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We consider a model of superconductive pairing with a gap function that is odd in k- kF. In 
this case superconductivity is possible even in the presence of arbitrarily strong point 
repulsion between electrons, which is an attractive feature from the viewpoint of the theory 
of high-T, metal oxides. We suggest a model of pairing interaction in which the 
equations of the BCS theory can be solved exactly, which makes it possible to fully analyze 
the ranges of existence of ordinary ("even") and "odd" pairing in terms of the 
interaction parameters. We show that normal impurities (disorder) lead to extremely strong 
suppression of "odd" pairing, even stronger than magnetic impurities do in conventional 
superconductors. 

1. INTRODUCTION 

The conventional BCS theory of superconductivity1 is 
based on the assumption that near the Fermi surface elec- 
trons with oppositely directed momenta and spins are ef- 
fectively attracted to each other. It is also assumed that this 
attractive interaction in a certain sense exceeds the Cou- 
lomb repulsion of electrons at least in a fraction of the 
phase space, which is considered the necessary condition 
for the system to go into the superconducting state at low 
temperatures. Naturally, from this viewpoint the strong 
repulsion of electrons in models of the Hubbard type 
widely used in describing the electronic properties of metal 
oxides is a factor preventing superconductivity. There is a 
certain interest, therefore, in studying models in which this 
repulsion is strongly suppressed or entirely absent. A 
model of this type was suggested in a recent paper by Mila 
and m bra hams.^ Their basic assumption is that the gap 
function of the BCS theory, A(k,w), depends only on 
I kl ,  more precisely, on the quasiparticle energy 
Ck= vF( I k I - kF) measured from the Fermi level, and is an 
odd function of this independent variable. Here, in the BCS 
approximation, superconductivity proves possible with an 
arbitrarily strong point repulsion between electrons. From 
the physical standpoint it is evident that such a state can be 
realized at fairly strong repulsion, when the ordinary 
("even") superconductivity is suppressed. References to 
earlier papers dealing with "odd" pairing can be found in 
Ref. 3. 

The goal of this paper is to analyze in greater detail 
than is done in Ref. 2 the problem of "odd" pairing and its 
relation to the ordinary "even" case. We base our assump- 
tions on a simple weak-binding approximation and employ 
a model pairing interaction that allows for an exact solu- 
tion of the equations of the BCS theory. This makes it 
possible to consider in detail the basic ideas of the model 
investigated and to find analytical solutions that can easily 
be compared to the results obtained by Mila and 
  bra hams^ by solving numerically the BCS integral equa- 
tions for a more "realistic" interaction. We also examine 

the effect of normal impurities on the "odd" pairing of the 
type considered. The effect proves to be exceptionally 
strong,4 with superconductivity suppressed even faster 
than when magnetic impurities are introduced into ordi- 
nary superconductors. The problem is solved both with the 
model interaction which allows for an exact solution, and 
numerically in the case of the "realistic" integration sug- 
gested in Ref. 2. Despite the obvious attractiveness of this 
type of pairing in explaining high-T, superconductivity in 
metal oxides, the exceptionally high sensitivity to disorder 
makes it an unlikely mechanism when applied to high-T, 
cuprites. 

2. EQUATIONS FOR THE GAP AND THE TRANSITION 
TEMPERATURE 

The model now to be considered is based on the fact2 
that the weak-binding equation in the BCS theory,' 

x tanh 
j 6 . t  A'({') 

2T ' 

can have a nontrivial solution A (() = -A ( - 5 )  [i.e., odd 
in k- kF, with (=uF(k- kF)], provided that V((,(') has 
an attractive term even in the presence of an (infinitely) 
strong point repulsion. for an odd A(() the re- 
pulsive part of the interaction in ( 1 ) simply vanishes and 
the attractive term V2(f ,f' ) can ensure pairing with non- 
trivial properties: the gap function A(() vanishes at the 
Fermi surface, which leads to gapless superconductivity. It 
is worth noting that we are speaking of an isotropic model 
in which the gap vanishes everywhere at the Fermi surface, 
which distinguishes this model from anisotropic pairing, 
say, of the d-type.3 

