields (see Eq. 
= E l  ( d k l  +&[I ( r )k l l  , (1) (18) below). 

In the zeroth-order (smooth boundary) approxima- 
where B(z) is the Heaviside step function, and where tion, the properties of each medium derive from its dielec- kll =% and P1 = 1 -ill are projection operators in the tric constant, 
direction of the normal & and the plane z=const, respec- 
tively. We employ dyadic notation in the present paper for 
second-rank tensors. We assume that the magnetic suscep- N 

tibility of the medium is unity. The dielectric constant of + C [ Z ~ + ~ ( Z )  -fj(z) I ergj-z] 
each of the successive media, j=1 

Zj(z)=Ejl (z)kl +Ejl  (z)kII E E ~  (z)kl +E; (z)kI1 , (2)  

is arbitrary, with Re Zj(z) ?O and Im E,(z)>O, the only 
constraint being that the longitudinal and transverse com- where hi= (hj(p))  is the mean height of thejth boundary, 
ponents of the dielectric constant of the first and last me- and angular brackets denote an ensemble average over the 
dia, Ejll (z) and E~~ (z), j=  1, n, are asymptotically equal rough surfaces. The difference in dielectric constant be- 
as [ z 1 + co, taking values t ~ ~ ,  (z) =&,[, (z) =el as Z+ + 00 tween adjacent layers is 
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and the discontinuity in the dielectric and its first deriva- 
tive with respect to z at thejth boundary is given by 

The statistical characteristics of the rough boundaries 
are specified by Fj and Fij , the one- and two-dimensional 
height distribution functions: 

On average, the rough boundaries are assumed to be 
uniform, so Fj(z)  is independent of p and Fij depends 
solely on p-p'. Below, in addition to the functions in (3), 
we make use of 

whose domain is restricted to the layer given by - - - 2 1/2 Iz-hil SS,, lz'-hjl 5 S j ,  where Sj=((hj(p)-hi) ) 
is the rms amplitude of variations in the jth rough surface. 
We also have 

where 

are correlation functions, whose Fourier transform with 
respect to p -p' yields the spectral densities Sij (q). 

No constraints whatever are imposed on the degree to 
which the rough surfaces i, j = 1, 2, ..., N are correlated. 
When we derive our final results (see Sec. 6),  we will 
assume that the roughness S = max (aj) is small compared 
to the thickness d j  = Lj - h;.+ of the individual layers and 
the reciprocal of the normal component of the wave vector 
in each medium j, 

where ko=w/c is the vacuum wave number and b is the 
projection of the wave vector in the plane z=const. The 
second of these two conditions states that surface irregu- 
larities are small compared to the characteristic scale 
length of field variations in the adjacent media. As 
z--* CO(- 0 3 )  

in the bounding media j = 1 (n) ,  and we choose the sign of 
the square root for which Re(1m) vj>O; k j  = k6)I2 is the 
wave number in medium j = 1, n. 

3. GENERAL FORMULATION. BASIC RELATIONS 

A monochromatic electromagnetic wave E( r )  
exp( -iwt) will propagate in the medium specified by ( 1 ) 
in accordance with the equations of macroscopic electro- 
dynamics, such that 

[curl curl-Gt(r)]E(r)  =O. ( 8 )  

This equation normally reduces to an equation2' for the 
scattering operator f' 

(for integral equations, we adopt a symbolic operator no- 
tation throughout), where Ai.(r) =i.(r) -gZ is the pertur- 
bation, & is the Green's function, for which 

2 * *  (curl curl- k&)G= 16(r-r'), (10) 

and which also satisfies the radiation condition at infinity, 
and 

is the dielectric constant of a particular medium. The latter 
can be chosen arbitrarily, but the resultant perturbation 
At(r)  - must be localized within a neighborhood 
Iz-h,l 5 S j  of the rough boundary j = l ,  2, ..., N. The 
dielectric constants ( r )  and ,11 (z) in Eqs. (1) and 
( 11 ), respectively, are different: their arguments conform 
to the notational convention adopted in the physics litera- 
ture that distinguishes between a function and its Fourier 
transform, for example. 

