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This paper studies the resonant tunneling of electrons in a heterostructure with a 
semimagnetic barrier with allowance for temporal fluctuations in the exchange field created 
by magnetic impurities in the barriers and acting on the spin of a tunneling electron. 
The barrier transparency is shown to depend substantially on the relationship between the 
correlation time for the fluctuations and the tunneling time (i.e., the electron lifetime 
in the resonant state). In the case of slow fluctuations, tunneling is quasielastic, and the 
dependence of the barrier transparency on the electron energy exhibits a double- 
peaked profile related to spin splitting of the resonant level in the exchange field. Fast 
fluctuations of the exchange field give rise to inelastic processes, and the transparency exhibits 
one Lorentzian peak, whose half-width, however, is greater than that given by the 
Breit-Wigner formula. An explicit expression is derived for the tunneling amplitude with an 
arbitrary value of the ratio of the tunneling time to the correlation time, provided that 
the decay of exchange-field correlator is exponential. 

1. INTRODUCTION 

Semimagnetic semiconductors, that is, solid 
A ; - $ ~ , B ~  solutions, where M stands for an ion of a tran- 
sition metal with an incomplete 3d shell and a nonzero spin 
s (e.g., s=5/2 for M=Mn and s=3/2 for M=Co), pos- 
sess some remarkable physical properties, which emerge as 
a result of the exchange interaction between carriers and 
magnetic irnp~rities.'-~ This interaction leads, among 
other things, to spin splitting of the levels of an electron 
localized at a center with a large radius in the absence of an 
external magnetic field.4-9 Splitting is due to the total 
exchange field of the magnetic ions occurring within an 
electron orbit acting on the electron spin. In wide-gap 
semimagnetic semiconductors with a composition x - 
0.01-0.1, where, on the one hand, the ion concentration 
n=zR-' is fairly high (R is the unit-cell volume) and an 
electron effectively interacts with a large number of ions 
(i.e., N= nu3 1, where a is the characteristic size of the 
electron wave function), and on the other, the spin states 
of different magnetic ions are still weakly correlated, the 
subsystem of magnetic ions is in the paramagnetic phase 
even at low temperatures, and the action of the magnetic 
ions on the electron spin can be described as that of a 
classical fluctuating exchange field.8 In what follows this 
field is denoted by f, so that the spin Hamiltonian of the 
electron has the form a 0 f ,  where a,, ay,  and a, are the 
Pauli matrices. 

In the case of moderately low temperatures T, where 
the characteristic interaction energy of an electron with a 
single ion, asaP3, is much lower than the temperature (a 
is the exchange constant) and the electron has practically 
no effect on the orientation of the ion spin, the exchange 
field f is generated by a large number N of independently 
and randomly oriented ion spins and has a Gaussian dis- 
tribution. In the absence of an external magnetic field, the 
probability of occurrence P(f) is proportional to 

exp( - f 2/2 f:), with f:= ( 1/3 f2), and is order 
~ ( a ~ a - ~ ) ~ .  Since the spin splitting of an electron level is 
determined solely by the absolute value of the magnetic 
field, the density of states p ( ~ )  = (Tr{S(&-a-f))) is pro- 
portional to  ex^( -c2/2 f :) and exhibits a double-peaked 
structure. Such spin splitting of a donor-electron level in a 
semimagnetic semiconductor was discovered in Raman- 
scattering experiments involving spin The fre- 
quency dependence of the Raman peaks 9 ( w )  
a p (&/2) exp (&/2T) (cf. Ref. 8 ) is in good agreement 
with the experimentally observed dependence899 (the expo- 
nential factor multiplying p(&/2) in the above formula 
emerges as the probability of the lower (a > 0) and upper 
(w < 0) spin levels of the electron become filled). 

The aim of this paper is to study theoretically the res- 
onant tunneling of electrons through such a state in a fluc- 
tuating exchange field. For instance, this may be tunneling 
through a doped semimagnetic barrier in the 
ZnSe-Znl -,Mn,Se-ZnSe heterostructure (Ref. 2). Or the 
barrier may be formed by the compound Cdl-,,MnyTe 
with a large y, so that the subsystem of magnetic moments 
is in the antiferromagnetic spin-glass phase and the local- 
ized state is formed by a quantum point Cdl -,Mn,Te with 
X( 1 (Ref. 10); the fluctuating exchange field in this case 
exists only within the quantum point. 

