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A theory of the Stark effect in the D-dimensional "hydrogen atom" is developed. Recursion 
relations determining the higher-order perturbation terms Ek for the ground state are 
obtained, and the behavior of the coefficients Ek as k is increased, as well as their asymptote 
as k- 03, are investigated. Analogous problems for the D-dimensional funnel potential 
are also considered. 

INTRODUCTION radically and makes it possible to compute the perturba- 
tion theory coefficients E rapidly up to k=50.') 

In a prediction dating back to ~hrenfest' the general- 
ization of a physical theory to a space of an arbitrary di- 
mensionality D often leads to a new and unexpected per- HIGHER-ORDER PERTURBATION THEORY 

spective of the problem at hand. Over the last years, this 
approach has been widely used in theoretical physics. It 
provides a basis for the l/D-expansion, or dimensional- 
scaling, approach2-9-a novel quantum-mechanical com- 
putational method which has been applied, in particular, to 
the study of the properties of atoms in strong external 
 field^,^-^ to the two-center problem,10 and to many other 
problems (the state-of-the-art of the method and its appli- 
cations to quantum mechanics, atomic and molecular the- 
ory, quantum chemistry etc., are reviewed in the articles 
collected in Ref. 4).  

The problem of a "hydrogen atom" in a D-dimensional 
Euclidean space was first treated by one of the authors," 
who showed (following the classical work of ~ o c k ' ~ )  that 
the "latent" symmetry group for the discrete spectrum case 
is SO(D+ 1) (this fact can also be established by a purely 
algebraic methodI3 similar to the Bargmann approach14). 
The "latent' symmetry of the Coulomb problem for a con- 
tinuous spectrum and zero-energy states has been consid- 
ered in Refs. 15 and 16; the use of the symmetry consid- 
erably simplifies the calculation of the Coulomb Green's 

Applications to some atomic physics prob- 
lems, including the evaluation of matrix elements and ra- 
diation transition probabilities, are contained in Refs. 18- 
20. Further references and a summary of available results 
may be found in Refs. 16 and 21. 

In the present paper we consider the problem of a 
D-dimensional hydrogen atom in a uniform electric field, 
evaluate higher-order perturbation-theory terms, and in- 
vestigate the structure of perturbation-theory series as 
functions of D. While one- and two-dimensional generali- 
zations of the standard ( D= 3) perturbation theory of the 
Stark effect have been carried out by many authors,') in 
D=2 there are at present only the first three perturbation 
terms available for the case of the ground state.26 We will 
show that the application of logarithmic perturbation 
theory27-30 to the present problem simplifies calculations 

The Schrodinger equation for a D-dimensional "hy- 
drogen atom" in a uniform electric field E has the form 
( f i=m=e=  1): 

By separating variables we are led to the equation 

where Dl is the separation constant, E is the energy, and ( 
and q are parabolic coordinates [see formulas (A4) and 
(A5) in Appendix A]. The equation for the function f i (q)  
differs from (2) only through the replacements PI -.P2 and 
E -4 -&(PI +P2 = 1 ) . Following logarithmic perturbation 
t h e ~ r ~ , ~ ' - ' ~ ~ ~ '  we look for f of the form 

and obtain for the function x(6)  the (Riccati) equation 

for which we seek a solution of the form 

Substituting these expansions in (3) we arrive at recursion 
relations for the coefficients ajk): 

D- 1 k- 1 
a (k)  = -- (1) (k-1) 

k C a, a&-, 7 4 1=1 
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r 0. k - even 

- . 

k - odd. 

The k-order perturbation of the ground-state energy is 

10, k-odd, 

Comparing the recursion relations (6) and (7)3) with 
analogous relations for states with parabolic quantum 
numbers (0, 0, n - 1 ) in three dimensions,29930 they are 
readily seen to be identical if we set 

Thus, for odd dimensionalities D= 3, 5, .. the coefficients E 
may be taken from previous ~ o r k , ~ ~ - ~ l  whereas for D= 2, 
4, .. they correspond to half-integer values of the principal 
quantum number n, which are not realizable in the three- 
dimensional problem. 