Thus, in what follows we assume that the interaction 
in Eq. (1)  consists of two terms, V(6,f') 
= vl((,f') + V2(f,5'), where 
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is the point repulsion of electrons, and V2(f,f1) the effec- 
tive pairing interaction (attraction), which is finite for 
If 1,If' 1 < oc and I f-f' I < o, (the latter restriction is 
very important), with oc<EF acting as a characteristic 
frequency of bosons whose exchange gives rise to pairing. 
The pairing "potential" V2(f,f1) can be represented by 
different model functions e.g., say, a step function.' The 
following interaction was especially prominent in Ref. 2: 

( 3 )  

which was chosen exclusively in order to obtain a tunnel- 
ing density of states in the superconductor NT(E) that 
behave like I E ( ' as E-+ 0. 

The BCS integral equation ( 1 ) with such a potential 
V2(f,f1) was solved in Ref. 2 numerically, and some re- 
sults obtained there qualitatively agree with the properties 
of high- T, compounds. 

In this paper we consider mainly model interaction of 
the form4 

The main advantage of this choice is that in the case at 
hand the integral equation for the gap is reduced to a 
transcendental equation and can easily be solved. In this 
respect Eq. (4) is not the only choice: several other "po- 
tentials" can be suggested that have the same properties. 
For instance, we could use the interaction potential 
V2(f,f1) proportional to cosh(f-f' ) or (5- f')'. How- 
ever, the results obtained with (4) are in a certain sense the 
closest to those obtained via the "realistic" interaction (3) 
(say, for the density of states). But most qualitative con- 
clusions are independent of the, choice of "model" poten- 
tial. The importance of the model potential (4) is, obvi- 
ously, related also to the fact that practically any 
interaction that is an even function of f-f '  in the interval 
from -a, to o, can be represented by a Fourier cosine 
series. In this sense our discussion lays the foundation for 
analyzing the most general case. 

It is worth noting that the realistic choice of V(f,fl) 
should actually have been carried out with the dielectric 
formalism of superconductivity theory,5s6 where it is pos- 
sible to arrive at extremely general expressions for the in- 
tegral kernel in the BCS theory. But it is not clear how to 
derive the nontrivial dependence of the kernel on the inde- 
pendent variable If-f' 1, since a typical feature of the 
dielectric formalism is that V(f,f1) depends separately on 
f and f '  (see Refs. 5 and 6). 

The transition temperature of the superconductor is 
determined by the linearized equation 

Combining this with (2) and (4), we get 

tanh (&) -P JZF d f 1 F  

for If1 <w,, and 

for w, < 1 f 1 < EF , where we have introduced, as is com- 
mon practice, dimensionless constants of pairing and re- 
pulsive coupling: g= N(0) V and p = N(0) U. 

The general solution to Eqs. (6) and (7) has the form 

where A,, A,, and A are determined by solving the follow- 
ing system of algebraic equations: 

I Ac=gFJc+gFA, 

A= -pFA,-p W'A , 

A,=gFsAs. 

with 

f 
Fs= louc df sin2 (s t) f tanh 2 ~ ,  , 

f 
W= lomc df f tanh 2 ~ ,  , 

f 
W1= I ~ d f  tanh - . 

2 Tc 

We see that Eq. (lo), which determines T, for "odd" 
pairing, is independent of the system of equations (9), 
which determines T, for the "even" case. The repulsive 
interaction affects only "even" pairing, and from (9) we 
arrive at the following transcendental equation for T,:  
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which can be written as 

where we have introduced the Coulomb pseudopotential 

in which in the weak-binding range, when T,gw,, the 
difference W 1 -  W  takes on the ordinary value of 
In (EF/oC). 