For arbitrary tz ,  the Green's function 6 is built up 
from basis functions E;, that are the solutions of the equa- 
tion 

(curl curl - k&$) EL, = k:(tz-- 8) EL,, (12) 

the subscript m= 1, n identifies here the medium at which 
the incident wave is specified, and a=s, p gives its polar- 
ization state. lo 

The solution of Eq. (8 )  can be expressed in terms of 
the general solution Eo of Eq. (12): 

The Green's function &(r,rl) contains a singular term 
-S(r-r'), while the basis functions ELa that make it up 
are discontinuous at the interfaces between media. These 
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two circumstances are interrelated, and can be disposed of 
by transforming22 to basis functions that are continuous at 
the boundaries, 

We then obtain in place of i 9 )  anzquivalent equation for 
the scattering operator i= 9 - ' ~9 - ', 

h r  h 

in which the Green's function bo= P G ' 9  contains no 
singular terms an! whose basis is continuous at the func- 
tion boundaries; G' is the regular part of the Green's func- 
tion 6 ,  

where 

tJ6) is the (amplitude) transmission coefficient of the me- 
dium .& for a wave incident from above (z- w ) [see Eq. 
(27)l. Since in general Ez depends on the parameters of a 
rough surface, as do the solution of Eq. (12), the basis 
functions X&, and the transmission coefficients ta(6). 
This is made explicit by the argument S in the coefficients 
fa(@. Similarly, Eza and X& also depend on 6, but to 
keep the notation simple we will not show that dependence 
explicitly. 

The new perturbation C(r) is then given by 

The matrix elements EL? of the operator i, 

determine the coefficients of the asymptotic expansion of 
the total diffracted field ( 13) as 1 z 1 + w in the bounding 
media: 

With no loss of generality, we have assumed here that the 
incident polarized electromagnetic wave, with P=s, p, has 
been specified in the upper medium. The rD(6) are reflec- 
tion coefficients in the medium given by (1 1) [see Eq. 
(27)], and the 62, are polarization unit vectors, 

Only EL; and E% appear in Eq. ( 18). The coefficients 
E$ and E$ govern the asymptotic expansion of the dif- 
fracted field for a wave incident from below. In ( 18) and 
throughout the rest of this paper, the additional subscript 0 
denotes quantities that depend on the variables b or bo: for 
example, rll=rll(b), rlI0=rll(b0), etc. 

Averaging (18) over an ensemble of rough surfaces 
yields an expression for the transmission and reflection co- 
efficients rap and taD of a perturbed medium: 

where Sap is the Kronecker delta and 
(E$(b,b0)) =E$(b)6(b-bo). 

Thus, in the general case of an arbitrary stratified me- 
dium, the problem of electromagnetic wave diffraction by 
rough interfaces reduces to the solution of the standard 
equation ( 14) of quantum scattering theory. If the solution 
is known, the matrix elements of i in ( 17) will determine 
the total diffracted field (18), as well as the transmission 
and reflection coefficients ( 19). This general approach, 
however, which has been employed under the assumption 
of slightly rough surfaces in the special cases of a homo- 
geneous med i~m,~ ' '  a stratified half-space,' and a three- 
layer medium,' yields results of limited utility, since the 
neighborhood of eigenmodes of the medium is not taken 
into consideration. In the next section we develop an alter- 
native approach that yields analytically correct results at 
all frequencies, including those in the neighborhood of 
eigenmodes. 

4. STATEMENT OF THE PROBLEM FOR A COHERENT 
COMPONENT OF THE FIELD 

To calculate the transmission and reflection coefficients 
( 19) and the eigenmode dispersion relation for a perturbed 
medium, if suffices to find only the coherent component 
(E ( r ) )  of the diffracted field. We average Eq. (8) over an 
ensemble of rough surfaces, introducing the operator EeR 
for the effective dielectric constant of the medium: 
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where Ez is the local and i ( r , r t )  the nonlocal part of beff. 
We then obtain a closed-form equation for the coherent 
component (E  ( r ) ) = E (b,z) exp (ibp) , 