The noteworthy feature of this problem is that tunnel- 
ing is a coherent quantum process with a characteristic 
duration of the order of the electron lifetime r0 in a qua- 
sistationary resonant state,"-" and the temporal fluctua- 
tions of the exchange field must be taken into account. Two 
principal mechanisms determine the characteristic scale 
t, of fluctuations of the exchange field f. The first originates 
in the direct interaction of the magnetic-ion spins with 
phonons; the second is related to the precession of the spin 
of each ion in the total fluctuating magnetic field generated 
by the other ions. Although the second mechanism does 
not alter the total spin of all the magnetic ions, it too leads 
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to fluctuations off  in both magnitude and direction, since 
an electron effectively interacts only with the magnetic ions 
that are close to its localization center (at distances of 
order or less than a; the magnitude of the exchange inter- 
action of the electron with an ion is proportional to the 
square of the absolute value of the electron's wave function 
at the point where the ion is situated). As a result the 
correlation time tc strongly depends on the nature of the 
magnetic ions, their concentration, and the temperature 
and can acquire values from lop2 to 10-1°s (Ref. 18). On 
the other hand, the tunneling time r0 is of a quite different 
nature and is determined by the width and height of the 
barrier. The question, therefore, is how the resonant tun- 
neling transparency of the barrier depends on the to-to-t, 
ratio. 

This paper considers a model in which the exchange 
field is assumed to fluctuate independently of the spin state 
of the electron at a center. Here the Schrodinger equation 
for the electron spin in a field f(t) that randomly depends 
on time is solved exactly. Effects of correlation between the 
directions of field and electron spin, important in the low- 
temperature range T < fo, are discussed qualitatively. It is 
shown that at large correlation times, tc$rO, that is, when 
the electron tunnels in an exchange field that remains prac- 
tically constant in time, the average barrier transparency, 
as a function of the electron energy, has a double-peaked 
structure; for f $ fi/ro the barrier transparency behaves 
like the density of states p ( ~ ) .  As tc decreases, the situation 
changes radically, the double-peaked structure disappears, 
and in the limit tc(rO the transparency vs electron energy 
dependence has the shape of a single Lorentzian peak, 
whose width, however, exceeds the Breit-Wigner width 
r = fi/2r0. 

In addition to limiting cases, an explicit expression is 
obtained for the tunneling amplitude in the intermediate 
range on the assumption that the exchange-field correlator 
decays exponentially. 

2. GENERAL EXPRESSION FOR THE RESONANT 
TUNNELING TRANSPARENCY OF A SEMIMAGNETIC 
BARRIER 

The problem stated in Sec. 1 is most conveniently 
solved by starting with the tunneling Hamiltonian intro- 
duced in Refs. 16 and 17, which in our case can be written 
in the form 

Here ak and ak,  and bi and b are the electron creation and 
annihilation operators on the left and right banks, respec- 
tively, and ct and c the electron creation and annihilation 
operators in the resonant state at a center in the barrier. 
The last two terms of this Hamiltonian describe tunneling 
from the state at the center to the states of the left and right 
banks (and back). The center Hamiltonian 

allows for the temporally fluctuating exchange field f ( t) . 
An electron in the left or right bank interacts with mag- 
netic ions only owing to the tail of its wave function in the 
barrier, and this interaction can be ignored. 

The wave function of a tunneling electron is 

+v(t)exp( -iEot)ct 1 vac) 

+ C ~ , ( t ) e x p ( - i ~ ~ t ) b ~ l v a c ) ,  (3) 
P 

where x k ,  gp, and 77 are spinors describing the states of the 
electron spin in the left and right banks and at the center 
(from now on fi= I ) .  Substituting the wave function (3) 
into the Schrodinger equation, we obtain a system of equa- 
tions for these spinors: 

where 

The solution to the system of equations (4a)-(4c) with the 
initial conditions 

X&O= 1, (6b) 

corresponding to the electron initially (t=O) being in a 
state with the wave vector k in the left bank, can be found 
by a method similar to that used in Ref. 17, where the 
effect of electron-phonon coupling on resonant tunneling is 
studied. For one thing, for the spinor g(t) we will shortly 
need we obtain 

-i(Ek+ir)tl)G(t2,tl)xo. (7)  

Here 

in the absence of an exchange field r determines the half- 
width of the resonant-tunneling peak, where rl and r, are 
the partial half-widths corresponding to the electron escap- 
ing to the left and right banks, respectively. The electron's 
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lifetime in the resonant state, which coincides with the 
tunneling time, is ro= ( 2 r )  -' (see, e.g., Ref. 16). 