The temperature of transition to the "odd" state is 
determined from the equation 

S =g 1;' @ sin2 (n g) tanh - . 
2 w c f  2Tc 

In the Appendix we derive Eqs. ( 12) and ( 14) starting 
from the problem of Cooper instability of the normal state. 

Figure 1 depicts the results of solving Eqs. ( 12) and 
(14) numerically for different values of the coupling con- 
stants g and p. We see that "even" pairing is predominant 
in the presence of a weak repulsive interaction: the tem- 
perature of the respective transition is higher than the tem- 
perature of the transition to the odd-gap state. As the re- 
pulsion grows, the situation changes, and at large values of 
g "odd" pairing becomes preferable. Note that in model 
(4) the pairing coupling constant has a critical value: 
"odd" pairing appears only for g > gc=: 1.2 13. Thus, in con- 
sidering "odd" pairing formally we step outside the scope 
of the weak-binding approximation, for which the BCS 
equations were initially obtained. 

In this sense the results represented in Fig. 1 in the 
region of large coupling constants are to a great extent 
nominal. For one thing, the practically linear increase of 
T, with g, which Fig. 1 exhibits, has hardly any range of 
applicability and is due to the unreasonable extrapolation 
of the BCS equations obtained in the weak-binding approx- 
imation to the range of large g. Actually we should have 
proceeded more carefully in the spirit of Nozieres and 
~chmitt- ink,' who consistently studied the transition 
from " l ~ o ~ e "  Cooper pairs in the weak-binding approxima- 
tion to the compact bosons that emerge in the limit of an 
extremely strong pairing interaction. As is well known, 
with increasing g the transition is accompanied by satura- 
tion of T,, whose value is determined (at large g values) 
by the well-known formula for the tem2erature of Bose 
condensation in a boson gas, in which there is practically 
no dependence on g. 

FIG. 1. T ,  vs the pairing coupling constant g= N(0)  V for "even" pair- 
ing (solid curves) and "odd" pairing (dashed curve). Curve I corre- 
sponds to p=O, curve 2 to 1 ,  and curve 3 to 10. It was assumed in 
calculations that EF/mc= SO. The inset presents a similar dependence for 
the "realistic" interaction (3 ) .  

Formally the critical value g, of the coupling constant 
is absent from the "odd" pairing problem if the pairing 
interaction (3) is employed, which is obviously a result of 
this formula being divergent for (5-6' I - 0. The respec- 
tive dependence of T, on g= N(0) V for the problem of odd 
pairing, obtained by numerically solving Eq. (5)  with po- 
tential ( 3 ) ,  is depicted in the inset in Fig. l .  At the same 
time it is clear that in this case, too, "odd" pairing begins 
to dominate over "even" pairing only when there is fairly 
strong repulsion. Note that considering the limit of strong 
repulsion within the framework of the BCS theory is 
hardly justified since it allows only for the simplest Fock 
correction in the electron4ectron interaction. Clearly, 
proceeding in this manner does not allow us to meaning- 
fully consider the limit of p- *. The above formal solu- 
tion of the BCS equations, however, appears to correctly 
reflect the qualitative pattern of the transition from the 
common "even" pairing to "odd" pairing. 

Let us now examine the temperature behavior of the 
gap function in the case of "odd" pairing in model (4). In 
accordance with Eq.(8), for the "odd" case we have 
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FIG. 2. Temperature dependence of A, ( T )  in the case of "odd" pairing FIG. 3. Density of states in the "odd" pairing model for several charac- 
for several values of the pairing coupling constant. Curve 1 corresponds to teristic temperature values. Curve I corresponds to T/T,=O, curve 2 to 
g= 1.22, curve 2 to 1.5, curve 3 to 2.0, curve 4 to 3.0, curve 5 to 4.0, and 0.6, curve 3 to 0.8, curve 4 to 0.9, and curve 5 to 0.99. The value of the 
curve 6 to 5.0. pairing constant g was set at three. 

and the temperature dependence of A. is determined by the 
following equation, which follows from Eq. ( 1 ) : 

whose solutions for several values of the pairing constant g 
are depicted in Fig. 2. The temperature dependence of 
Ao( T)  resembles the one in the BCS theory but the two do 
not coincide. For one thing, at large pairing coupling con- 
stants, gsg,,  the value of 2Ao(T=O)/Tc is approximately 
five, with a tendency toward decreasing with g. 