(curl curl - kgZ)E(b,z) = k; I f ( b,z,z' ) E(b,z1) dZ1, 

(20) 

with curl= (il+id/dz), where it has been assumed that 
%(r,rl) for uniformly rough surfaces depends solely on the 
coordinate difference p-p' (the Fourier transform vari- 
able). The nonlocal part i is guaranteed to be unique by 
the solution of Eq. (9) for the scattering operator T , ~ ~  

Equation (20) is completely equivalent to the original 
Eq. (8), but it governs only the coherent component of the 
total diffracted field. The variable b, whose value is deter- 
mined either by the incident wave vector or a solution of 
the dispersion relation, is merely a parameter, and can be 
omitted. The integrodifferential equation (20) describes a 
narrower class of solution than (8). In a previous paper,22 
the author developed the general theory of analytic correct 
solutions of equations like (20) for arbitrary functions Sz 
and i(b,z,zl). The equation can be solved by reducing it to 
an equivalent equation for the retarded scattering operator 
f+: 

where the retarded Green's function &+ is a solution of the 
same Eq. (10) as the radiation Green's function 6; how- 
ever, it satisfies the condition &+=O as z-* - CO. Solving 
Eq. (22) yields a solution for the field E(b,z): 

Just like Eq. (9),  E9. (22) %an be transformed to a set 
of basis functions t+ = 9 -IT+ 9 -' that are continuous at 
a boundary, and the singular te? can likewise be elimi- 
nated from the Green's function G+.  In place of (22), we 
thereby obtain the equivalent equation 

in which the perturbation B can be defined in terms of the 
mean value of the operator ( 14), 

Assuming the solution ofn (23) to be known, the matrix 
elements of the operator tt then determine the coefficient 
functions A$=AiB( r rl,),22 with 

in terms of which one can express the transmission and 
reflection coefficients raB and ta8 of the perturbed medium 
( 1 ). The final equations linking ra8, tap, and A& can be 
found in Ref. 22 (in the next section, we solve this problem 
in the quadratic approximation; the equations appear be- 
low as (42) to that order). The coefficients a z ( S )  have the 
same meaning as the A&, and we can express the trans- 
mission and reflection coefficients of a medium with the 
dielectric constant ( 1 1 ) in terms of those coefficients: 

These coefficients also appear in Eqs. ( 15), ( 17)-( 19), and 
(24). 

One typical peculiarity of Eq. (23), as compared with 
Eq. (14), is that the Green's function 6: has no poles.22 A 
simple iterative solution of (23) will converge uniformly 
over the whole frequency domain, including any neighbor- 
hood of the medium's eigenmopes. 

The scattering operators (t) and i+, whose matrix el- 
ements determine the transmission and reflection coeffi- 
cients given by (17) and (19), as well as the coefficient 
functions (26)' are related to one another. Eliminating the 
perturbation 3 from (23) and (25), we have 

(i) -;+ = (i) (e0-&,' );+. (28) 

The kernel of this equation is degenerate, 

so Eq. (28) can be solved exactly. Solving for the matrix 
elements (17) of the operator (t), we obtain the general 
expressions relating raB, ta8, and If instead of (28) 
we solve for the matrix elements (26) of the operator i', 
we obtain the inverse relations. The latter can be used to 
reduce the previously obtained results for raB and tap to 
analytic form and to derive the dispersion relation. 

Thus far, we have treated the value of the dielectric 
constant ( 11 ) as being arbitrary. Analyzing Eq. ( 14), we 
see that it is desirable to choose Ez such that (G) =O. The 
first nonvanishing approximation to the solution of Eqs. 
( 14) and (28) will then be quadratic in the perturbation G, 

The condition (G)=O is ensured by the fact that 
E~ (z) = ( E ~  ( r )  ) and (z) = ( E L  ' ( r )  ) -', whereupon we 
obtain for the multilayer stratified medium ( 1 ) 

When (30) is substituted into (16), the dependence of 
the perturbation G(r) on the surface profile of the various 
boundaries and the dielectric constants of the adjacent me- 
dia factors: 
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Furthermore, +(r)  is an additive function of the num- 
ber of rough boundaries. With the same choice of Ez, the 
original perturbation A&(r) lacks this property. Equations 
(30) and (31) generalize our previous results24 for a uni- 
form, isotropic, semi-infinite medium, to arbitrary, strati- 
fied, uniaxial anisotropic media containing N rough inter- 
faces. 