The operator G(t2,tl) in (7), which is the temporal 
evolution operator for V(t) from ( 5 ) ,  

can be written using the Feynman ordering index on the 
electron-spin operator: 

Introducing the index r into the Pauli matrices allows u, to 
be treated as an ordinary vector function and (10) as an 
ordinary exponential function.19 However, to obtain the 
final result explicitly we must again order u, so that the 
index decreases from left to right (for the sake of definite- 
ness we deal with the case tl > tl), after which the index r 
can be dropped. 

Basing our reasoning on the expression (7) for ~ , ( t ) ,  
we can calculate the average tunneling rate from the state 
at I vac) of the left bank to the state bi 1 vac) of the right 
bank, 

The angle brackets stand for averaging over the realiza- 
tions of the random exchange field f( t) .  In accordance 
with what was stated in Sec. 1, this is a Gaussian random 
function for which the higher correlators break up into 
products of pair correlators, and the averages emerging 
below are determined solely by the correlator 

(here we have allowed for the homogeneity in time and the 
absence of a preferred direction in the spin space). The 
function @(t) has a characteristic time scale tc and tends to 
zero for t) tc. 

Along with the tunneling rate Hkp specified by Eq. 
( 1 I) ,  it is expedient to introduce the bamer's tunneling 
transparency (the transmission coefficient) T (E,E' ) , which 
we define in the following manner. We decompose the set 
of quantum numbers of the initial state, k, into k, and K, 
where K is the wave vector of motion in the bamer plane. 
We divide the number of electrons that have tunneled per 
unit time with the final energy E', that is, 
Z & ~ ( E ~ - E ' ) ,  by the flux j 4 2 L =  ( 1/2L) (d~~/dk , )  im- 
pinging in state at 1 vac) onto the barrier, where L is the 
normalized length in the z direction, and then sum the 
obtained expression over all K with the condition 
E ~ = E ( K , ~ , )  =E: 

Combining (7), (8), ( l l ) ,  (13), and (6b), wearriveat the 
following expression for T (E,E' ) : 

Here we have allowed for the absence of a preferred direc- 
tion in the spin space of the problem considered; this leads 
to a situation in which the average (G( r ,~ )G( t , t - r ' )~ )  is 
an ordinary function rather than an operator. As a result 
the average bamer transparency is independent of the ori- 
entation of the electron spin in the initial state. 

The fact that the expectation value of the product of 
two evolution operators in ( 14) is time-dependent leads to 
the presence of inelastic tunneling, that is, T(E,E' )#0 for 
E#E'. At large values o f t  these operators can be averaged 
independently, and it proves expedient to introduce the 
definition 

the average ( ( . . ) ) in ( 15) tending to zero as t + co . As 
a result we can write T(E,E') as the sum of the elastic and 
inelastic parts: 

where the inelastic part Tinel(&,&') is obtained from (14) 
by replacing ( . . . ) with ( ( . ) ), and 

The tunneling amplitude u (s) specified in ( 18) also deter- 
mines the total barrier transparency for an electron tunnel- 
ing with an initial energy E: 

In the absence of the fluctuating exchange field, when we 
have G(t2,tl) -- 1, ( 14) implies the Breit-Wigner formula 
for barrier transparency in resonant tunneling: 

An exchange field so strong that @(O) = fi > r2 acting on 
an electron in the resonant state changes Eq. (20) radi- 
cally, with the result strongly dependent on the ratio of the 
tunneling time rO= (2r ) - l  to the correlation time of the 
fluctuating exchange field. We begin examining this effect 
with two limiting cases of large and short correlation times 
(in relation to rO). 
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3. BARRIER TRANSPARENCY IN THE LIMITING CASES OF 
RAPID AND SLOW EXCHANGE-FIELD FLUCTUATIONS 

Employing the Feynman ordering index in writing the 
evolution operator in (10) makes it possible to easily ob- 
tain formal expressions of the expectation value of this 
operator (which enters into ( 18) ) and for the expectation 
value of the product of such operators [which enters into 
( 14)]. For one thing, the expectation value (G(t,O)) coin- 
cides with the generating functional for a Gaussian random 
field, whose form is well known (see, e.g., Ref. 20). We 
have 

The problem now is to find the explicit form of Eq. (21), 
that is, to order the Pauli matrices in accordance with what 
was stated after Eq. ( 10). 