The tunneling density of states can easily be calculated 
by the standard method.' Using ( 15), we get 

The respective curves for different temperatures are de- 
picted in Fig. 3. The density of states is always gapless, and 
the "pseudogap" gets fuzzier as the temperature grows, 
with the positions of the peaks in the density of states 
depending rather weakly on temperature. Qualitatively 
these results are close to those obtained in Ref. 2 for the 
case of interaction (3) and can compare with the known 
features of the gap in high-T, superconductors. If the ratio 
2A/Tc is determined from the positions of the peaks in the 
tunneling density of states, we get 2A/Tcz6. 

Ill. EFFECT OF NORMAL IMPURITIES 

An interesting question is how normal (nonmagnetic) 
impurities (disorder) act on "odd" pairing. It is well 
known138 that such disorder has practically no effect on the 
common "even" pairing. In the case at hand the equations 
for the normal and anomalous Green's functions have the 
standard form8 valid in the weak-scattering limit: 

where E is determined from the equation where w = ( 2 n + l ) ~ T ,  
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Here y = . r r c ~ 8 ( ~ )  is the rate of electron scattering by 
point impurities with potential Vo randomly distributed 
with concentration c. The integral in the second equation 
in (19) vanishes because A(() is an odd function and 
renormalization of the gap function owing to scattering on 
impurities is absent. It is because of this feature that im- 
purities have such a strong effect on "odd" pairing. Note 
that the same situation occurs for anisotropic pairing, say 
of the d-type.9~10 

The equation for the gap now has the form 

Near T, this equation can be linearized, and we get 

where 5=w,+ y sgn a,. 
The sum over Matsubara frequencies in (21) can be 

calculated in the ordinary way by going over to integration 
in the complex frequency plane. As a result the linearized 
equation for the gap can be written in several equivalent 
ways. One is 

where GR(wg) = (w - f + iy)-'is the retarded Green 
function of a normal metal with impurities. In another we 
have 

An equation of the form (22) was obtained for a super- 
conductor with anisotropic d-coupling by Monthoux, Bal- 
atsky, and pines;'' in what follows we use Eq. (23). 

For the model interaction (4) the gap again has the 
form of (15), and the equation for Tc follows directly from 
(23): 

Figure 4 depicts T, vs y for several typical values of the 

FIG. 4. T,  of "odd" pairing vs the scattering rate y for different values of 
the pairing constant g. Curve I corresponds to g= 1.22, curve 2 to 1.24, 
curve 3 to 1.30, curve 4 to 1.50, CUNe 5 to 2.0, curve 6 to 5.0, and curve 
7 to 10.0. The inset presents the dependence of the critical scattering rate 
on the pairing coupling constant. 

pairing constant g obtained by solving Eq. (24). We see 
that scattering on normal impurities strongly suppresses 
"odd" pairing. Superconductivity disappears at y - T*, 
where Td) is the transition temperature in the absence of 
scattering (y- 0) and is determined from Eq. ( 14). De- 
struction of superconductivity in this case proceeds even 
faster than if we were to introduce magnetic impurities into 
a common superconductor." This manifests itself, for one 
thing, in the rapid decrease in the volume in which super- 
conductivity exists on the "phase diagram" (Fig. 4) as 
g - gc and in the absence of the universal T, vs y depen- 
dence characteristic of the case of magnetic impurities. 