In Eqs. (6) one can dispose of the fractions by going 
over to integer number recursion relations (see Appendix 
B), which makes it possible to calculate the perturbation 
coefficients exactly. It can be shown that 

where the pk are polynomials of degree k: 

Note that pk(0) =O (for the ground state, the perturbation 
coefficients Ek are different from zero only for even k). 

The computed coefficients Ek are presented in Fig. 1, in 
which one sees a rapid growth of the higher order 
perturbation-theory coefficients. It is interesting to note 
that for D>3 this growth starts immediately at k=2, 
whereas in the two-dimensional hydrogen atom the 1 Ekl 
first decrease and their growth starts at k 2  10. Using (8) 
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FIG. 1. Higher order perturbation-theory coefficients. Solid curves: Stark 
effect; dashed curves: funnel potential (the ground state; k is the order of 
the perturbation theory). The curves are labeled by the space dimension- 
ality D. 

together with formulas (4.4) of Ref. 30 we find the asymp- 
totes of the coefficients Ek in the D-dimensional case: 

From this it follows that the quantities I Ekl have a mini- 
mum at k-ko, 

In particular, ko- 5 for D =  2, and for 0 2 3  we have ko < 1. 
This accounts for the difference between the corresponding 
curves in Fig. 1. 

Thus the second-order perturbation coefficients in- 
crease factorially as k- oo, which makes the perturbation 
series (5) divergent for an arbitrarily small electric field 
E#O. At the present time the technique of summing such 
series is fairly well advanced in quantum mechanics; the 
Bore1 tran~formation~~ and PadC-Hermite 
approximants7~9~10 may be used to this end. 

FUNNEL POTENTIAL 

Let us discuss briefly the funnel potential 

V(r) = -r-I +gr, (12) 
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which for g> 0 possesses only a discrete spectrum and for 
g < 0 represents a spherical model of the Stark effect in the 
hydrogen atom. 

Recursion relations for this problem are given in Ref. 
34, Eq. (16). Setting n = (D-  1)/2 in them we obtain the 
corresponding equations for the D-dimensional potential 
(12). 

The perturbation series for the ground state energy is 
here of the form 

Unlike the previous case, the perturbation series for g > 0 is 
of alternating sign. However, on changing the sign of g 
(corresponding to changing from the funnel case to the 
Stark effect) the coefficients in the series all have the same 
sign. 

A calculation using the formulas above gives the 
dashed curves of Fig. 1, which for k)l are close to the 
corresponding Stark-effect curves (for the same dimension- 
ality D).  It can be shown that, asymptotically, 

m 

E(g)= C &gk, 
k=O 

(13) 
pk= I E ~ / E ~ I  =pk+0(1), 

- (-ilk+' 
E,' = 

D+1 
25k-3 . D( D+ 1 ) ( D- 1 )3k-2~k(I), k>2, 

( I4)  where P is a constant dependent on D. From Fig. 2 it is 
where seen that for k 2 10 the linear dependence ( 15) does indeed 

1 
hold. 

8 -- D(D- I ) ,  In Tables I and I1 are listed the perturbation-theory 
'-4 coefficients Ek and as calculated (exactly) by the recur- 

sion relations given in Appendix B. Note that in the case 
A(z )  = 1, D =  3 the coefficients Ek were known whereas 
F3(z) =2(4z+ I ) ,  p4(z) =2(482+33z+7), the coefficients E2, E4, and E6 for the two-dimensional 

hydrogen atom have been calculated (by a different 
p5(z) =8(176z3+2252+ 116z+22), method) in a more recent paper.26 The perturbation coef- 

ficients for the funnel potential have been calculated for 
F6(z) = 16(1456z4+2913z3+26092+ 1157~+202), D=3  in Ref. 36. In Table I1 we have corrected a misprint 

p;(z) = 16(26 1122+74 124~4+99 49&3+74 7062 overlooked in Ref. 36, which gives (at p. 1575) an incor- 
rect value for the coefficient E5 for the three-dimensional 

+29 927z+4 899), ... ( 14') funnel potential. 

TABLE I. Higher orders of perturbation theory for the Stark effect (exact values). 