In the case of slow exchange-field fluctuations it is suf- 
ficient to restrict our discussion to calculating (G(t,O)) for 
times t-TO 4 t,. Here the correlator 8 (T- T I )  in (2 1 ) can 
be replaced with Q(0) = fi and (G(t,O) ) can be repre- 
sented in the form 

In this expression the index T can be dropped and the last 
exponential function can be replaced with exp (itv o )  . In- 
tegrating, we get 

Similarly, for ~ , ~ ' g t ,  we can calculate the expectation 
value (G(T,o) G(t , t -~ ')+) entering into ( 14), but the re- 
sult is too cumbersome to give here. Instead, we qualita- 
tively describe the structure of T(E,E') at large, but finite, 
values of t,. The integrated value of the inelastic part, 
Id&' Tinel(&,&'), proves to be of the same order of magni- 
tude as the elastic part Tel(&) [see Eq. ( 16)], and the char- 
acteristic value of electron-energy variation in inelastic 
tunneling, I &'-&I, is of the order of t;'. In the limit t, 
+ w we get 

which, when combined with (23) and ( 14), yields 

If the characteristic exchange spin splitting of the resonant 
level is large compared to r ,  we can replace exp( - r t )  in 
(25a) with unity and write 

where 

is the density of states of a localized electron in a semimag- 
netic semiconductor (see the definition in Sec. 1 ). Thus, 
the barrier transparency in this limiting case has a double- 
peaked structure, which, as the numerical evaluation of the 
integral in (25a) shows, is retained for values of r smaller 
than or approximately 2.2 fo; the transparency has a min- 
imum at E=O, but, in contrast to P(E), does not vanish at 
this point. 

In the opposite limiting case of rapid exchange-field 
fluctuations, when the correlation time t, is much shorter 
than r- ' ,  we can put 

After we substitute (27) into (21), the two spin operators 
in (21) are found to have the same ordering index, and 
since 4=02 = 3, we obtain 

An expression for the expectation value of the product of 
two evolution operators can be obtained for this limiting 
case in a similar way: 

Substitution into (14) followed by integration yields 
the following expression for the barrier transparency in the 
limit tc4  r - I :  

where 

Equation (30) shows that in this limiting case the bar- 
rier transparency loses its double-peaked structure and 
tunneling becomes inelastic. As for the elastic part of trans- 
parency, TeI(&) [see Eq. (16)], for t , 4 ~ ,  it has the form of 
a Lorentzian profile, with a half-width r* [Eq. (31)] 
greater than the Breit-Wigner value l? [cf. Eqs. (20) and 
(30)l. The same result was obtained by Stone and Lee," 
who studied phenomenologically the effect of inelastic scat- 
tering on resonant tunneling. However, within the scope of 
their work, Stone and Lee were unable to obtain the in- 
elastic part [the second term in (30)]. In this connection it 
must be noted that Eq. (30) is of a more general nature 
and, in contrast to the expressions for the opposite limiting 
case [Eqs. (25a) and (25b)], is not specific to the tunneling 
Hamiltonian [Eqs. (1)  and (2)]. We would have obtained 
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the same expression for T(E, E') by simply allowing for 
rapid fluctuations of the resonant-level energy, that is, by 
selecting the center Hamiltonian H, in Eq. ( 1 ) in the form 
H ~ = [ E ~ + A E ( ~ ) ] C ~  c, where AE(t) is that part of the lev- 
el's energy that fluctuates like white noise: 
(AE(t) AE(t') ) =6yS(t- t' ). 

4. THE TUNNELING AMPLITUDE IN THE INTERMEDIATE 
RANGE 

It is interesting to study the way in which Eqs. (25a) 
and (25b) transform into (30) as the correlation time tc 
becomes shorter. It is natural to assume that the exchange- 
field fluctuations decay exponentially and accordingly, that 
the correlator @(r-  7') specified in Eq. ( 12) has the form 

(In what follows instead of the correlation time tc it is 
convenient to use its inverse oo.) An argument that can 
serve as justification for selecting the correlator in the form 
(32) goes as follows. The fluctuations of the exchange field 
are due to random variations of the projection of the mag- 
netic ion spins. Hence, a satisfactory model is to represent 
f( t)  as a sum of a large number (see Sec. 1 ) of terms of the 
form wn6,(t), where w, are randomly distributed over the 
directions and are of the same order of magnitude, and 
each 6, independently experiences telegraphic noise (i.e., 
takes on, at random, values 1 with an average frequency 
w o )  The function f( t)  then proves to be a Gaussian ran- 
dom function with a pair correlator that has, as one can 
easily see, the form (32). 