If the model interaction (3) is employed, T, as a func- 
tion of y can be found by direct numerical solution of the 
linear integral equation (23). To calculate the minimum 
eigennumber determining the coupling constant g for a 
given temperature, we use the trace method and the 
Kellogg method.12 In evaluating integrals of functions 
proportional to (c-g' 1 -2'3 we use the methods for eval- 
uating singular integrals on a segment13 which make it 
possible to evaluate such integrals with an accuracy of the 
order of that of Gauss quadrature formulas. The procedure 
of calculating the minimum eigennumbers proves ex- 
tremely sensitive to the accuracy with which symmetrized 
kernels are calculated. Satisfactory results are obtained by 
representing these kernels in terms of hypergeometric func- 
tions, which are calculated via summation of appropriate 
generating series to a given accuracy. While the Kellogg 
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df' V2(f,f1)A(f'). A(5) = -- (28) 

The equivalence of these equations makes it possible to 
take the constant factors equal, which leads to the above 
result for yJTd. Similarly, it can easily be shown that for 
T,(y) ) w, Eq. (23) is reduced to 

N(O) 
A(f) = ---- 

0.6 - ~ T c ( Y )  
df' V2(f9f1)A(f'), 

(29) 

where 

094 - 1 x 
2. .rr cosh2(w/2) x +a 

Correspondingly, comparing (29) and (27), we see that in 
0.2 . the tight-binding limit the dependence of T, on y is deter- 

mined by the following universal equation: 

Tc( Y 
0 0,2 0,4 0,6 0,8 1.0 1.2 1.4 ~ r n f [ Y / ~ , ( y )  I = l. (30) 

~ / 7 ,  
It is worth noting, however, that the results for the tight- 
binding limit are fairly conditional and, as already noted, 
must be modified in the spirit of Ref. 7. 

FIG. 5. T,  of "odd" pairing vs the scattering rate y for different values of The results for Y, in the case of the model interaction . . 
the pairing constant g in the model with the "realistic" interaction (3 ) .  (4) and those obtained by numerically solving Eq. (25) 
Curve 1 corresponds to g=0.17, curve 2 to 0.25, curve 3 to 0.72, curve 4 
to 1.15. and curve 5 to 6.41. The inset D~~~~~~~ the deDendence of the with the model interaction (3)  are depicted in the insets in 
critical scattering rate on the pairing coupling constant. Figs. 4 and 5, respectively. 

method has a high rate of convergence in comparison to 
the trace method, at small coupling constants it has a ten- 
dency toward instability. The respective curves represent- 
ing the T, vs y dependence are depicted in Fig. 5. We see 
that the qualitative picture obtained in the simpler model is 
retained completely. One can easily verify that the critical 
scattering rate y, corresponding to destruction of super- 
conductivity (Tc(y + y,) + 0) is determined from the 
following integral equation: 

which for the interaction (4) is reduced to 

2 0, df' 
I=--~J, Fsin2(~garctg(:). 

For gzg ,  this implies the dependence yca  (g-g,) + 0, 
which reflects the narrowing of the superconductivity re- 
gion in Fig. 4. For g$gc (the tight-binding approximation) 
we have the universal result yJTd=4/.rrz1.273. Actu- 
ally, this result and T, vs y for g)g, are independent of the 
choice of model potential V2(&t1). For one thing, the uni- 
versality of yJTd follows from the fact that Eq. (14) for 
Td and Eq. (25) for y, assume the same form for 
Td$uc and yc$wc (i.e., g$gc): 

IV. CONCLUSION 

Here are the main results of our work. We have sug- 
gested a simple model of pairing interaction that makes it 
possible to obtain and fully investigate the exact solutions 
of the integral equation for the gap within the framework 
of the BCS theory both for the more or less common case 
of "even" (in k-kF) pairing and for the exotic "odd" 
pairing. We show that "odd" pairing becomes preferable 
when there is a fairly strong repulsive force between the 
electrons and, in general, when the pairing interaction is 
fairly strong. This last feature (the tight binding) merits 
further, more rigorous, study of the transition from Cooper 
pairs to compact bosons. "Odd" pairing leads to a gapless 
pattern in superconductivity and to other divergences from 
the common BCS theory, such as the unusual evolution of 
the pseudogap in the density of states, the large value of 
2AdTc, etc., which are attractive from the standpoint of 
high- T, superconductor theory. 