The dielectric constant Ez introduced by (30) depends 
on the one-dimensional height distribution function Fj(z)  
of the various rough surfaces; accordingly, so do the* ba$s 
functions ELa of Eq. (12), the Green's functions G, Go, 
&+, and Go+, and the transmission and reflection coeffi- 
cients (27). The latter can be distinguished by the argu- 
ment 6 in the functions ra(S), ta(S), and al,(S). 

In general, Eq. (12) cannot be solved in terms of an- 
alytic functions, and some approximation scheme is re- 
quired. Equation ( 12) is a special case of Eq. (20), so that 
(23), (24), and (26) still hold. In what follows, we denote 
functions that refer to the unperturbed medium (2), which 
has smooth boundaries, by a bar (e.g., ELa, G, etc.). By 
analogy with (23), Eq. (12) can then be replaced by its 
equivalent, 

;+=k;$(l+~,+;+)), (32) 

in which the perturbation S(z) is given in terms of the 
differences tz--e; from (30), 

n-1 

where the xj(z) are given by (4), and the Cj(z) by (3 1 ). 
As with (23) and (26), the matrix elements of Eq. (32) 
yield the coefficients aL(6) ,  

The coefficients ata = al, ( r q l  ) yield the transmission and 
reflection coefficients r, and t, of the unperturbed, smooth- 
boundary medium (2) for an a=s- or p-polarized electro- 
magnetic wave incident from above: 

The argument S does not appear here, in contrast to Eq. 
(27). 

Imposing no constraints at all on the nature, ampli- 
tude, or number of rough boundaries, we have thus re- 
duced the calculation of the dispersion relation and the 
transmission and reflection coefficients to the solution of 

the standard equations (14), (23), and (32) 2f quanttm 
scattering theory for the scattering matrices i, t+, and t+. 
The desired quantities can be expressed in terms of the 
matrix elements (26) and (34) of the corresponding oper- 
ators. In the next section, we apply this general approach 
to the quadratic approximation in the amplitudes of the 
irregular boundaries. 

5. CALCULATION OF THE COEFFICIENTS Aip AND ac(S) IN 
THE QUADRATIC APPROXIMATION 

To calculate the al,(6) in the quadratic approxima- 
tion, it suffices to stop after the first iteration when we solve 
Eq. (32). Using (33), we then have 

The functions /Z,(z) are localized within the layer - I z- hj  1 5 6,. For slightly rough surfaces, the fields in the 
integrand of (36) will be smooth functions of z, and they 
can therefore be expanded in powers of z-6, in the neigh- 
borhood of each boundary z = i j  : 

where EL, E;~, ELb, and & are the values of the corre- 
sponding functions Ems(z), dEms(z) /dz, Emb(z), and 
Dm(z) at the boundary z=6, . These values are known, 
since we assume that we know the analytic solution of the 
unperturbed equation ( 12) when the right-hand side van- 
ishes. Specifically, if one of the two bounding media is 
homogeneous and isotropic all the way through to the first 
rough boundary, if there are no other rough boundaries, 
and if (as before) the remainder of the medium is arbi- 
trarily stratified and uniaxially anisotropic, then these 
fields can be expressed in terms of the external parameters 
of the unperturbed problem-the transmission an! reflec- 
tion coefficients (35). For example, if 2l (z) = E~ 1 = const 
for z>hl (but EL (z) are arbitrary for z<hl) ,  then at the 
boundary z = 6, we have 

The unperturbed fields at the boundaries z=6, of a 
plane-parallel multilayer medium can be found in Ref. 10. 
The functions (37) have been normalized to an incident 
wave of unit amplitude. In writing (37), we have used the 
fact that the fields X,fa(z) are continuous at the bound- 
aries, but that their z-derivatives are discontinuous. The 
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latter results in the dielectric constants E: ,11 (z) showing 
up in the linear terms of the field expansion for p-polarized 
waves. Integrals over z in (36) can be calculated explicitly 
using (5). For the discontinuous part of the %$, we also 
have 