In this case it is possible to calculate explicitly the 
tunneling amplitude u (s) [see Eq. ( 18), where s= r + i ~ ] ,  
which determines the elastic part of the barrier transpar- 
ency, Tel(&) [Eq. (17)], and the total barrier transparency 
TtOt(&) [Eq. (19)l. The present section is devoted to this 
method. 

According to Eq. ( 18), the tunneling amplitude is a 
result of a Laplace transformation of the averaged evolu- 
tion operator (21), which in the case at hand can be writ- 
ten as 

To calculate this quantity for an arbitrary wo, we consider 
the auxiliary operator 

where d,, d,, and d, are ordinary Bose operators obeying 
the following commutation relations: 

If we once more introduce the ordering index into the Pauli 
matrices, the following identity holds true: 

where (G( t,O) ) is the same as in (33), and ~ ~ = w , d +  d. 
The validity of the identity can be proved by differentiating 
with respect to time t, with allowance for the identities that 
follow from (35): 

e -F~ tdg~t=  demot, 
(37) 

exp{ - iq dt)d exp{iq qt) = b f d + iq 

(q is an arbitrary vector). Thus, the desired quantity 
(G(t,O)) is equal to (01 expi-Ft) lo), where d 10) =0, 
and, accordingly, the tunneling amplitude coincides with 
the matrix element of the resolvent of operator F (Eq. 
(34) ) on the vacuum state for d,, d,, and d,: 

Thus, the problem of calculating the expectation value 
of the evolution operator for the spin in a temporally fluc- 
tuating exchange field+f(t) with a correlator given by 
Eqs. (12) and (32) has been reduced to another problem 
that mathematically is more common. Note that the oper- 
ator F is indeed purely auxiliary and in no way related to 
the tunneling Hamiltonian (1). To avoid any misunder- 
standing we employ the notation I . ) rather than 

I . - . ) for the ket vectors of the space where the operators 
d and dt act. Note also that after we have formally replaced 
f o  by a purely imaginary quantity, the operator F acquires 
the form of the Hamiltonian of a three-dimensional oscil- 
lator with a spin-orbit coupling proportional to c o p ,  with 
p the momentum (such spin-orbit coupling is possible in a 
gyrotropic medium). 

Since a,, a,, and a, do not commute, it is not as 
simple to diagonalize the operator F in (37) as it might 
appear (e.g., this cannot be done by a translation operation 
applied to d)  . To calculate the resolvent (38) we solve the 
equation 

for the ket vector I R)  in the coherent-states representa- 
tionZ2 (Eqs. (38) and (39) imply u(s) = (OIR)). More 
precisely, we introduce the quantity 

R(q) =(Olexp{q- (d+dt))lR), (4.0) 

for which from Eq. (39) and relations of the type (37) we 
arrive at the equation 

An important aspect is that q=O is a singular point of Eq. 
(41 ), whereby all solutions regular at q=O have the same 
desired value R (0). The quantity R (q) is an operator in 
the spin space, that is, a 2-by-2 matrix, and the general 
regular solution of the matrix equation (41 ) can be written 
as 
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[Note that R(0) is proportional to the identity matrix, in 
accordance with what was stated after Eq. (14).] Substi- 
tution of (42) into (41) leads to trinomial recurrence for- 
mulas for the An coefficients: 

where 

(n+2)fi  for n odd, 

b n = s + n ~ o y  an= I n  f; for n even. (Ma) 

The recurrence formulas (43) make it possible to write the 
tunneling amplitude u (s) =Ao as a continued fraction: 

The validity of (44b) is most simply proved by truncating 
the series (42) at the (2k)th term, that is, setting 
Azk=O. Then from (43) there follows a system of 2k linear 
algebraic equations for Ao,A ,...,AZk- which can easily be 
solved. This gives the A. coefficient in the form of an ap- 
propriate fraction of the 2kth order for the continued frac- 
tion (Eqs. (Ma) and (44b)). 

This continued fraction is convergent according to 
Stolz's test (see Ref. 22, p. 289) in the entire physically 
important range of parameters, that is, for oo>O and 
r =Re (s) > 0. Note also that the results obtained from 
(Ma) and (44b) and from (25a) and (30) are the same in 
the cases of small and large values of wo (for w + 0 this can 
be shown numerically). 

Figure 1 depicts the dependence of the total barrier 
transparency TtOt(&) on the correlation time tc=w;' cal- 
culated on the basis of Eqs. ( 19), (44a), and (44b) at fixed 
values of fi and TO= ( 2 r )  An interesting feature of this 
dependence is a plateau with a width of order fo  that 
appears at a certain intermediate value of the correlation 
time. 

