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The conductivity anisotropy of systems in which the concentration of local centers is 
periodically modulated in one dimension is discussed under conditions such that the 
conductivity is related to hopping both in the direction of the periodicity and along 
the layers. It is shown that when the hopping conductivity of these systems is calculated by 
reducing its evaluation to a problem of percolation theory, the problem that results is 
characterized by the presence of two percolation thresholds whose diTerence determines the 
anisotropy in the primary exponential behavior of the conductivity. Anisotropies in 
other hopping-related kinetic coefficients (thermopower and AC conductivity) are discussed 
as well. 

1. INTRODUCTION 

Distinctive features of the conductivity of composi- 
tional superlattices in the direction of periodicity (in par- 
ticular, the appearance of negative differential conductiv- 
ity) can be understood naturally in terms of a model based 
on hopping transport that associates the conductivity with 
phonon-assisted tunneling transitions between neighboring 
layers.'-5 Analogous processes have been discussed by 
~ e l e n ' k i ~ ~  for amorphous compositional superlattices, in- 
cluding transitions between conducting channels located 
within the same layer of the superlattice. Calecki et ale7 
have studied the conductivity of the layered semiconduct- 
ing compound InSe under conditions such that the con- 
ductivity along the layers is due to delocalized carriers; in 
this case, the activation energy of the conductivity is ob- 
served to be temperature-dependent in the transverse di- 
rection. This is described fairly well by the Mott law, 
which applies to the regime of conductivity by variable- 
range hopping. However, a very different situation is en- 
countered in the case of a one-dimensional periodic mod- 
ulation of the density of hopping centers, where the 
conductivity is due to a hopping mechanism both along the 
layers and in the direction of the periodicity.8 This situa- 
tion can be realized, e.g., in compensated semiconductor 
systems whose concentration of majority doping impurities 
varies periodically; in particular, structures with periodi- 
cally repeating 6-doped layers and multilayer structures. 
An analogous situation can occur in compositional doping 
superlattices, especially at low temperatures under com- 
pensation conditions when the Fermi level lies in the region 
of localized states. 

In disordered media with a large scatter in the random 
probabilities for transitions between localized states, hop- 
ping conductivity is usually computed by reducing the 
equations of balance to a corresponding problem in perco- 
lation theory (the problem of bonds for random sites). In 
this case the primary exponential factor in the expression 
for the conductivity is determined by the percolation value 

anisotropic wave functions a unique threshold exists for 
the appearance of a cluster that is infinitely extended in all 
directions; accordingly, the anisotropy of such a system 
can be associated only with anisotropy of the pre- 
exponential factor, while the primary exponential depen- 
dence of the conductivity on the concentration of hopping 
centers and temperature remains i s o t r ~ ~ i c . ~ " ~  

In Refs. 11, 12, we discussed anisotropy in the hopping 
conductivity of quasi-one-dimensional disordered systems, 
and the way its temperature and frequency dependence 
changes as the effect of transitions between one- 
dimensional filaments increases. For the quasi-two- 
dimensional systems we will discuss here the transition to 
the three-dimensional case can give rise to features in the 
variation of the conductivity that are generally different 
from those we discussed in these references, due to the 
different topology of the optimal transport paths. For ex- 
ample, although it is in fact impossible to obtain a finite 
value of the DC conductivity for a system of one- 
dimensional chains of local centers without taking into ac- 
count interchain hopping, for quasi-two-dimensional sys- 
tems the DC conductivity along the layers turns out to be 
finite even in the absence of transitions between layers. 

The specific features of hopping processes in the mul- 
tilayer structures we discuss here are associated with two 
factors. The first of these is that the hopping integral be- 
tween local centers depends not only on the distance be- 
tween them but also on their relative positions, in particu- 
lar, which regions these centers are located in (the 
attenuation length of the wave functions are different for 
the different regions of the superlattice). The second fea- 
ture is connected with the nonuniform distribution of local 
centers in space. Both of these factors are very important, 
and, generally speaking, will affect the results of the per- 
colation calculation of hopping kinetic coefficients in dif- 
ferent ways. 