Note: perturbation coefficients Ek are written in the form of (B4); k is the order of the pertur- 
bation theory, D the spatial dimensionality. 
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Pk I 
APPENDIX A 

It is not difficult to verify directly that the radial Schro- / D - 5  dinger equation 

/ has the following ground-state solution: 

Eo= -2(D- I ) - ~ ,  (A21 

5 - 
R~(~)={~~/(D--L)~T(D))'/~ exp(-&). (A31 

3 
In terms of parabolic coordinates {, q 

2 
c=r+xD=r( l+cos OD-1), q=r-xD=r( l  -cos OD-1) 

1 1 1 1 1 1 ~ 1 1 1 1  

0 '  10 20 30 k (A41 

the D-dimensional Laplacian takes the form 

FIG. 2. The ratio p k ,  Eq. (15), for a number of dimensionality D. 

CONCLUSION 

The above results quite clearly demonstrate both the 
efficiency of logarithmic perturbation theory and its advan- 
tages over conventional one, in which higher-order E i s  
require complex multiple summations over the states of the 
discrete and continuous spectra. 

We have restricted ourselves to the ground state cal- 
culation (which suffices to analyze the question of the di- 
vergence of the perturbation series), and the logarithmic- 
perturbation-theory approach is simplest in this case. A 
generalization to excited states with node-containing wave 
functions has been carried out in Refs. 27, 30, and 32. 

The authors are grateful to V. M. Vainberg and V. D. 
Mur for helpful discussions. 

1 +- A'"~'P, 
(7 

(A51 

where is the angular part of the Laplace operator, 
dependent on the angles O1 Using (A5), the vari- 
ables in the Schrodinger equation ( 1) are separable into 
ul(x,, ... xD) =fl(f)f2({)@(01,....6D-2) and for 
@ =const. we arrive at Eq. (2). 

APPENDIX B 

The coefficients Ek (i.e., higher-order terms in pertur- 
bation theory) are determined by Eqs. (6) and (7). One 
further simplification occurs when one makes the substitu- 
tion 

( -  l)k+12~-5k+2(~- l13k-j-lA(k) 
J '  (B1) 

TABLE 11. Perturbation-theory coefficients for the D-dimensional funnel potential (ground state). 

Note: the coefficients are written in the form of (B7) .  
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which gives for Alk) the recursion relations (k)j> 1): 4 ' ~ h e  same is true for all dimensionalities D=4m + 1. 

where Ck are the Catalan numbers familiar from combina- 
torial analysis3' and Ahk) -,( D+ 1)AIk) for odd k; for even 
k we must set AAk)=0 in (B2). The k-order energy cor- 
rection is 

where k>2 is even and the index I assumes only odd values. 
It follows that the A?) are positive rational (and for 
D= 33, ..., integer) numbers for all j and k, which makes 
it possible to calculate them on a computer with no loss of 
accuracy. The results of computations are listed in Table I, 
in which we have set 

E&= -ek2-4k , (B4) 

where Qk and qk)O are integers. We should remark that Qk 
and Sk (unlike the perturbation coefficients Ek) increase 
dramatically note that for D=4 

Qlo=2 407 113 396 813 994 071 351 833 119 815, 

for example, and therefore Tables I and I1 give their ap- 
proximate values in several cases. 

From Table I it is seen that in a five-dimensional space 
all qk=O, that is, the perturbation coefficients are 
integers.4) This is easily explained with the aid of formula 
(B3) which becomes ( D= 5)  

Note that Alk)  is a polynomial of degree (k- j )  in 
z= ( D+ 1 )/2. We present explicitly the first few of the 
polynomials: 

(and, in general, Ahk)=zAlk) for odd k). 
Similar calculations have been performed for the fun- 

nel potential. In this case in Eq. ( 13) 

and the numbers Sk and qk are listed in Table 11. 
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2 ' ~ h i s  restriction depends on the power of the computer used. 
3 ' ~ o t e  that in the derivation of relations (6) and (7) it is essential that 

the unperturbed wave function have the form of the simple exponential 
of Eq. (A3). 
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Translated by E. Strelchenko 

This article was translated in Russia and is reproduced here the way it 
was submitted by the translator, except for stylistic changes by the Trans- 
lation Editor. 

705 JETP 77 (5), November 1993 S. P. Alliluev and V. S. Popov 705 