5. DISCUSSION 

It has been shown that temporal fluctuations of the 
exchange field have a pronounced effect on resonant tun- 
neling of electrons through a semimagnetic bamer. The 
resonant barrier transparency depends qualitatively on the 
characteristic "frequency" of the fluctuations of the ex- 
change field with respect to the unperturbed half-width r 
of the resonant peak. In the case of slow perturbations, an 
electron tunnels in an exchange field that remains practi- 
cally constant in time, tunneling is quasielastic, the 
electron-energy dependence of the tunneling probability is 
determined by the probability of the respective resonant- 
level shift, and, as a result, the barrier transparency has a 

FIG. 1. Total resonant barrier transparency vs tunneling-electron energy 
for five values of correlation time: w,-JI'=O.l, 1.0, 3.0, 5.0, and 10.0 for 
curves 1, 2, 3, 4, and 5, respectively. For the sake of definiteness we take 
the case of rl= r,= r/2. 

double-peaked structure determined by the density of 
states of a localized electron in the semimagnetic semicon- 
ductor. But when the tunneling time is comparable with or 
less than, the exchange-field correlation time, tunneling be- 
comes essentially inelastic, its double-peaked structure gets 
fuzzy or completely disappears, and the transparency ac- 
quires the shape of a single peak with a Lorentzian profile. 
Qualitatively this result can be interpreted in the following 
manner. Exchange-field fluctuations primarily lead to ran- 
dom motion in the position of the resonant level, which 
results in the level being in and out of resonance. In the 
case of rapid fluctuations it is this motion rather than the 
probability of realization of the level energy that deter- 
mines the position and shape of the resonant peak. This 
phenomenon is similar to what is known as the spectral 
diffusion effect in spin resonance theory23 and nonlinear 
high-frequency hopping conductivity.z4 In our case, how- 
ever, on the one hand, the problem of calculating the line- 
shape simplifies considerably because of the Gaussian na- 
ture of the fluctuations but, on the other, requires quantum 
mechanical treatment of the motion of spin in a time- 
dependent exchange field (and not simply allowance for 
level-energy fluctuations). 

As noted in Sec. 1, at low temperatures and at times of 
order t,, after a center has captured an electron a correla- 
tion appears between the direction of the electron spin and 
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that of the exchange field, and the lower the temperature 
the stronger the correlation. The model considered in this 
paper assumes, however, that the exchange field fluctuates 
independently, and here we qualitatively discuss how al- 
lowing for this correlation affects the tunneling transpar- 
ency T(E,E'). Naturally, at large tc an electron still tunnels 
in an exchange field that is random in both direction and 
magnitude, a field that has no time to change substantially 
in the course of tunneling, rO(tc. Hence the result speci- 
fied by (25a) and (25b) remains valid. In the opposite 
limiting case of long tunneling times, the emerging corre- 
lation between the directions of exchange field and electron 
spin leads to formation of a bound magnetic polaron 
2,6-8 and to reduction of the average electron energy at the 
center by E,- f 2 ~  (here T is the temperature). At the 
same time, temporal exchange-field fluctuations exist and 
lead to dynamic smearing of resonance. Hence we can ex- 
pect that for tc(rO Eq. (30) for T(E, E') remains valid, but 
the transparency peak is shifted toward lower energies by a 
quantity of the order of e,. 

We have investigated a microscopic quantity, the tun- 
neling transparency, in the event of resonant tunneling 
through a single resonant state. Of course, from the exper- 
imental viewpoint it is important to know the current pass- 
ing through the barrier. In the case of a heterostructure 
with a semimagnetic barrier of a fairly large surface area, 
the total current is determined by the tunneling of elec- 
trons through a large number of resonant states, and its 
magnitude can be expressed in terms of T(E,E') with some 
averaging over the energy of the resonant levels and over 
their position in the barrier, that is, over the partial half- 
widths rl and r, (see, e.g., Ref. 17). Of course, experi- 
mentally the transmission coefficient can be studied in 
"pure" form if one investigates the quasi-one-dimensional 
electron transport through a microconstriction in the semi- 
magnetic barrier, created by a voltage on the gate of a 
planar structure. Here, by changing the gate voltage the 
tunneling time can be varied from 70 ( tc to ro $ tc . Note 
that in the case rO<tc the current passing through the mi- 
croconstriction fluctuates in time with a characteristic time 
scale tc. 
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