2. THE PROBLEM OF R-PERCOLATION FOR A MULTILAYER 
MEDIUM 

of the transition rate, which corresponds to the appearance In order to explain the basic features of these systems, 
of an infinite cluster of connected bonds. For systems with let us first consider the problem of R-percolation for a 
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superlattice consisting of a system of Bdoped parallel lay- 
ers located at a distance d from one another. In the prob- 
lem of R-percolation the transition probabilities between 
localized states do not depend on their energies, but rather 
are determined only by the spatial position of the sites. For 
the coordinate dependence of the probability of a tunneling 
transition Wij between localized states i and j we can write 
the following standard model expression 

Here Wo is a pre-exponential factor, which for simplicity 
we assume is constant, Rij= dPZj + ( z ~ - z ~ ) ~ ,  (pi ,zi) is the 
point at which the i-th state is localized, pi is the two- 
dimensional radius vector of the center in the plane of the 
layer, zi is the coordinate of the layer at which the center is 
found in the direction of periodicity, and a is the radius of 
the localized state. 

Since the characteristic distances between localized 
centers greatly exceed a, the random scatter of the coordi- 
nates of the centers leads to exponentially large scatter in 
the transition probabilities, allowing us to reduce the prob- 
lem of calculating the hopping conductivity to the corre- 
sponding problem in percolation theory. Once we have 
chosen a certain value for the transition probability W (or 
a certain distance R)  we will say that there is a bond 
between pairs of centers i and j when the relation Wij > W 
(or R < Rij) holds; in this case, all of the centers that lie 
within a sphere of radius R around a given center are 
connected by bonds with the given center. 

Since the distance between centers located in different 
layers cannot be smaller than d (Rij>d), our problem is 
characterized by the presence of two percolation thresh- 
olds, corresponding to the appearance of a cluster that is 
infinitely extended in directions parallel to the layer ( Wcl) 
and a cluster that is infinitely extended in all directions 
( Wc2). The first threshold, which corresponds to the ap- 
pearance of percolation parallel to a layer (the circles 
problem), is reached when the average number of bonds at 
one center, given by . r r ~ ~ ~ ~  where N2 is the concentration 
of centers in the layer, equals a critical value Br2) (numer- 
ical calculations give B:~) = 4.5) .10913-15 Accordingly, the 
percolation radius R,, = ( Br2)/r) ' 1 2 ~ ~  'I2 = 1.2 NF 'I2. It 
is obvious that for d > Rcl there is no transverse percolation 
in the range Rcl < R < d, since there are no bonds between 
centers located in different layers. Transverse percolation 
must necessarily occur for values of R > d such that per- 
colation can take place in the problem of the circles ob- 
tained from the intersection of the spheres by the planes of 
the neighboring layers. For Rcl (d the corresponding per- 
colation value Rc2 exceeds d by an amount on the order of 
the localization radius, i.e., Rc2=d. Since the value of the 
percolation radius determines the primary exponential 
concentration dependence of the hopping conductivity, this 
implies that for d > R,, this dependence should differ con- 
siderably for conductivity in the different directions. 

The existence of two different percolation thresholds 
essentially distinguishes our problem from both the prob- 
lem of anisotropic percolation on regular lattices16 and the 
problem of percolation along a system of random sites with 

FIG. 1.  Dependence of the critical hopping lengths along ( R , , )  and 
transverse (RCz) to the layers of the superlattice on the distance between 
layers containing the centers through which the hopping transport takes 
place, for the problem of R-percolation [distances are measured in units of 
(TrN) - L'3]. 

anisotropic transition probabilities,9910 for which the pres- 
ence of a single percolation threshold (which depends on 
the anisotropic probabilities of existence of bonds) is char- 
acteristic. The anisotropy in the percolation problem for 
random sites that arises in calculating the conductivity due 
to hopping between states with anisotropic wave functions 
appears as anisotropy in the pre-exponential factor of the 
conductivity. For the system we discuss here, the anisot- 
ropy appears in the exponential factor of the hopping con- 
ductivity; this is due to the significantly nonuniform distri- 
bution of local centers in space, which yields a lower bound 
on the probability for transitions between centers in differ- 
ent layers. It is clear that when the distance between layers 
becomes smaller than the percolation threshold Rcl along 
the layer, this anisotropy of the hopping conductivity be- 
comes small. 