Finally, we have 

the functions Vaj are given in the Appendix. 
To calculate the coefficients of the functions A;, in the 

quadratic approximation, we need merely keep the first 

nonvanishing approximation to (3 in (29). Making use of 
(31) and defining @ij(r,r')=(Ai(r)Aj(r')) (see (4) ) ,  we 
have then for the expansion of i+ in the coordinate repre- 
sentation 

All of the functions in this expression depend solely on 
the coordinate difference p-p', so the matrix elements 
(26) contain spectral-type integrals of the functions 
G0(b,z,z1) and Qij(b,z,zl) over b. The remaining integrals 
over z and z' can be calculated explicitly if we take account 
of the smooth variation of the fields X;a(b,z) in the neigh- 
borhood of the rough boundaries, and expand them as 
power series in z-6, , bearing in mind (6) and (7 ) .  In the 
quadratic approximation, it is sufficient to retain the 
zeroth-order terms in the power-series expansion in z-hj, 
replace X;, with the unperturbed %;a given by (37), and 
keep only the symmetric part of the radiation Green's 
function b0 

[~[X:,(bs)X~(b,z')+X&(b,z)~&(b,z')], for z=zl, 

for z>zl ,  

for z<zl .  

For the coefficient functions (26), we obtain the resulting 
expansion 

The explicit form of the functions 

is given in the Appendix. It  follows from (40) that the 
off-diagonal coefficients A;, with a#fi are of order 62. We 
can therefore neglect products of these coefficients in the 
general equations22 relating rap, tap, and A & .  We detail the 
relationship between rap, tap, and A$ in the next section. 

For the sake of completeness, we also give the equation 
for the angular spectrum of diffracted waves in the medium 
(1). In the quadratic approximation, it is sufficient to stop 
after the first iteration in solving (14), obtaining 

Substituting this result into ( 17) and ( 18), calculating the 
electromagnetic flux density, and averaging the latter over 
an ensemble of rough surfaces (we make use of (6)  for the 

angular spectrum), we obtain the angular spectrum given 
below by Eq. (45), in which the expansion coefficients are 
given by 

These are written out explicitly in the Appendix. 

6. RESULTS 

In the quadratic approximation to the amplitudes of 
the irregularities in the stratified, uniaxial, anisotropic me- 
dium ( 1 ), the transmission and reflection coefficients rao 
and tap for an incident fi = s- or p-polarized electromag- 
netic wave are given by 

A,+, 
+ - A-a+ 

Aspals- sp 1s 
raa = - 

SP 
A6aY = A.2 ,  

9 

1 
t =- 

A; , t =-- 
AP" t 

aa 
A ,  SP A;A,' P S -  A,A, ' 

with a=s ,  p. The coefficients of the functions A$ 
=A;B( F vl )  follow directly from (39) and (40): 
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The expansion coefficients Va,(bo) and u$&b,b0) are writ- 
ten out in full in the Appendix. 

The dispersion relation for the eigenmodes of the per- 
turbed medium depends on the poles of the coefficients 
(42), and to the same approximation, it separates into two 
independent equations for a =s- and p-polarized modes, 

A&(ql) =(I. (44) 

This statement holds only if the dispersion curves of the 
eigenmodes do not intersect, i.e., if the equation al,=O has 
different solutions for a =s and a =p. Polarization mixing 
effects will then be of order S4. If the eigenmodes do inter- 
sect, so that al, =alp=O simultaneously, then polarization 
mixing effects will be of order S2, and it will be necessary to 
solve the exact dispersion relation A,A;=A,A, in the 
vicinity of the intersection point.22 

The location of Brewster's angle, at which an initially 
unpolarized incident beam emerges completely polarized 
upon ref le~t ion ,~~ is also given by two independent equa- 
tions in the present quadratic approximation, 

The angular spectrum dPaddRm of the a=s- or 
p-polarized electromagnetic wave scattered into medium 
m = 1, n with dielectric constant E, for some incident P=s- 
or p-polarized wave from the upper medium is 

a bar denotes here complex conjugation; Po, is the normal 
component of the incoming wave, with angle of incidence 
8,; dRm=sin BmdBmdp, is the scattering solid angle in me- 
dium m= 1, n; 8, is the scattering angle in medium m; 
b = k, sin 8,: bo = k1 sin go; and p, is the angle between the 
unit vectors b and bo. Equation (45) makes sense only if 
the final medium (m = n )  is nondissipative and transpar- 
ent, i.e., if k2,=0. The expansion coefficients Cap(b,bo) are 
given in full in the Appendix. 