At the same time normal impurities (disorder) 
strongly suppress "odd" pairing. Suppression is even stron- 
ger than in the case involving magnetic impurities in ordi- 
nary superconductors. Even in the tight-binding limit, su- 
perconductivity is destroyed as y- Td, and as the pairing 
coupling constant decreases there is a sharp drop in the 
size of the region on the phase diagram where supercon- 
ductivity exists. 

High-T, compounds are known to be fairly unstable 
under introduction of normal disorder.I4 But if we ex- 
clude the special cases, say, the introduction of Zn impu- 
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- 
@ ,(o, w ' ,  Q=2&, q) = - 

PP 
- + - FIG. 6. Two-particle Green func- 

tion in the Cooper channel. 

rities, suppression of superconductivity in such compounds 
occurs fairly close to the disorder-induced metal-insulator 
transition, which is most likely related to Anderson local- 
ization of charge carriers.14 This transition takes place at 
y - E F )  Td, so that by this time "odd" superconductivity 
has been completely destroyed. This fact appears to make 
"odd" pairing an improbable mechanism for explaining 
high-T, superconductivity in metal oxides. At the same 
time the possibility cannot be excluded that a number of 
effects in these oxides can be explained by the rapid sup- 
pression of the "odd" component of the superconducting 
order parameter under the process of disorder, while the 
"even" component is preserved (this component retains its 
stability under disorder). This aspect deserves further in- 
vestigation. 
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Project No. 90 135 of the National Program for Supercon- 
ductivity Studies. The work wass also partially supported 
by a grant from the Soros Fund, awarded by the American 
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APPENDIX 

Methodologically it is advisable to obtain the equations 
that determine T ,  for "even" and "odd" pairing beginning 
with the normal phase, that is, as equations that determine 
the points of respective Cooper instabilities. Let us con- 
sider the two-particle Greens function in a Cooper channel, 
as shown in Fig. 6. It is convenient to link the instability of 
the normal state with the divergence of this function par- 
tially summed over the Matsubara frequencies, 

QPp, (fig) = - T 2 Qpp~ (a,a1,fi,q), (31) 
OW' 

at q= R =O. We again consider the electronelectron inter- 
action V(f,C1) as consisting of two parts defined in (2) 
and (4). In view of the isotropy of the system, @ppt(O,O) 
can be represented as the function a(%{'), which is de- 
termined by the equation 

@(f,fr)  = z ( O b + Z ( f ) N ( O )  df' 

where 

Combining this with Eqs. (2) and (4) yields 

g sin (; 9 J::c df' sin (; 5) @ (E,E' ) 1 
(34) 

for If I, If' I < a,, and, respectively, 

for I f 1  or 16'1 > a c  and I f  l , lfrI < E F .  
Let us introduce the following functions: 

f ( f )  = JEF dfl @(&f'), 
-EF 

for which, as Eqs. (34) and (35) clearly show, the follow- 
ing system of equations: 

f ( 0  = Z ( O  -PW1f ( 0  +gFfc(S), 

where we have used the notation introduced in ( 11 ). 
We see that the "even" and "odd" equations have sep- 

arated. "Odd" pairing is due to the divergence of the 
function fs(f), and the respective instability condition has 
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the form I =gFs, which coincides with ( 14). The first two 
equations in (37) determine the instability under "even" 
pairing. Clearly, 

and the instability condition is 

which coincides with ( 12). 
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