Figure 1 shows schematically the dependence of the 
thresholds R,, and Rc2 on the distance d between layers of 
the superlattice for a prespecified average bulk concentra- 
tion N=N2/d of centers randomly distributed in the lay- 
ers. For ~ d ~ < 1  the average distance between the layers is 
small compared to the distance between centers in the 
plane of a layer, and the problem is close to the isotropic 
three-dimensional problem for which the percolation 
threshold Rc is of order N-'I3. For ~ d ~ )  1 the anisotropy 
is present: the threshold Rc2 for transverse percolation 
grows linearly with increasing d, while the d dependence of 
the percolation threshold RcI along the layer is determined 
solely by the variation of the density N2=Nd (for fixed 
N)  

Let us now consider the problem of R-percolation for 
a doped type-I compositional superlattice made of compen- 
sated material (see Fig. 2). Let the forbidden band width 
in the A-regions of the superlattice be smaller than in the 
B-regions, and let the hopping centers be randomly distrib- 
uted in the A-regions (the spatial distribution of the com- 
pensating impurities primarily affects the form of the ran- 
dom field and is not important in our problem). 
Furthermore, let the attenuation length b of the wave func- 
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FIG. 2. Energy sketch of a doped compositional superlattice. 

tion in the B-regions be much smaller than the correspond- 
ing length a in the A-regions. In this case the transition 
probabilities between centers located in different layers is 
found to be much smaller than between centers for com- 
parable distances within a single layer. Therefore we can 
use the following expression for the transition probabilities 
between superlattice local centers: 

In deriving the approximate expression (2) we as- 
sumed b g a  and that dA, i.e., the thickness of the A-regions 
of the superlattice, is on the order of the radius a; the last 
of these conditions allows us to ignore the dependence of 
the transition rate on the z-coordinate of the centers lying 
in the same layer of the superlattice. Since we have bga ,  
the primary decay of the transition probabilities between 
centers located in different layers of the superlattice is con- 
nected only with the B-regions, which we take into account 
by including the second term in the argument of the expo- 
nential function (2). The scale transformation z+z( b/a ) 
leads to a problem of the same type as that of a superlattice 
of Bdoped layers; in this case, however, the effective dis- 
tance between A-layers is now equal to d=dB(a/b), where 
dB is the thickness of the B-regions. The transition proba- 
bility has the form ( 1 ), with the sole difference that Rij is 
replaced by pij+ Izi-zj 1 .  Accordingly, the existence of a 
bond between pairs of centers i and j is determined by the 
relation Wij > W (or R < pij+ 1 zi-zj 1 ). Thus, a given 
center is found to be connected by bonds to all centers 
lying within a double cone formed by rotating a square 
with side &R around its diagonal, i.e., a double cone in- 
scribed within a sphere of radius R. 

The bond concentration in this system depends on W 
(R) as W decreases (R increases), there is a certain 
W= Wcl (R = R,,, the percolation threshold along the 
bonds) for which an infinite cluster of interlinked bonds 
appears in the system. In contrast to the problem of 
spheres, which arises in the theory of percolation along 
random sites that are randomly distributed on the period- 
ically spaced layers, we now have a problem of double 
cones with a spatially nonuniform (laminar) distribution. 

Under conditions where the average distance between local 
centers in the planes of the layers is smaller than the dis- 
tance between layers, the threshold value Wcl corresponds 
to the appearance of percolation along the layers alone; as 
we pointed out above, the threshold value W,, and the 
value R,, corresponding to it are determined from the 
problem of the circles defined by intersections of the double 
cones and the planes of the layers. For Rcl < R < d there is 
no percolation in the direction of periodicity. In this direc- 
tion percolation appears for W= Wc2 (R=Rc2) for layer 
widths such that Rc2 > d. When d > Rcl this threshold cor- 
responds to the condition that percolation take place along 
the intersections of the double cones with the planes of 
neighboring layers, i.e., in this case the approximate rela- 
tion Rc,-d holds. 

In the opposite limiting case, when the distance be- 
tween layers is small compared to the percolation length of 
a bond, we are led to the problem of a uniform distribution 
of centers in space. For this case the percolation problem 
reduces to the problem of randomly distributed double 
cones, for which the percolation threshold Wc(Rc) is char- 
acterized by the appearance of a cluster that is infinitely 
extended in all directions. Consequently, as the ratio RJd 
increases the thresholds Rcl and R,. approach one another 
and the threshold for three-dimensional percolation. The 
latter is determined by the bond criterion, according to 
which the percolation threshold corresponds to a specific 
value of the average number of bonds in a calculation for a 
single center B:~). For the problem of spheres the average 
number of bonds at a center equals ( 4 7 r / 3 ) ~ ~ ~ ,  where N 
is the average bulk concentration of centers, so that the 
percolation radius is given by R,=AN-"~, where 
A = (3  ~ : ~ ) / 4 7 r )  = 1.13 for B,= 3. For our problem of dou- 
ble cones with a random distribution of centers that is 
uniform in space, the average number of bonds at a center 
equals ( ~ T / ~ ) N R ~ .  Since the average number of bonds at a 
center B:~) depends weakly on the shape of the figure,9y11 
we can use the same value of Br3) for the problem of 
double cones as we did for the problem of spheres; as a 
result, we obtain the previous expression for R, with a 
somewhat different value of the constant A= 1.42. In this 
case all the basic conclusions obtained previously for a 
system of 6-doped layers (existence of two percolation 
thresholds and large anisotropy for d > Rcz) remain valid 
for hopping conductivity along isoenergetic centers in the 
superlattices as well. 