7. MULTILAYER MEDIUM WITH PERIODIC BOUNDARY 
IRREGULARITIES 

It was assumed in the foregoing that the boundary 
irregularities are random functions of the profiles 
z=hj(p), but our results also hold for deterministic, peri- 
odic boundaries such as those of a diffraction grating, with 

hj(p) =hj(x,y) =hj(x+aj,  y+bj), 

where a j  and bj are the periods of thejth boundary in the 
j; and 9 directions. The Fourier components of the profile 
are 

- 
where hj(p) =hj(p) -Lj, l,m=O, =k 1, &2, ... , and Sj is 
the area of an integration cell. 

For a deterministic boundary, the averaging scheme 
employed to go from Eq. (8) to Eq. (20) is no longer 
appropriate, and we must turn instead to a reanalysis of the 
original equation (14). The random profile of boundary 
irregularities enters into the final equations (42), (43), and 
(45) via the spectral densities Sij(q). To establish the re- 
lationship between the densities Sij and the Fourier com- 
ponents of the periodic boundaries, we choose the dielec- 
tric constant Ez of the unperturbed medium [Eq. (14)] to 
be that of a medium with smooth boundaries (2) .  The 
perturbation ( 16) takes then the form ( 3 1 ) , where 

Aj(r) =B[z-hj(p)] --B(z-6,). 

For slightly rough surfaces, this function can be ex- 
panded in powers of h (p)  : 

and the iterative solution of Eq. (14) will- contain linear 
( - [hj]b-b,,) and quadratic ( - S d2b[hi]b-b,[hj]bt-b,) 
terms in the Fourier components of the arbitrary determin- 
istic profile h j(p).  For periodic irregularities, 

These same terms enter into the matrix elements ( 17) 
and the full diffracted field (18). The zeroth diffraction 
order yields the transmission and reflection coefficients 
(19). But those equations should also turn into the final 
results (42) if we expand them in powers of the boundary 
irregularities. A comparison yields 

The situation is more complicated when we look at the 
cross-spectral densities_S,,(q) wit& i f j .  In the zeroth dif- 
fraction order, profiles hi(p) and hj(p), with i#j, contrib- 
ute only when their periods are commensurate, i.e., when 
there is some set of I, m, l', m' for which 

This will_be thesase when the period ratio ai /aj = bi /bj of 
profiles hi and hj is a rational number. We then have 

where l', m' can be obtained from (47). When i= j, (48) 
is the same as (46). 

716 JETP 77 (5), November 1993 G. V. Rozhnov 716 



- - 
If in fact the profiles hi and hi are incommensurate, i.e., 

their periods are related by an irrational factor, then (47) 
cannot be satisfied for any choice of I, m, 1', m'. In that 
event, the cross-spectral densities Sij with i#j (and ac- 
cordingly, bilinear combinations of the profiles (48) ) will 
contribute neither to the zeroth diffraction order, nor to 
the transmission and reflection coefficients (42). 

Substituting (46) and (48) into the final equations 
(43) and (45) changes the integrals over d2b in the trans- 
mission and reflection coefficients and in the angular spec- 
trum into a corresponding sum over diffraction orders; 
note that in (45), d 2 b = ~ , k r n d ~ , .  The resulting equations 
provide a basis for dealing analytically with the numerical 
calculations of Ref. 26 for the special case of a three-layer 
medium. 

8. DISCUSSION 

In the present paper, we have reduced the problem of 
electromagnetic wave diffraction from rough interfaces (ei- 
ther random or deterministic) between stratified, uniaxial, 
isotropic media in the general case-imposing no prior 
constraints upon the amplitude of boundary 
irregularities-to a solution of the standard equations of 
quantum scattering theory, Eqs. (14), (23), (25), and 
(32). A simple iterative solution yields closed-form ana- 
lytic expressions for the transmission and reflection coeffi- 
cients of the perturbed medium [Eqs. (42) and (43)l. 
These apply to a wider domain than previously, including 
the neighborhood of resonant eigenmodes. The dispersion 
relation (44) for the eigenmodes of the perturbed medium 
depends on the poles of the coefficients (42). 