3. THE PROBLEM OF R-&-PERCOLATION FOR A LAYERED 
DISTRIBUTION OF LOCAL CENTERS 

As a rule, the problem of R-percolation cannot be ap- 
plied directly to describe impurity hopping conductivity, 
since a significant role is played by the scatter in the energy 
of localized states connected with broadening of the impu- 
rity levels into an impurity band. This broadening, which is 
primarily caused by the classical shifts in levels, is deter- 
mined in superlattices by two factors. First of all, there is 
the positional disorder, which leads to fluctuations in en- 
ergy levels because the position of energy levels of impuri- 
ties in the superlattice depends on the position of impuri- 
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ties in the superlattice layers.'~" Secondly, the classical 
broadening of the levels is caused by the random field cre- 
ated in compensated materials, primarily by charged im- 
purities. Thus, the actual impurity spectrum in a superlat- 
tice consists of a range of localized-state energies (i.e., a 
band) with a width on the order of several rydbergs. Ac- 
cordingly, in the region of low temperatures where the 
conductivity along impurities is significant, the width of 
this band is found to be smaller than kT, and inclusion of 
the dependence of the transition probabilities between lo- 
calized states on their energies becomes important. When 
the Fermi level is located in the region of the quasicontin- 
uous spectrum of localized states, while the width of the 
impurity band exceeds the characteristic hopping energy, a 
regime of variable-range hopping conductivity results. A 
temperature-dependent hopping length Rh is characteristic 
of this regime, so that we may expect the relation between 
Rh and d to vary as well, i.e., the anisotropy will be 
temperature-dependent. 

In the variable-range hopping regime the hopping con- 
ductivity is calculated by solving the balance equation, 
which contains the transition rates rjj= Wj, f ;( 1 - f ,), 
where both the transition probabilities Wjj and the equi- 
librium occupation numbers fi depend on the energy E; of 
the  state^.'^"^"^ For the case under discussion here, i.e., a 
compositional superlattice, the primary exponential depen- 
dence of the transition rates on the center coordinates and 
on their energies has the form 

where 

and E..= 11 ( E ~ - E ~ ) ~ ( E ~ - E ~ )  [here E ~ , >  kT]. In this case the 
conductivity can be calculated as in the case of 
R-percolation by reducing the problem to the correspond- 
ing bond problem. The presence of a bond between centers 
is indicated by the relation rjj > r (or qjj < q) ;  for d > bq 
there are no bonds between centers located in different 
layers. 

Let us denote by rcl (qcl) the value corresponding to 
the percolation threshold along a layer; under conditions 
such that the hopping length in a layer corresponds to this 
threshold, i.e., Rcl <d, the threshold value is determined 
by the solution of the two-dimensional R-&-percolation 
problem at random sites, qcl = (T2/T)'13, where the tem- 
perature satisfies T , = A ~ / ( ~ ~ ~ ~ ) ;  here p2 is the density of 
local centers in the layer and A2 is a constant of order unity 
(A2-- 5.7; see Ref. 15), which is related to the critical num- 
ber of bonds at a single center in the calculation for the 
two-dimensional problem. The threshold value of the pa- 
rameter q corresponding to percolation in the direction of 
periodicity of the superlattice for d )  Rcl is 

Accordingly, for d > Rcl we have qc2 > qcl, and the anisot- 
ropy of the hopping conductivity turns out to be exponen- 
tially large. 

FIG. 3. Temperature dependence of the ratio qc l /~cz  that characterizes 
the anisotropy of the hopping conductivity. 