Equations (42) and (43) subsume all previous results 
as special cases. Equation (45) for the angular spectrum of 
the diffracted waves extends the results obtained in Refs. 9 
and 10 for the special case of plane-stratified isotropic me- 
dia to the present case of arbitrary stratified, uniaxial, an- 
isotropic media. 

The technique of averaging the original equation (8) 
and reducing it to Eq. (20) in order to derive the final 
expressions (42) and (43) shows that, with regard to the 
coherent component of the diffracted field, surface rough- 
ness is always manifested as a sort of surface layer with 
effective dielectric constant ieff- .$?= (zz-g) + 2. Equa- 
tions (9) and (21) yield a regular procedure for calculat- 
ing ieff. No further modeling assumptions are required to 
calculate zer, in constrast to those of numerous other ap- 
proaches to this problem (see, e.g., Refs. 27-30). As be- 
fore, the present approach constitutes a rigorous solution. 

Equations (42) and (43) are exact, in the sense that 
they include all terms of order 6'. In particular, in the 
neighborhood of Brewster's angle and of the eigenmodes of 
the unperturbed medium, the zeroth-order terms aka and 
- 

alao vanish, and corrections -6' are no longer small, mak- 
ing a substantial contribution. 

The parameters of the unperturbed medium enter into 
the final expressions (see Appendix) through discontinui- 
ties in the dielectric constant and its z-derivative at a 
boundary, through the transmission coefficients ts and tp of 

the unperturbed medium, and through the values of the 
unperturbed fields EL, E;, EL,, and & at thejth rough 
boundary. Those fields are known, since we have assumed 
that we have an analytic solution for the unperturbed equa- 
tion ( 12) of a medium with smooth boundaries. The way 
in which the result depends on the fields at thejth bound- 
ary is physically reasonable-to a first approximation, ne- 
glecting retardation, the final equations can only depend on 
the field values in those regions where the perturbation A& 
is located. Previous conclusions6~7 that the final expressions 
depend only on the external characteristics of the unper- 
turbed problem hold only in the special case that one of the 
outermost media is homogeneous all the way through to 
the boundary, and that there is but a single rough surface, 
located at the boundary of the homogeneous outermost 
medium [see Eq. (38)l. Equations (42) and (45) make it 
possible to reinforce or suppress the contribution of thejth 
rough boundary to the observed effects by altering the 
boundary field distributions. 

APPENDIX 

The dependence on b or bo of each quantity in the 
following equations is signified by an additional subscript 0 
(for example, in 71, rllo, D/,, Dj,,). 

u!= ( A E ~  ) i ( A ~ l  )j&g{,[t$;J{w (ho )2 ] ,  

u$= ( Asl ;( Asl ) j ~ L & { m  [t#;&{$- LY (kio)2] 

+ ( A E ~ ' ~ ~ ( A E ~ ~ ~ ~ D ~ ~ ~ ~ ~ D ~ ~ ' ~ - ~ ~ ( ~ ~ ~ )  

x [(As, ,(AE[') j~;,q,,~;I' 
+ (AS(' jD;&{mLii 1, 

u$= - (hal ) i  gi,(ii0) [ ( AE, ) j ~ { m ( & , )  L? 

- ( ~ & i ' ) j # ~  t p ~ f l t  

US= (Asl ) j~:',(iio) [ (Asl ) i  gibO(6i0) L? 

- (A&(' ) i ~ ; o t p ~ f  1, 

where 

in=min(i,j), jx=max(i,j) ,  

L? = t$;J{; + tpEI;s:';, 
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I 
, i <  j ,  

LI( = f (E:bq+E,,ol,) ,  i= j ,  

& b e , ,  i >  j .  

The expansion coefficients eaB(b ,bo ) ,  which define the 
angular spmectrum (45) ,  follow directly from Eqs. (37) 
and (41 ) .  
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