We note that anisotropy was obtained in the exponen- 
tial factor of the conductivity for quasi-one-dimensional 
systems by Bonch-Bruevich et a l l2  for weak transverse 
linking of filaments in the temperature range above and 
immediately adjacent to the range where the conductivity 
is isotropic and described by the Mott law. The nature of 
this anisotropy, which is probably the same as that dis- 
cussed in this paper, could be related to the appearance of 
optimal hopping paths in this range that extend infinitely 
along the filaments. This corresponds to the appearance of 
a system of infinite clusters of connected bonds that are not 
connected to one another but extend along filaments of the 
cluster under conditions such that there still is no trans- 
verse percolation. 

4. DISCUSSION OF RESULTS 

Because the relation between Rcl and d is temperature- 
dependent, the hopping length may become considerably 
larger than d as the temperature decreases, so that Eq. (4) 
cannot be applied. For large hopping lengths we are led to 
the problem for random sites with a uniform distribution 
of sites in space. In this case there exists a single threshold 
for the appearance of a cluster that is infinite in all direc- 
tions, i.e., qc= ( T ~ T )  'I4, where ~ ~ = ~ ~ / ( k ~ , a ~ ) ;  here p3 
is the spatially averaged density of states, p3 = p2/d, and A3 
is a constant (A3-- 17.6). 

Thus, in the regime of variable-range hopping conduc- 
tivity the anisotropy depends on the ratio of the hopping 
length to the period of the superlattice and, consequently, 
on temperature. In Fig. 3 we show schematically the tem- 
perature dependence of the ratio qcl/qc2, which character- 
izes the anisotropy of the argument of the exponential 
function in the expression for the hopping conductivity. It 
is clear that the anisotropy decreases with decreasing tem- 
perature as the hopping between layers begins to dominate. 

The conductivity anisotropy discussed above is primar- 
ily connected with the differing transition rates between 
localized states due to their dependence on the distance 
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between centers. In this case the anisotropy of the thermo- 
electric power should be considerably weaker. Actually, 
the topology of optimal paths is such that for d >  RC1 a 
significant number of these paths are located in the con- 
ducting A-layers of the structure, so that the Peltier heat 
(the average energy of the electrons that give the primary 
contribution to the conductivity) is the same for the lon- 
gitudinal and transverse transports, whereas in the 
variable-range hopping conductivity regime it is close to 
the hopping energy along the layers kT(Tz/T)'I3. 

At the same time, under conditions such that the DC 
conductivity is anisotropic those characteristics that are 
determined by the total transition rate (i.e., that also de- 
pend on the spatial distribution of centers) are generally 
anisotropic as well. Among these is the AC conductivity, 
for which the characteristic hopping length Rh at fre- 
quency w is determined by the condition wr(Rh) = 1, 
where r(Rh) is the relaxation time for the corresponding 
finite clusters.13 Since the length Rh decreases with increas- 
ing frequency, the transverse AC conductivity becomes 
small compared to the conductivity along the layers when 
Rh < d. Since the transition rates between layers are expo- 
nentially small under these conditions, even for electric 
fields normal to the layers, the primary contribution to the 
conductivity comes from pairs of centers located within a 
single layer. An approach based on the pairwise approxi- 
mation gives the following expression for the conductivity 
along the layers in the quasi-two-dimensional approxima- 
tion (neglecting electron-electron interactions) : 

where A is a known constant that depends on temperature 
and the density of states, and r0 is the pre-exponential 
factor in the expression for the relaxation time in a pair.11 
For the transverse conductivity the potential difference be- 
tween sites of localized centers and the projection of the 
change in dipole moment of pairs onto the direction of 
current contains not the moment arm of the pair 
Rh= (a/2)ln(1/wr0), but rather the layer thickness w. Ac- 
cordingly, for the real part of the transverse conductivity 
we obtain 

It is clear that although the power-law character of the 
frequency dependence of the transverse conductivity re- 
mains almost the same as in the longitudinal case, its value 
is smaller by a factor of (a/2w13 ln3( l/wrO) = ( R ~ / w ) ~ .  

Thus, our investigation of the anisotropy of hopping 
transport phenomena in systems with one-dimensional pe- 
riodic modulation in the concentration of hopping centers 
(in particular, in doping compositional superlattices at low 
temperatures) makes it possible to obtain information 
about the topology of the paths of charge carriers and 
about a number of properties of the system connected with 
disorder (such as the radius of localization, the energy and 
length of hopping, and the density of states in the impurity 
band ) . 
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